Graphs and Algorithms

Exercise 1 (Small and regular)

Find a 3-regular simple graph with connectivity 1. Is your example minimal?

Exercise 2 (Long cycles)

Show that for $k \ge 2$ every k-connected graph with at least 2k vertices contains a cycle of length at least 2k. Describe a k-connected graph with at least 2kvertices that does not contain a cycle of length 2k + 1.

Exercise 3 (Connectivity of the *k*-dimensional Cube)

The k-dimensional cube graph Q_k is the graph on the vertex set $\{0,1\}^k$ in which two vertices are joined by an edge if and only if they differ in exactly one coordinate. What is the connectivity $\kappa(Q_k)$ of this graph?

Exercise 4 (Subgraph with large minimum degree)

Let G = (V, E) be a graph on n vertices with at least $d \cdot n^2$ edges, where $d \in (0, 1)$. Prove that

- 1. there exists a subset $V' \subseteq V$ of size at least $n\sqrt{d}$, such that $\delta(G[V']) \geq \frac{dn}{2}$,
- 2. there exists a subset $V' \subseteq V$ such that $\delta(G[V']) \ge dn$.

Note: parts (1) and (2) represent a tradeoff between the size of the induced subgraph and its minimum degree.

DISCUSSION OF THE SOLUTION IN THE EXERCISE CLASS ON 14.3.2013.