
ETH Zürich
Institute of Theoretical Computer Science
Dr. J. Lengler
H. Einarsson, R. Nenadov

FS 2013
Proposed solutions for graded HW 3

Graphs and Algorithms

Exercise 1 (solution by Anja Frei)
We start with an arbitrary colouring c : E(G)→ [1, δ] and assume that c is not
yet a colouring as we want to have (otherwise we are already finished), which
means that there exists a non-rainbow vertex v in G. So we want to look, what
changes in the colouring when we execute the algorithm in the while-loop.
We distinct four cases:

Case 1a W ends in a vertex u 6= v and ends with an edge coloured with α.
In this case, the number of edges incident to u coloured with α is greater
than the number of edges incident to u coloured with β (otherwise the
(α, β)-walk could have been extended). So, by switching the colours on
W, we do not decrease the number of colours incident to u. Also we
increases the number of colours incident to v by 1. And last but not
least, we remark that we didn’t change the number of colours incident
to the vertices in the middle of the walk and the ones not containd in W.

Case 1b W ends in a vertex u 6= v and ends with an edge coloured with β.
In this case, the number of edges incident to u coloured with α is greater
than the number of edges incident to u coloured with α (otherwise the
(α, β)-walk could have been extended). So, by switching the colours on
W, we do not decrease the number of colours incident to u. Also we
increases the number of colours incident to v by 1. And last but not
least, we remark that we didn’t change the number of colours incident
to the vertices in the middle of the walk and the ones not containd in W.

Case 2a W ends in v and ends with an edge coloured with α.
Since the walk starts with α and ends with α, we know that the length of
the walk is odd. But this cannot happen, because G is a bipartite graph
and a cycle in a bipartite graph has always even length.

Case 2b W ends in v and ends with an edge coloured with β.
This case cannot happen, because β by definition is a colour not incident
to v.

We notice that we did not decrease the number of colours incident to any
vertex during the while-loop, and we further observe that we increased the
number of colours incident to v by 1. So, every time we execute the while-
loop, we increases the number of incident colours for at least one vertex, but
we never decrease it. Therefore, because the number of vertices and the num-
ber of colours and the number of edges per vertex are finite, the algorithm
will terminate and will return the expected colouring.

Exercise 2 (solution by Barbara Geissmann)
We proof that L(L(G)) = G ⇐⇒ G is 2-regular.

“⇐=”
If G is 2-regular, then G is a collection of disconnected cycles. The line graph
treats every connected component individual. Thus, it is enough to show that
the line-line graph of a cycle is a cycle of the same size. Let C be a cycle on
k vertices. C has the same number of vertices and edges. Therefore, L(C) has
the same number of vertices as C. Furthermore, the degree of every vertex in
the L(G) is 2, since every edge in C is adjacent to 2 other edges. Thus, the line
graph is 2-regular as well. Since the line graph of a connected component is
connected, L(C) is connected as well. Therefore, L(C) can only be a cycle and
we have C = L(C). This is true for all cycles in G, thus L(G) = G. From this
we can conclude that L(L(G)) = L(G) = G. Notice that in fact Lk(G) = G is
true for any non-negative number k, given G 2-regular.

“=⇒”
Assume towards a contradiction that G is not 2-regular.

Case 1: ∃v ∈ V with deg(v) = 0
The line graph of a single vertex is the empty graph. The line graph of the
empty graph is still the empty graph. Thus, v disappears. Since a line graph
does never create new connected components, the number of connected com-
ponents in L(L(G)) is smaller than the number in G. This is a contradiction
to L(L(G)) = G.

Case 2: ∃v ∈ V with deg(v) = 1
Let CH = (u, c1, . . . , ck) be a “claw-chain” of maximum length in G starting in
a vertex u, where deg(v) = 1 and and ck is the only other vertex that does not
have degree 2. In the line graph CH consists of k vertices and k− 1 edges. The
vertex w corresponding to {ck−1, ck} has degree 1 if deg(ck) = 1 and degree
at least 3 if deg(ck) ≥ 3. Thus, the chain in the line graph stops in w. We con-
clude that a claw-chain always shrinks when constructing the line graph of G.
Since CH was of maximum length, there is no claw-chain of the same length
in L(G), and thus neither in L(L(G)). This is a contradiction to L(L(G)) = G.

Case 3: ∃v ∈ V with deg(v) ≥ 3
We have that all vertices have degree ≥ 2, otherwise one of the two former
cases applies. Let |EL| denote the number of edges in the line graph, 2|EL| =
∑u∈V(deg(u)− 1)deg(u). Let |VLL| denote the number of vertices in the line-
line graph, |VLL| = |EL|. We get

|VLL| ≥
1
2 ∑

u∈V\{v}
deg(u) + deg(v) >

1
2 ∑

u∈V
deg(u) = |V|.

This is a contradiction to L(L(F)) = G.

2

Exercise 3 (solution by Barbara Geissmann)
Let C be a Hamiltonian cycle in G. Let = (e1, e2, . . . , en) be the edges in C.
Observe that the edges which are not in C form a perfect matching for the
vertices in G. Thus, for every pair of edges (ei, ei+1) in C with a common
endvertex vi, there exists an edge mj which is incident to vi. This implies that
in L(G) the vertices representing ei, ei+1, and mj build a triangle. Observe that
every edge in G is part of exactly two such triangles, since G is 3-regular.

Now let us consider the line graph. We follow that L(G) is Hamiltonian,
since G is Hamiltonian, and L(G) is 4-regular since G is 3-regular. Thus, 2
edge-disjoint Hamiltonian cycles in L(G) will together use all edges. We give
a constructive proof of how to find two edge-disjoint Hamiltonian cycles in
L(G).

The edges of C are now vertices. Let us denote them by e′i . As shown before,
there are at least two paths from an e′i to an e′i+1: The direct edge or the detour
via m′j. We do now the following greedy algorithm:

We follow the vertices e′i in the same order as in C. And whenever the corresponding
m′j was not yet visited we take the detour to get from one vertex to the next. Otherwise,
we take the direct link.

Since every m′j is part of 2 such detours, it will certainly be included into the
described cycle. Thus, all vertices are part of the first cycle. When we remove
this first cycle from L(G), a 2-connected graph is left. We need to show that
this subgraph is connected. Observe that for every pair (e′i , e′i+1) either the
detour or the direct link is in the subgraph. Therefore, all e′i are contained
in a cycle. Moreover, all m′j are also contained in this cycle since for each m′j
one of its two detours is in the subgraph. Thus the subgraph forms another
Hamiltonian cycle. Notice that we could as well run the greedy algorithm into
the other direction of C and therefore get the second Hamiltonian cycle.

3

Exercise 4 (solution by Steve Muller)
Vizing’s theorem from the lecture can be modified so that the edge chromatic
number has to equal ∆, the maximum degree of a graph, under stronger as-
sumptions. For the sake of completeness, we copy the unchanged parts of the
theorem from the lecture notes.

Theorem. Let G be a graph with maximum degree ∆ ≥ 3 which does not contain
odd cycles of size larger than 4. Then χ′(G) = ∆.

Proof. We construct a colouring recursively (over amount of edges). Let G =
(V, E) be a graph which satisfies the conditions in the statement. Take any
edge e = {u, v0} ∈ E and set G′ := (V, E \ e). Obviously we do not create
cycles by removing edges.

Case 1 (∆(G′) = 2) By Vizing’s theorem we get a colouring of 3 colours.
Three situations can occur.

1. There is an available colour for e. Then we are done.

2. e is adjacent to three edges, all of which have distinct colours.

3. e is adjacent to four edges, three of which have distinct colours.

For the last two cases, without loss of generality u has two neighbours. Denote
the incident edges at u by a1 and a2, those at v0 by b1 and potentially b2. In
the third case we would have c(b2) = c(a2), see figure 1, in the second case
the edge b2 would not exist.

u v0

a2

a1

b2

b1

Figure 1: Situation where there is no free colour for edge {u, v0}.

Set R := c(a2) = c(b2), G := c(b1), B := c(a1).

4

Case 1.a a1 intersects b1. Note that then both of them do not intersect any
further edge (because ∆(G′) = 2) (∗).

Look at the (unique) maximal R -G -alternating path P starting at u. It cannot1

contain b2 because then P stops at b1 because of (∗) (hence |P| ≥ 4) and we
would get a cycle of odd length (P combined with a1) larger than 4. So we
can swap the colours on P such that c(a2) ← G without creating conflicts. If
the edge b2 exists, swap the colour on a maximal R -B -alternating path (which
cannot contain a1 by (∗)). By consequence, we can colour e with R , which has
just become available.

Case 1.b a1 does not intersect b1.

Look at the (unique) maximal B -G -alternating path P starting at u. By as-
sumption P cannot contain b1 because then |P| ≥ 4 and we would get an odd
cycle (P together with e) of length larger than 4. Swapping the colours on P
makes B available at u so we can colour e with B .

Case 2 (∆(G′) ≥ 3) By the induction hypothesis we get a colouring c of G′

which uses ∆ colours. Since degG′(u) = degG(u) − 1 ≤ ∆ − 1 there is one
colour missing at u – say a0.

Build a maximal sequence (v0, a0), . . . , (vk, ak) such that

• ai := c({u, vi})

• v0, . . . , vk are distinct neighbours of u in G

• ai+1 is a colour missing at vi, for any 0 ≤ i < k

In contrast to Vizing’s theorem, there are three reasons why the sequence stops
at vk.

1. There is no colour missing at vk – that is, deg vk = ∆.

2. If ak+1 is a colour missing at vk:

(a) ak+1 is missing at u.

(b) ∃1 ≤ l ≤ k ak+1 = al .

As for reasons 2.1 and 2.2, they work exactly the same as in Vizing’s theorem.
Indeed, they only rely on the structure of the sequence, and not on the amount
of colours we have (∆ instead of ∆ + 1 as in Vizing’s theorem). We copy them
for completeness.

1Assuming b2 exists. If it does not, P certainly does not contain it either.

5

Reason 2.1 ak+1 is missing at u. Then recolour {vk, u} with ak+1 and down-
shift the colours ak, . . . , a0.

Reason 2.2 ∃1 ≤ l ≤ k ak+1 = al . Then ak+1 is missing at vk and at vl−1.
If a0 is missing at vk, then we can colour {u, vk} with a0 and downshift the
colours ak, . . . , a1.

So assume a0 appears at vk. Let P be the (unique) maximal path of edges
coloured alternatingly with ak+1 = al and a0, starting in vk with a0.

If P contains vl , it must end in u. Then swap colours a0|al in P and downshift
al , . . . , a1.

If P contains vl1 , it must end in vl−1. Then swap colours a0|al in P so that a0
becomes available at vl−1. We can then colour {vl−1, u} with a0 and downshift
al−1, . . . , a1.

If P neither contains vl nor vl1 , swap colours a0|al in P so that a0 becomes
available at vk. We can then colour {vk, u} with a0 and downshift ak, . . . , a1.

Reason 1 No colour is missing at vk. In the picture below, the circles indicate
which colour is missing at the respective vertex.

u
v0

v1

v2 . . . vk−1

vk

Let P be the (unique) maximal path of edges coloured alternatingly with
ak and a0 , starting in u with ak . If P does not contain vk−1, then we

can swap the colours ak | a0 in P so that c({u, vk}) = a0 , and downshift
ak, . . . , a1 to get the colouring we want.

So suppose P contains vk−1. Since ak is missing at vk−1, P must end in vk−1
with colour a0 . Then |P| ∈ 2N and hence there is a cycle (P combined with
{u, vk−1}) of odd length. By assumption, there are no cycles of odd length
larger than 4, so there must be an edge x = {vk, vk−1} with c(x) = a0 .

u
v0

v1

v2 . . . vk−1

vk

By assumption, c({vk, vk−1}) = a0 is missing at u and c({vk, u}) = ak is
missing at vk−1, so we can just swap them without creating any conflicts.

6

u
v0

v1

v2 . . . vk−1

vk

Now let Q be the (unique) maximal path of edges coloured alternatingly with
ak−1 and ak , starting in u with ak−1 – Q then continues with vk, therefore2

|Q| ≥ 3. Note that Q cannot contain vk−2 for if it would, it would have to stop
there with ak (since ak−1 is missing), so |Q| ∈ 2N and we would have an
odd cycle (Q together with {vk−1, u}) of size larger than 4.

Swapping the colours ak−1 | ak in Q makes ak−1 available at u and down-
shifting ak−1, . . . , a1 gives the colouring we want.

2Recall that all colours, in particular ak−1 , are present at vk .

7

