ETH Ziirich FS 2013
Institute of Theoretical Computer Science Proposed solutions for sheet 0
Dr. J. Lengler

H. Einarrson, R. Nenadov

Graphs and Algorithms

Exercise 1 (Connectivity)

(a) Take a minimum-length walk W = w, vy ...vg,v. It is a path: assume it
is not, then there are internal vertices v; and vj;, j > i of W with v; = v;.
We can construct a new shorter walk w...v;,vj41...v (Le., “leave out the
loop between v; and v;”), which contradicts the choice of W.

(b)

— s~ sbys=s.

— s ~t = t ~ s by reversing the path (walking the vertices in

reverse order).

—s~tandt~u = s~ w: if either s = ¢ or t = u there is nothing

to prove. Otherwise there are paths s-t and t-u. Concatenating them
yields an s-u-walk, and by (a) there is a s-u-path.

(¢) The connected components are exactly V(G)/ ~.

Exercise 2 (Properties of Trees)

(a)

(1)

Since T is a connected graph with > 2 vertices, there are edges in T.
Hence, any maximal path in T has length > 1, and thus two distinct
end vertices.

Let vg, v be the end vertices of such a path P = (vg,v1,...,v;). As
T is acyclic, the only neighbor of vy on P is v; and the only neighbor
of v on P is vp_1. Because P was chosen to be maximal, both vy
and v have no neighbors outside of P. This shows that vy and vy,
are two distinct leaves.

Let vg be a leaf of T and T’ := T — vg. Clearly, deleting vy cannot
create a cycle and T’ is thus cycle-free. It remains to show that 7’
is connected. Let u,v € V(T”). Since T is connected there exists a
u,v-path P = (u,v1,vs,...,0s,v) in T. Clearly, deg(v;) > 2 for all
1 <1 < s, hence vg cannot be in P and P is also a u,v-path in T”.

(b) (4) = (&)

We need to show that G has n—1 edges. For n = 1 the statement is trivial.
We proceed by induction on n. Since G is a tree we know from (a)(7) that
G contains a leaf v. From (a)(#i) we know that G — v is also connected
and has no cycles. Hence by induction, G — v has |[V(G —v)| —1=n—2
edges, and thus G has n — 1 edges.

(ii) = (ii0)

We need to show that G has no cycles. Assume that this was not true and
let e € E(G) be an edge contained in a cycle in G. Then the graph G —e,
in which e is removed, is still connected. (If it wasn’t, the end vertices u
and v of e would have to lie in different components of G — e, but they
are still connected by a path.)

As long as there are cycles in G, we repeatedly remove an edge contained
in a cycle. The resulting graph G’ is then a connected and acyclic graph.
By the statement proven above, G’ has n — 1 edges. As this was also the
number of edges of the original graph G, there were no edges removed and
hence also no cycles in G.

We need to show that GG is connected. Let G, Ga, ..., Gk be the connected

components of G. Then each G; is connected and acyclic and therefore,
by the statement proven above, has |V (G;)| — 1 edges. Hence, we get that

k k
n—1=[B@)| =Y |BE@G) =D [V(G) —1=n—F
i=1 =1

As k is the number of connected components of G, this proves that G is
connected.

(1) = (iv)

Since G is connected there exists at least one u, v-path in G. Now assume
that there are two different u,v-paths. Set ag := by := u and as :=
b, := v and let (ag,as,...,as) and (b, b1,...,b;) denote two different u, v-
paths for suitable s,¢. Clearly, there exists a minimum index 4 such that
a; # b; and a minimum index j > ¢ such that a; = by for some k > i.
Then (a;—1,a4,...,a; = by, bp—1,...,bi—1) forms a cycle in G, which is a
contradiction. Hence, there are no two different u, v-paths in G.

(iv) = (1)

It is easy to see that G is connected. Now assume that G has a cycle
(v1,...,vs,v1) for some s. Then (v1,vs) and (vi,ve,...,vs) are two dif-
ferent vy, vs-paths in G, which is a contradiction. Hence, G contains no
cycles.

Let T be a tree and e = {u,v} € E(T). By (b), (u,v) is the only u, v-path
in T. Hence, there is no u, v-path in T'— e and T — e is thus not connected.

Let T be a tree on n vertices and e = {u,v} € (V(zT)) \ E(T) be an edge
which is not in T and set TF := (V(T'), E(T)U{e}). Since T'" is connected
and contains more than n — 1 edges it must contain at least one cycle by
(b). Since T is cycle-free, the edge {u, v} must be contained in every cycle
of TT. Let C1 = (v,u,a1,...,as,v) and Cy = (v,u,by,...,b;,v) be two
cycles in TF. Then (u, a1, ...,as,v) and (u,by,...,bs,v) are u, v-paths in
T. By (b) this path is unique and hence C; = Cs.

Let G be a connected graph. We use the procedure already introduced in
the proof of (i) = (i3) in (a). As long as G contains cycles, remove an
arbitrary edge that is contained in a cycle. At the end of the process, we

obtain an acyclic connected subgraph of G that still contains all vertices,
i.e. a spanning tree.

Exercise 3 (Bridg-It)

(a)

This is a very hard question to prove formally. One possible proof idea
is the following. Clearly not both players can win. If this were the case
then any winning path from left to right would intersect all winning paths
from top to bottom. However by the rules of the game this is not possible
(edges from different players do not cross).

Assume that the player going from left to right does not create a path from
one side to the other. Let C denote the connected component containing
the left side of the board. Clearly it does not contain the right side or
a path to it. The boundary of this component must be claimed by the
other player (otherwise we could extend C or there are not-chosen edges).
However this boundary must go from the top of the board to the bottom
as C contains the entire left side.

The same holds symmetrically for the top to bottom player as well, there-
fore one must always win.

Consider this lemma

Lemma. Let G be a graph and Ty, Ty two spanning trees of G. Then
for all e € E(Ty) \ E(T) there exists an edge ¢ € E(T:) such that
(V(G),(E(Ty) \ e) Ue') is a spanning tree.

We use this lemma as follows to find a winning strategy. In each round of
the game Player 1 can maintain the following invariant just before Player 2
moves. Let E; denote the set of possible edges that Player 1 can choose in
round ¢ together with the ¢ edges chosen in rounds 1, ..., (i.e. F; contains
the move by Player 1 in round ¢ already). Then

— For each round i, just before Player 2 moves, there are two spanning
trees T4 ;, To; with edges in F; such that any edge in E(Ty ;)NE(Ts,;)
is claimed by Player 1.

If this is the case then at the end of the game Player 1 must have claimed
a spanning tree.

Maintaining the invariant before the first move of Player 2 is easy: the
board of the game, viewed as a graph, contains two spanning trees 17 i,
75,1 which have only one edge in common. See the lectures notes for an
example of two such trees. Player 1 claims this common edge as her first
move.

Now assume that the invariant holds in round ¢ and Player 2 makes a
move and then Player 1 plays again for round i+ 1. Player 2 must choose
an edge e which cuts across one edge of T3 ; (or Ts,;, but without loss of
generality assume it cuts T ;) which is not contained in 75 ;. Player 1 in
her next move claims an edge €’ of T5; which fixes the cut in T} ;, which
by the lemma above is always possible. She then sets T7 ;41 = (T1,;\e)Ue’
and Tjy1 2 = T; 2. These new T;11,1 and T;4; o satisfy the invariant again.

It remains to prove the lemma. Assume e = {v,w} cuts T} into two
components Tj and T;'. Note that these must both be spanning trees on
the vertices of their respective component. As e ¢ E(T») the tree T, must
contain a v-w path which does not use the edge e. This path also contains
a cut-edge in Ty between the vertex-sets V(77) and V(TY’). Choosing ¢’
as such a cut-edge proves the lemma.

Exercise 4 (Strategy Stealing)

Player 2 might not be able to ignore Player 1’s first move! If Player 2 plays
according to Player 1’s strategy, this strategy may tell him at some point to
select the edge which Player 1 claimed in his first move. (This case will indeed
occur if Player 1 uses a winning strategy.)

In the original strategy stealing argument (where Player 1 steals Player 2’s
strategy) the strategy may tell Player 1 to claim an edge that Player 1 already
claimed, but never an edge which was already claimed by Player 2!

Exercise 5 (Bridg-It on Graphs)

Assume that Player 2 (blue) has a winning strategy, a strategy which guarantees
her to claim a spanning tree. Then by the strategy stealing argument, Player
1 (red) can play an arbitrary edge in the first round, and after that do what
Player 2 would do in her situation ignoring the edge she played on the first round.
Note that now the goal of Player 2 is not to prevent Player 1 from building a
spanning tree, but rather claiming one for herself. Similarly as for the Bridg-It
game, it can be shown that having more edges doesn’t harm, thus at the end
of the game both red and blue edges contain a spanning tree. However, this is
a contradiction with the assumption that G doesn’t contain two edge-disjoint
spanning trees!

