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Incentives vs Computation

ETH Zürich Paolo Penna

In the previous lecture we have seen a problem, minimizing the makespan in unrelated
machines, where we cannot attain optimal solutions with truthful mechanisms.

In this lecture we consider combinatorial auctions, a class of problems where truth-
fulness by itself is not a problem (exact mechanisms exist using VCG). However, the
problem is computationally difficult, so if we want polynomial running time, we have to
use approximation algorithms. What we study today is whether such algorithms lead to
a truthful mechanism.

Can we get truthful approximation mechanisms?

We use the characterization for one-parameter setting (Myerson’s Lemma) which says that
we need monotone approximation algorithms, and this is enough. Does the monotonicity
requirement limit our ability to achieve near-optimal outcomes in polynomial time?

1 Combinatorial Auctions

We will study the tradeoff between incentives and computation through one of the canon-
ical problems in mechanism design.

Definition 1 (combinatorial auction). In a combinatorial auction a set of m items M
shall be allocated to a set of n bidders N . The bidders have private values for bundles of
items. The goal is to maximize social welfare.

• Feasible allocations: A = {(S1, . . . , Sn) ⊆Mn | Si ∩ Sj = ∅, i 6= j}

• Valuation functions (private): vi : 2M → R≥0, for every player i

• Objective: Maximize social welfare
∑n

i=1 vi(Si)

We also make two natural assumptions: free disposal, i.e., vi(S) ≥ vi(T ) for T ⊆ S, and
that valuations are normalized, i.e., vi(∅) = 0.

We will focus on the case where each bidder is interested in a single bundle of items:

Definition 2 (single-minded bidders). Bidders are called single-minded if, for every
bidder i ∈ N , there exists a bundle S∗i ⊆M and a value v∗i ∈ R≥0 such that

vi(T ) =

{
v∗i if T ⊇ S∗i ,

0 otherwise.

We call a bidder that is granted his bundle a winner, and we say that this bidder wins the
bundle.
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We will further assume that the bundle S∗i that bidder i is interested in is public
and only the valuation v∗i is private. This turns the problem into a one-parameter
problem, to which our previous results apply.

Example 3 (single-minded CA). There are two items a and b and three bidders Red,
Green, and Blue. Red has a value of 10 for {a}, Green has a value of 14 for the set {a, b},
and Blue has a value of 8 for {b}. Social welfare is maximized by allocating {a} to Red
and {b} to Blue.

a b

10 14 8

Figure 1: Single-minded CA instance from Example 3. The items are shown as black
circles and the bundles as color-coded ellipses.

Exact Mechanisms Exist (VCG) The CA problem (Definition 1) asks to maximize
the sum of all players valuations,

SW (a, v) :=
∑
i

vi(a)

where vi(a) is the valuation of player i for allocation a ∈ A. The truthful VCG mech-
anisms we presented in the previous lectures for players with private costs, is actually
maximizing the social welfare if we consider

• cost ↔ valuation

• minimize sum costs (social cost) ↔ maximize sum valuations (social welfare)

A rewriting of the mechanism for valuations is in Appendix A.

Observation 4. VCG mechanisms maximize the social welfare and are truthful,
even for the (general) CA in Definition 1.

2 Hardness and Hardness of Approximation

A first observation is that the VCG mechanism, which maximizes social welfare is not
a viable solution. The reason is that its algorithm should maximize (exactly) the social
welfare, which turns out to be an NP-hard problem.

Theorem 5 (Lehmann, O’Callaghan, Shoham 1999). The allocation problem among
single-minded bidders is NP-hard.

Proof sketch. We will prove the claim by reduction from independent set.
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• Consider a graph G = (V,E).

• Each node is represented by a bidder. Each edge is represented by a good.

• For bidder i, set S∗i = {e ∈ E | i ∈ e} and v∗i = 1.

This way, winning bidders correspond to nodes in an independent set.

The same reduction actually implies a hardness of approximation result in terms
of the number of items m. A more recent result shows a lower bound in terms of the
maximum bundle size of any bidder,

d := max
i
|S∗i |.

Theorem 6 (Lehmann, O’Callaghan, Shoham 1999; H̊astad 1999). There is no polynomial-
time algorithm for approximating the optimal allocation among single-minded bidders to
within a factor of m1/2−ε, for any ε > 0, unless NP = ZPP.

Theorem 7 (Hazan et al. 2006). Approximating the optimal allocation among single-

minded bidders to within a factor of Ω
(

d
log d

)
, is NP-hard.

Intuitively, NP = ZPP means that we have an efficient randomized algorithm for every
problem in NP, which is considered almost as unlikely as NP = P.1 For our purposes, this
means that there is a strong evidence that we cannot approximate the social welfare.

Goal 1: O(d)-approximation (trufhful + polynomial time)?
Goal 2: O(

√
m)-approximation (trufhful + polynomial time)?

A natural question in light of the hardness results is whether we can find polynomial-time
algorithms that match the lower bounds. In particular, is there a separation between the
best algorithm subject to polynomial-time and the best monotone algorithm?

3 Greedy Mechanisms for Single-Minded CAs

We show that with respect to both parameters, the total number of items and the max-
imum bundle size, simple monotone greedy algorithms yield optimal approximation re-
sults. Recall that our restricted version of CA is a one-parameter problem, so this is
enough to get truthful mechanism:

Truthful ⇔ Monotone

Here monotone means that, if bidder i wins for a bid bi, then he/she still win when
increasing his/her bid and the others do not change their bids:

1 The class ZPP, for zero-error probabilistic polynomial time, is the subclass of NP consisting of those
sets L for which there is some constant c and a probabilistic Turing machineM that on input x runs in
expected time O(|x|c) and outputs 1 if and only if x ∈ L.
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1 2 . . . d

1 1 1
1 + ε

Figure 2: Challenge instance for Greedy-by-Value

bi
b∗i

i wins

1

(The y-axis indicates whether i wins or not.) Given any such monotone algorithm, the
payments to obtain a truthful mechanism are very simple.

Definition 8 (threshold payments). For an allocation rule (algorithm) for the single-
minded CA problem denote by W (b) the set of winners when the bids are b. If the
allocation rule is monotone we define the threshold bid b∗i for player i against bids b−i of
the bidders other than i as the smallest bid such that i ∈ W (b∗i , b−i).

Example 9. Suppose we want to allocate k identical items to n bidders, each bidder is
interested in a single copy of the item. The k-highest bids are the winners (each of these
bidders get one item), and each of them pays the k + 1-highest bid.

Both greedy algorithms below use a carefully designed scoring function to rank the
bidders. They then go through the bidders and greedily accept the next bidder in the
ranked list, removing all future bidders that conflict with it.

3.1 Truthful O(d)-approximation

We first consider the algorithm that yields a good approximation with respect to the
maximum bundle size d = maxi∈N |S∗i |.

Greedy-by-Value

1. Re-order the bids such that v∗1 ≥ v∗2 ≥ · · · ≥ v∗n.

2. Initialze the set of winning bidders to W = ∅.

3. For i = 1 to n do: If S∗i ∩
⋃
j∈W S∗j = ∅, then W = W ∪ {i}.

Example 10. Consider the instance from Example 3. The ranking computed by Greedy-
by-Value is Green, Red, Blue. Green is considered first and accepted, which leads to the
removal of both Red and Blue. Green’s threshold bid is 10.

Theorem 11 (folklore). Greedy-by-Value is a Θ(d) approximation. It is monotone, so
charging threshold bids yields a truthful mechansm.
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Proof of Monotonicity. For every bidder i fixing the bids v∗−i of the bidders other than
i, player i’s outcome is determined by the position in the sorted list of bids of the other
players. By increasing his/her bid v∗i , bidder i can only move further to the front of the
sorted list of all bids. That is, if i wins for v∗i , then he/she also wins for v′i > v∗i .

More in detail, consider the execution of the algorithm for v∗i . The set of bidders
added to the winning set W = W (v∗i , v

∗
−i) are

w1,w2, . . . ,wt−1, wt︸︷︷︸
i

, . . .

and each time we add some winner wk we also “discard” a subset of conflicting bidders
from the list

Dw1 , Dw2 , . . . , Dwt−1

where each Dwk
contains those r such that S∗r intersects S∗wk

(see Step 3 of the algorithm).
Note that i does not conflict with any of w1,w2, . . . ,wt−1. So, when i increases her

valuation to some v′i > v∗i , its position moves further to the front of the list, and the
algorithm will include some of these bidders:

w1,w2, . . . ,wt′−1, wt︸︷︷︸
i

,wt′ . . . ,wt−1, . . . ,

That is, if i wins for v∗i then he/she also wins for v′i > v∗i .

Proof of Approximation. The approximation guarantee follows by a simple charging ar-
gument. Every bidder i ∈ W can block at most d bidders j ∈ OPT , because OPT is a
feasible allocation:

i

OPT OPTi

W S∗
i

S∗
j

S∗
j′

· · · · · · · · · · · ·

Since we are ranking by non-increasing value each such bidder i must have a value v∗i that
is at least as high as the value v∗j of the bidders j ∈ OPTi that it blocks, thus implying

d · v∗i ≥
∑

j∈OPTi

v∗j

Every element j ∈ OPT is either blocked by some i, or it is also in W . Therefore,

d ·
∑
i∈W

v∗i ≥
∑

j∈OPT

v∗j ⇔
∑
i∈W

v∗i ≥
1

d
·
∑

j∈OPT

v∗j .

Observation 12. Greedy-by-Value is not better than m-approximate (see Figure 2).
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3.2 Truthful O(
√
m)-approximation

Our next algorithm avoids the trap in which our Greedy-by-Value algorithm stepped by
normalizing bids with their bundle size. More specifically, it divides each bid by the
square root of the bundle size.

Greedy-by-Value-Density

1. Re-order the bids such that
v∗1√
|S∗1 |
≥ v∗2√

|S∗2 |
≥ · · · ≥ v∗n√

|S∗n|
.

2. Initialze the set of winning bidders to W = ∅.

3. For i = 1 to n do: If S∗i ∩
⋃
j∈W S∗j = ∅, then W = W ∪ {i}.

Example 13. Consider again the instance from Example 3. The ranking computed by
Greedy-by-Value-Density is 10 ≥ 14/

√
2 ≥ 8. So Red is considered first and accepted.

This leads to the removal of Green. Afterwards Blue is accepted. The threshold bid for
Red is 14/

√
2, for Blue it is zero.

Theorem 14 (Lehmann, O’Callaghan, Shoham). Greedy-by-Value-Density is a Θ(
√
m)

approximation. It is monotone, so charging threshold bids make it a truthful mechanism.

Proof of Monotonicity. We can use essentially the same argument that showed that Greedy-
by-Value is monotone. Holding a bidder and the bids of the other bidders fixed, the bidder
faces a ranked list of bids. Its position in this sorted list determines whether he wins or
not. A higher bid can only improve its position.

Proof of Approximation. Like in the proof of Theorem 11, we start by observing that
every i ∈ W blocks some subset OPTi of bidders in OPT :

i

OPT OPTi

W S∗
i

S∗
j

S∗
j′

· · · · · · · · · · · ·

The algorithm includes i instead of j ∈ OPTi because v∗j ≤
√
|S∗j | · v∗i /

√
|S∗i |. Therefore

we obtain ∑
j∈OPTi

v∗j ≤
v∗i√
|S∗i |
·
∑

j∈OPTi

√
|S∗j |

Next we will show that
∑

j∈OPTi

√
|S∗j | ≤

√
m·
√
|S∗i |. By the Cauchy-Schwarz inequality,2

∑
j∈OPTi

√
|S∗j | ≤

√
|OPTi| ·

√ ∑
j∈OPTi

|S∗j | .

2In general, (a1b1+· · ·+akbk)
2 ≤ (a21+· · ·+a2k)(b

2
1+· · ·+b2k). Thus, (a1+· · ·+ak)

2 ≤ (a21+· · ·+a2k)·k.
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Since OPTi is a feasible allocation
∑

j∈OPTi |S
∗
j | ≤ m, because these sets S∗j are pairwise

disjoint. For the same reason, we can obtain |OPTi| ≤ |S∗i | as follows: every S∗j intersects
S∗i and these intersections are disjoint (see upper right picture). This proves∑

j∈OPTi

v∗j ≤ v∗i
√
m .

As element j ∈ OPT is either blocked by some i, or it is also in W , we get∑
j∈OPT

v∗j ≤
∑
i∈W

∑
j∈OPTi

v∗j ≤
√
m ·

∑
i∈W

v∗i .

This prove the O(
√
m) upper bound on the approximation ratio of Greedy-by-Value-

Density. This is also a lower bound (Exercise 1), so the approximation is precisely
Θ(
√
m).

Exercise 1. Show that the analysis of the theorem above is tight. That is, the approxi-
mation ratio of Greedy-by-Value-Density is at least Ω(

√
m).

We conclude that with respect to both quality measures, number of items m and
maximum bundle size d = maxi |S∗i |, insisting on monotonicity did not lower our ability
to obtain a near optimal outcome.

Best truthful approximation ' Best approximation

The two monotone greedy algorithms answer a fundamental question in mechanism design
for the CAs we considered, namely, if truthfulness prevents us from obtaining the same
results that any polynomial-time algorithm can achieve.

Recommended Literature

The results in this lecture appeared in these works:

• D. Lehmann, L. I. O’Callaghan, Y. Shoham. Truthful Revelation in Approximately
Efficient Combinatorial Auctions. STOC 1999 and JACM 2002. (Greedy mecha-
nism for single-minded CAs)

• J. H̊astad. Clique is hard to approximate withing n1−ε. Acta Math., 182:105–142,
1999. (Hardness of approximation for single-minded CAs when the parameter is
number of items)

• E. Hazan, S. Safra, O. Schwartz. On the complexity of approximating k-set packing.
Computational Complexity, 15(1):20–39, 2006. (Hardness for single minded CAs
with bounded bundle size)

There is also a new family of mechanisms, called deferred acceptance auctions, which use
the idea of ranking bidders (in some way). Instead of adding bidders to extend a feasible
solution, these mechanisms start from an unfeasible solution and remove bidders until
the winners form a feasible set. We shall see these mechanismsin future lectures.

A significant part of this notes is from previous notes by Paul Dütting available here:
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• http://www.cadmo.ethz.ch/education/lectures/HS15/agt_HS2015/

which also include the definition and examples of deferred acceptance auctions.

A VCG mechanisms (again)

In auctions it is natural to speak about valuations and bids, instead of true costs and
reported costs. So here we restate the construction of truthful (VCG) mechanisms in this
terminology.

A mechanism is a pair (A,P ) which on input the bids b = (b1, . . . , bn) reported
by the players (bidders), outputs

• A solution A(b) ∈ A;

• A payment Pi(b) that player i pays to the mechanism.

The corresponding utility for each agent i is

ui(b|vi) := vi(A(b))− Pi(b).

Instead of minimizing the social cost, we say we want to maximize the social welfare:

SW (a, v) :=
∑
i

vi(a)

and the optimum social welfare is

optSW (v) := max
a∈A

SW (a, v)

A VCG mechanism is a pair (A,P ) such that

• A in an optimal algorithm:

SW (A(b), b) = optSW (b) for all b;

• P is of the following form:

Pi(b) = Qi(b−i)−
∑
j 6=i

bj(A(b))

where Qi is an arbitrary function independent of bi.

Once again, VCG mechanisms are truthful. Either re-do the proof in the previous
lectures, or observe that ci(a) = −vi(a) and minimize the social cost is the same as
maximize the social welfare.

Remark 1. This version of VCG is the standard one you find in the literature. We
presented the version for costs first to explain the main ideas using the shortest-path
problem.
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