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Exercise 1 (Saturating Matching)
Note that it is enough to show that for every S ⊆ A we have |S| ≤ |Γ(S)|, as
then the claim follows from the Hall’s theorem.

We prove by induction on |S| that this holds. For |S| = 1 we clearly have
|S| ≤ |Γ(S)|, as there are no isolated vertices in G. Assume that it holds for
every S′ ⊆ A of size at most n − 1, and consider some S ⊆ A, |S| = n. Let
a ∈ S and set S̄ = S\{a}, and observe that by the induction hypothesis we have
|S̄| ≤ |Γ(S̄)|. Without loss of generality, we may assume that Γ(a) ⊆ Γ(S̄), as
otherwise |S| ≤ |Γ(S̄)|+ 1 ≤ |Γ(S)| and we are done. We distinguish two cases.
If |S̄| < |Γ(S̄)|, then adding back a to S̄ gives |S| = |S̄| + 1 ≤ |Γ(S̄)| ≤ Γ(S),
and the condition holds.

Otherwise we have |S̄| = |Γ(S̄)|. But now since for every subset S̄′ ⊆ S̄ we have,
by induction hypothesis, |S̄′| ≤ |Γ(S̄′)|, there exists a perfect matching between
S̄′ and Γ(S̄′). Let us denote the edges of such matching byM , and for each edge
e ∈ M let us denote with ev the endpoint of e that belongs to S̄, and with eu
the endpoint which belongs to Γ(S̄). Now by the exercise assumption we have∑

e∈M
deg(ea)− deg(eb) ≥ 0

and thus
∑

v∈S̄ deg(v) ≥
∑

u∈Γ(S̄) deg(u). On the other hand, since a /∈ S̄ and
there exists at least one edge between a and Γ(S̄), we have∑

v∈S̄

deg(v) <
∑

u∈Γ(S̄)

deg(u),

which leads to a contradiction. Therefore, the case |S̄| = |Γ(S̄)| cannot happen
under the assumption Γ(a) ⊆ Γ(S̄). Since in all other cases we have |S| ≤ |Γ(S)|,
this finishes the proof.



Exercise 2 (Brute forcing a lock)
Consider a graph where the vertices are digit strings of length 3. For each vertex
on the form xyz where x, y, z ∈ [9] we have a directed edge to all vertices of the
form yzw where w ∈ [9]. Note that this graph is strongly connected since we
can get from each vertex to any other by just “pressing” the digits of the other
vertex. Also note that this graph is Eulerian because each vertex has out-degree
10 and in-degree 10. By first pressing three digits and then traversing the graph
using an Eulerian tour we can use 10003 key presses to reach all combinations.

As it turns out this is also the minimum number of key presses we can do with
in the worst case. To see this observe that each four digit string needs to appear
in our sequence, each string can start at a single unique position and since there
are 10000 possible strings we will need 10003 presses.

Exercise 3 (Minimum Degree Game)
Let us first consider the case where every vertex in G has an even degree. Then
there exists a Eulerian tour, and let us orient the edges according to this tour.
It is easy to see that every vertex has as many outgoing edges as ingoing, which
is thus at least 2k. Now the strategy of the first player is as following: whenever
the second player colours an edge which is oriented from a vertex a to a vertex
b, colour an arbitrary white edge which is an outgoing edge of a. Therefore, for
every blue outgoing edge of any vertex a we have a corresponding outgoing red
edge, thus there are at least k outgoing red edges for each vertex. This implies
deg(Gr) ≥ k, and so it is a k-win for the player one!

Assume now that some vertices have an odd degree. Let us denote the set of all
such vertices with Vo, and consider a graph G′ obtained by adding a new vertex
p to G, and connecting it to every vertex in Vo. Since |Vo| is even, every vertex
in G′ has an even degree. By applying the same argument as in the previous
case, there exists an orientation of edges in G′ such that each vertex has at
least 2k outgoing edges. However, in this case we have a stronger bound on the
vertices in Vo. Since Vo has an odd degree in G, we have degG(v) ≥ 4k + 1 and
thus degG′(v) ≥ 4k + 2, for each v ∈ Vo. This implies that there are at least
2k + 1 outgoing edges associated with each vertex of Vo, and by removing the
possible edge going to the vertex p, we have at least 2k outgoing edges. Now
the same strategy as in the previous case yields a k-win for the player one.
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Exercise 4 (Message propagation using edge ID’s)
(a) We need to distinguish two cases, if n is odd or even.

Odd: If n is odd we consider Kn which has an Eulerian tour since the de-
grees of all vertices is even. For one specific Eulerian tour e1, e2, . . . , e|E|
we can assign the edge labels such that γ(ei) < γ(ei+1). Now if we start
by sending a message over e1 in the right direction the message will
have to traverse the whole walk so the algorithm runs for at least

(
n
2

)
many rounds.

Even: If n is even we again consider Kn. Now we cannot use the straight-
forward argument of an Eulerian path since the degrees are not even.
However, note that since n is even there exists a perfect matching in
the graph, let’s consider the subgraph on all edges except the perfect
matching. This subgraph has all degrees even so as before we can find
an Euleria tour of length

(
n
2

)
− n

2 . Note however that we could start the
tour by traversing an edge of the matching since it’s allowed to have
two vertices of odd degree. We thus have by using that edge tour in the
graph and the same way of labeling as in the odd case that the number
of rounds for propagating the messages is at least

(
n
2

)
− n

2 + 1 = (n−1)2

2
which is the desired solution.

(b) For each vertex u in G denote by d(u) the longest decreasing walk ending in
u where it’s decreasing in γ. Additionally denote by di(u) the longest walk
in u using only the i smallest edges w.r.t. γ. Observe that d0(u) = 0 for all
u ∈ G.

Now let s be the i-th smallest edge with endpoints u and v. We now have
that di(u) = di−1(v) + 1 and di(v) = di−1(u) + 1 and for all other w ∈ G
we have that di(w) ≥ di−1(w). So for each i di increases by one for at least
two vertices. We thus have that∑

u∈G
d(u) ≥ 2|E|

and thus

1

|V |
∑
i∈G

d(u) ≥ 2|E|
|V |

= ∆.

Hence there must exist a vertex u such that d(u) ≥ b∆c. Since we have
proven the existence of a a decreasing walk of length at least ∆ we have
proven the theorem since if the first vertex on the walk sends a message
across the first edge in the walk the message will need at least ∆ rounds to
traverse the whole walk (note that some nodes can receive the same message
multiple times).
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