Graphs and Algorithms

Exercise 1 (Hamiltonian Graphs)

Let G be a graph on n vertices. Prove that G is Hamiltonian if for all non-adjacent vertices u, v we have $\deg(u) + \deg(v) \ge n$.

Exercise 2 (Hamilton Paths in Tournaments)

An oriented complete graph is called a *tournament*. Show that every tournament contains a Hamilton path, i.e., a path that visits every vertex exactly once. How many Hamilton paths are there in an acyclic tournament (a tournament without directed cycles)?

Exercise 3 (Adjacency Matrix)

Given the matrix A^3 , where A is the adjacency matrix of a graph G, calculate the number of triangles in G. How would you get the number of cycles of length 4 in G from powers of A?

DISCUSSION OF THE SOLUTION IN THE EXERCISE CLASS ON 18.4.2013.