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Graphs and Algorithms

Exercise 1 (Tree embedding)
Given a graph G with minimum degree δ(G) ≥ d, show that it contains every
tree on d+ 1 vertices as a subgraph.

Exercise 2 (Bridges)
Prove that a graph G on n vertices can have at most n− 1 bridges.

Exercise 3 (Maximal graphs)
For any n ∈ N, we define the family of graphs Gn as follows,

Gn = {G | G is a graph on 2n vertices, with exactly n vertices of degree 1}.

We say that a graph G ∈ Gn is maximal if there is no graph G′ ∈ Gn such that
G is a proper subgraph of G′. Prove or disprove the following statement: for
every n ∈ N, n > 0, every maximal graph in Gn has exactly

(
n+1
2

)
edges.

Hint: First read the following proof. Is it correct?

Proof. We prove that statement by induction on n.

For n = 1, G1 is empty since graphs on 2 vertices have either 0 or 2 vertices of
degree 1.

For n = 2, there are exactly three graphs in G2, namely the paths of length
3, 2, and 1, together with 0, 1, and 2 isolated vertices (vertices of degree 0),
respectively. The only maximal graph is the path of length 3, so the claim
holds.

Assume now that it holds for some n−1, n ≥ 3. In order to construct a maximal
graph Gn ∈ Gn, we can start with a maximal graph Gn−1 ∈ Gn−1. We need
to add two new vertices to Gn−1, one vertex u of degree 1 and one vertex v
of degree 6= 1. If u and v are adjacent, then u is not connected to any further
vertices. In order for Gn to be maximal, v needs to be connected to all vertices
of degree > 1. There can be no vertex of degree 0, so v is connected to n − 1

further vertices. Therefore, e(Gn) =
n(n−1)

2 + 1 + (n− 1) = n2+n
2 =

(
n+1
2

)
.

If u and v are not adjacent, then u must be connected to a vertex of degree > 1,
and as before, v must be connected to all n−1 vertices of degree > 1. Thus, we
have again e(Gn) =

n(n−1)
2 + 1 + (n− 1) =

(
n+1
2

)
, and the claim is proven.



Exercise 4 (Cops and robber)
There is a rumor that the greatest thief of all times will arrive in Zürich this
morning, and as a chief of a local Police Department, you want to finally catch
him and get a big promotion. To simplify the scenario, assume that the map
of the city is represented as a graph G, where edges are streets and each vertex
represents a building (bank, watch shop, Sprüngli, ...). Before he arrives, you
can choose any number of cops from your station and place them to guard some
buildings.

After a while, the great robber has finally arrived to his apartment in some
building v. Being very clever, he learned the positions of all your cops and
chose v accordingly. And now the chase starts ... Assuming that both cops and
robber know each other positions at every step, first each cop may move to an
adjacent building (or stay put) and then the robber. If at any point a cop and
the robber happen to be in the same building, the robber is caught.

Note that more than one cop can be in the same building at any time. Further,
moves are not simultaneous, i.e. the robber has first to wait until all cops make
their move.

Prove that if girth of graph G is at least 5, you require at least δ(G) many cops
to catch the robber, where δ(G) denotes the minimum degree of vertices in G.

Exercise 5 (Spanning trees (D. West, 2.2.6))
Let G be the 3-regular graph with 4m vertices formed from m pairwise disjoint
kites by adding m edges to link them in a ring, as shown in the figure for m = 6.
Prove that the number of spanning trees of G is 2m · 8m.

Discussion of the solution in the exercise class on 28.2.2013.
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