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Exercise 1 (Combining k-connected graphs)

Let G = (V, E) be the combined graph, as given in the exercise, and let S C V
be an arbitrary subset of at most k — 1 vertices (the set of removed vertices).
Since Gy, G2 and K}, are k-connected, then G1[V '\ S], Go[V'\ S| and K[V '\ 5]
are connected. Thus it remains to show that for any two vertices a € V(G1)\ S
and b € V(Gz) \ S there exists a path which avoids S (we will implicitly prove
that this also holds if either a or b are in V(K}) \ 5).

Since we removed at most k — 1 vertices and there are k edges connecting G
and K}, we know that there is at least one edge e = {a’, ¥’} where a’ € V(G1)\ S
and k' € V(K}) \ S. Now since Gy \ S is still connected there exists a path P’
from a to a/. By a symmetric argument there exists an edge ¢’ = {k”, b}, with
k' e K\ S and b € G2\ S, and a path P” which connects b to b”. Since
Ky \ S is connected we have that there is a path P”’ connecting k¥’ and k”.
Concatenating P’, P"”" and P” now yields a path from a to b proving that the
graph is still connected.

Exercise 2 (Characterizations of forests)

(a)=-(d): For ease of notation let’s denote the number of components of G
by ¢(G). We proceed by induction on |E(G)|. For the base case when
|E(G)] = 0 every vertex is isolated and we have |V| components which
equals |V(G)| — |E(G)|.

Now let’s assume that |[E(G)| > 0 and let e € E(G) be an arbitrary edge.
Since e is a bridge, G — e has one more component than G so the induction
hypothesis now yields that

c(G)=c(G-¢e)—1
=[V(G—e)| - |BE(G-¢) -1
= [V(G)] - [E(G)]

which proves that the induction hypothesis holds.

(b)=(a): Let’s assume that every connected subgraph of G is induced. For the
sake of contradiction let’s assume that G has a cycle with vertices from
the set S = {vg, v1,...,v:} such that {v;,v;41} € E, fori € {0,1...,t—1},
and {sg,s:} € E. Now G[S] contains a cycle, but G[S] — e, where e is
an edge on the cycle, is connected but not induced which contradicts the
assumption, thus G is a forest.



(c)=(b): Let’s assume that every induced subgraph has a leaf. Again for the
sake of contradiction let’s assume there exists a connected subgraph H of
G which is not induced. This in turn implies that G[V (H)] contains a cycle
because if G were a forest then every induced subgraph on G would also
be a forest and hence every connected subgraph of G would be induced
(proving that (a) implies (b)). Now let C be the vertices on a cycle in
G|V (H)], then G[C] contains a cycle and each vertex in G[C] has degree
at least two contradicting the assumption.

(d)=-(c): Let’s assume that the number of components is equal to |V| — |E|.
For the sake of contradiction let’s assume that there exists an induced
subgraph G[S] which does not have a leaf. This in turn implies that there
exists an edge e € G[S] which is not a bridge. Let’s consider G'\ e. If it still
contains a non-bridge edge we remove it and iterate until what remains
is a graph where each edge is a bridge. Let E’ be the set of edges we
removed, and note that F' # @. Then G\ E’ is a forest since each edge is
a bridge and the number of components is |V| — (|E| — |E’|) > |V| — |E|,
contradicting the assumption above.



Exercise 3 (No small cycles, few edges)

(a) By definition G[V"] is connected. If G[V"'] contained a cycle the cycle would
have length at most 2k + 1 contradicting the fact that the girth of G is at
least 2(k 4+ 1). To see this consider the spanning tree obtained by doing a
BFS on G[V"]. If any edge {u, v} is added to this tree then the unique paths
to v and v in the spanning tree along with the edge will create a cycle of
length at most 2k + 1 contradicting the girth condition. Hence since G[V"|
is connected it is a tree.

(b) Now let’s consider the tree G[V”] obtained in part (b). We will now give
a lower bound on the number of vertices in the G[V"]. Note that since the
minimum degree of G[V"] is at least p the root has at least p children and
each child has at least p — 1 children. Thus in the tree we have for p > 2 at
least
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vertices (the sum is geometric which yields the formula).

(¢) Now if p < 2 the bound trivially holds so we can assume that p > 2. We
now have using the result from part (b) that
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Which is the desired result.

Exercise 4 (Larger bipartite subgraph)

Let G = (V, E) be a connected graph on n vertices and m edges. As suggested
in the exercise, we will prove by induction on n that b(G) > 2 + 2L, For the
base case n = 1 the claim trivially holds, and let us assume that it holds for all
n' < n.

Proof of part (a). Let v € V be an articulation point of G, and let Cy,...,C; C
V', where t > 2, be vertices of connected components of G — v. Since |C;| > 1
for every ¢ € [t], we also have |C; Uv| < n — 1. Thus, by induction hypothesis
we have b(G[C; Uv]) > 2t + ™=l for every i € [t], where n; and m; are the
number of vertices and edges in G[C; U v], respectively. Simple calculation now

yields that
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Further, observe that every edge of G belongs to exactly one induced subgraph
G[C; U], thus !, m; = m. Finally,
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hence we get
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Proof of part (b). Let v € V be a vertex of G such that v has an odd degree
and is not articulation point. Since G — v is connected, by induction we have
b(G —v) > %eg(”) + 222 and further let A,B C V \ {v}, ANB = &, be
partitions which prove this. Since deg(v) is odd, we either have |['(v) N A| >

% or [[(v) N B| > 4<8W*L “thus we can either add v to A or B such that

2
the number of additional edges in the bipartite subgraph is at least %'

Together with the induction hypothesis this yields
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which proves the part (b) (note that we get a slightly stronger result which we
need for part (c)). O

Proof of part (c). If G has a vertex which either satisfies requirement of (a)
or (b), we are done. Therefore, we can assume that all vertices in G have an
even degree, and further contains no articulation point. Our idea is to find two
vertices u,v € V such that {u,v} € E and further G[V — {u, v}] is a connected
graph. Let us for the moment assume that we have such two vertices. Then
G[V — {u}] is a connected graph which contains a vertex v such that v has
an odd degree and is not an articulation point. Thus from the part (b) and
|V —{u}| =n —1 we have

b(Giu)meieg(u)+n;1'

Similarly as in the previous part, we can add vertex w such that at it "con-

tributes" at least degT(u) additional edges in the bipartite subgraph, and there-
fore
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Thus it only remains to show that we can always find such vertices u and v.
Let u € V be any vertex and consider the block graph of G — u. Observe that
the trivial case when the whole graph G — u is one block easily implies that
u together with any neighbor satisfies the requirement. Thus we can assume
that G — u has at least one articulation point, and let b be a block and a an



articulation point such that b is a leaf and {a, b} is an edge in the block graph.
Further, let B be vertices associated with the block b, without the vertex a,
and note that |B| > 1. Since a is an articulation point in G — u, and G is
the connected graph without an articulation point, there has to exists an edge
{v,u} € E such that v € B. Since v is not an articulation point in G — u, we
conclude that G[V — {u,v}] remains connected, thus proving that v, u satisfy
requirements. O

Remark: b(G) > 2 + "7+ is known as the Edwards-Erdds bound.



