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Exercise 1 (Combining k-connected graphs)
Let G = (V,E) be the combined graph, as given in the exercise, and let S ⊆ V
be an arbitrary subset of at most k − 1 vertices (the set of removed vertices).
Since G1, G2 and Kk are k-connected, then G1[V \S], G2[V \S] and Kk[V \S]
are connected. Thus it remains to show that for any two vertices a ∈ V (G1) \S
and b ∈ V (G2) \ S there exists a path which avoids S (we will implicitly prove
that this also holds if either a or b are in V (Kk) \ S).

Since we removed at most k − 1 vertices and there are k edges connecting G1

and Kk we know that there is at least one edge e = {a′, k′} where a′ ∈ V (G1)\S
and k′ ∈ V (Kk) \ S. Now since G1 \ S is still connected there exists a path P ′
from a to a′. By a symmetric argument there exists an edge e′ = {k′′, b′′}, with
k′′ ∈ Kk \ S and b′′ ∈ G2 \ S, and a path P ′′ which connects b to b′′. Since
Kk \ S is connected we have that there is a path P ′′′ connecting k′ and k′′.
Concatenating P ′, P ′′′ and P ′′ now yields a path from a to b proving that the
graph is still connected.

Exercise 2 (Characterizations of forests)
(a)⇒(d): For ease of notation let’s denote the number of components of G

by c(G). We proceed by induction on |E(G)|. For the base case when
|E(G)| = 0 every vertex is isolated and we have |V | components which
equals |V (G)| − |E(G)|.

Now let’s assume that |E(G)| > 0 and let e ∈ E(G) be an arbitrary edge.
Since e is a bridge, G−e has one more component than G so the induction
hypothesis now yields that

c(G) = c(G− e)− 1

= |V (G− e)| − |E(G− e)| − 1

= |V (G)| − |E(G)|

which proves that the induction hypothesis holds.

(b)⇒(a): Let’s assume that every connected subgraph of G is induced. For the
sake of contradiction let’s assume that G has a cycle with vertices from
the set S = {v0, v1, . . . , vt} such that {vi, vi+1} ∈ E, for i ∈ {0, 1 . . . , t−1},
and {s0, st} ∈ E. Now G[S] contains a cycle, but G[S] − e, where e is
an edge on the cycle, is connected but not induced which contradicts the
assumption, thus G is a forest.



(c)⇒(b): Let’s assume that every induced subgraph has a leaf. Again for the
sake of contradiction let’s assume there exists a connected subgraph H of
G which is not induced. This in turn implies that G[V (H)] contains a cycle
because if G were a forest then every induced subgraph on G would also
be a forest and hence every connected subgraph of G would be induced
(proving that (a) implies (b)). Now let C be the vertices on a cycle in
G[V (H)], then G[C] contains a cycle and each vertex in G[C] has degree
at least two contradicting the assumption.

(d)⇒(c): Let’s assume that the number of components is equal to |V | − |E|.
For the sake of contradiction let’s assume that there exists an induced
subgraph G[S] which does not have a leaf. This in turn implies that there
exists an edge e ∈ G[S] which is not a bridge. Let’s consider G\e. If it still
contains a non-bridge edge we remove it and iterate until what remains
is a graph where each edge is a bridge. Let E′ be the set of edges we
removed, and note that E′ 6= ∅. Then G \E′ is a forest since each edge is
a bridge and the number of components is |V | − (|E| − |E′|) > |V | − |E|,
contradicting the assumption above.
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Exercise 3 (No small cycles, few edges)
(a) By definition G[V ′′] is connected. If G[V ′′] contained a cycle the cycle would

have length at most 2k + 1 contradicting the fact that the girth of G is at
least 2(k + 1). To see this consider the spanning tree obtained by doing a
BFS on G[V ′′]. If any edge {u, v} is added to this tree then the unique paths
to u and v in the spanning tree along with the edge will create a cycle of
length at most 2k+ 1 contradicting the girth condition. Hence since G[V ′′]
is connected it is a tree.

(b) Now let’s consider the tree G[V ′′] obtained in part (b). We will now give
a lower bound on the number of vertices in the G[V ′′]. Note that since the
minimum degree of G[V ′′] is at least ρ the root has at least ρ children and
each child has at least ρ− 1 children. Thus in the tree we have for ρ > 2 at
least

1 + ρ+ ρ (ρ− 1) + · · ·+ ρ (ρ− 1)
k−1

= 1 + ρ

(
(ρ− 1)

k − 1

ρ− 2

)
vertices (the sum is geometric which yields the formula).

(c) Now if ρ ≤ 2 the bound trivially holds so we can assume that ρ > 2. We
now have using the result from part (b) that

n ≥ 1 +
m

n

((
m
n − 1

)k − 1
m
n − 2

)

⇒ m− 2n ≥ m

n

(m
n
− 1
)k
− 2

⇒ n− 2n · n− 1

m
≥
(m
n
− 1
)k

⇒ n ≥
(m
n
− 1
)k

⇒ n
1
k + 1 ≥ m

n
.

Which is the desired result.

Exercise 4 (Larger bipartite subgraph)
Let G = (V,E) be a connected graph on n vertices and m edges. As suggested
in the exercise, we will prove by induction on n that b(G) ≥ m

2 + n−1
4 . For the

base case n = 1 the claim trivially holds, and let us assume that it holds for all
n′ < n.

Proof of part (a). Let v ∈ V be an articulation point of G, and let C1, . . . , Ct ⊆
V , where t ≥ 2, be vertices of connected components of G − v. Since |Ci| ≥ 1
for every i ∈ [t], we also have |Ci ∪ v| ≤ n − 1. Thus, by induction hypothesis
we have b(G[Ci ∪ v]) ≥ mi

2 + ni−1
4 for every i ∈ [t], where ni and mi are the

number of vertices and edges in G[Ci ∪ v], respectively. Simple calculation now
yields that

b(G) ≥
t∑

i=1

mi

2
+
ni − 1

4
=

t∑
i=1

(mi

2
+
ni
4

)
− t

4
.
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Further, observe that every edge of G belongs to exactly one induced subgraph
G[Ci ∪ v], thus

∑t
i=1mi = m. Finally,

t∑
i=1

ni =

t∑
i=1

(|Ci|+ 1) = n− 1 + t,

hence we get

b(G) ≥
t∑

i=1

(mi

2
+
ni
4

)
+
t

4
≥ m

2
+
n− 1 + t− t

4
=
m

2
+
n− 1

4
.

Proof of part (b). Let v ∈ V be a vertex of G such that v has an odd degree
and is not articulation point. Since G − v is connected, by induction we have
b(G − v) ≥ m−deg(v)

2 + n−2
4 , and further let A,B ⊆ V \ {v}, A ∩ B = ∅, be

partitions which prove this. Since deg(v) is odd, we either have |Γ(v) ∩ A| ≥
deg(v)+1

2 or |Γ(v)∩B| ≥ deg(v)+1
2 , thus we can either add v to A or B such that

the number of additional edges in the bipartite subgraph is at least deg(v)+1
2 .

Together with the induction hypothesis this yields

b(G) ≥ b(G− 1) +
deg(v) + 1

2
≥ m− deg(v)

2
+
n− 2

4
+

deg(v) + 1

2
=
m

2
+
n

4
,

which proves the part (b) (note that we get a slightly stronger result which we
need for part (c)).

Proof of part (c). If G has a vertex which either satisfies requirement of (a)
or (b), we are done. Therefore, we can assume that all vertices in G have an
even degree, and further contains no articulation point. Our idea is to find two
vertices u, v ∈ V such that {u, v} ∈ E and further G[V − {u, v}] is a connected
graph. Let us for the moment assume that we have such two vertices. Then
G[V − {u}] is a connected graph which contains a vertex v such that v has
an odd degree and is not an articulation point. Thus from the part (b) and
|V − {u}| = n− 1 we have

b(G− u) ≥ m− deg(u)

2
+
n− 1

4
.

Similarly as in the previous part, we can add vertex u such that at it "con-
tributes" at least deg(u)

2 additional edges in the bipartite subgraph, and there-
fore

b(G) ≥ b(G− u) +
deg(u)

2
≥ m− deg(u)

2
+
n− 1

4
+

deg(u)

2
=
m

2
+
n− 1

4
.

Thus it only remains to show that we can always find such vertices u and v.
Let u ∈ V be any vertex and consider the block graph of G − u. Observe that
the trivial case when the whole graph G − u is one block easily implies that
u together with any neighbor satisfies the requirement. Thus we can assume
that G − u has at least one articulation point, and let b be a block and a an
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articulation point such that b is a leaf and {a, b} is an edge in the block graph.
Further, let B be vertices associated with the block b, without the vertex a,
and note that |B| ≥ 1. Since a is an articulation point in G − u, and G is
the connected graph without an articulation point, there has to exists an edge
{v, u} ∈ E such that v ∈ B. Since v is not an articulation point in G − u, we
conclude that G[V − {u, v}] remains connected, thus proving that v, u satisfy
requirements.

Remark: b(G) ≥ m
2 + n−1

4 is known as the Edwards-Erdős bound.

5


