
ETH Zürich
Institute of Theoretical Computer Science
Dr. J. Lengler
H. Einarsson, R. Nenadov

FS 2013
Proposed solutions for sheet 1

Graphs and Algorithms

Notation

We briefly list the notation we use. If no confusion can arise, we use the conven-
tion G = (V,E) for all graphs G. For a set of vertices S, we denote with G[S]
the subgraph induced with vertices from S,

G[S] = (S, {{a, b} ∈ G | a, b ∈ S)}).

By slight abuse of notation, we define G \ {x} to be (i) the subgraph of G
induced by V \ {x} if x is a vertex, and (ii) the graph (V,E \ {x}) if x is an
edge.

We denote with degG(v), where v ∈ G, degree of v (number of edges incident
with v) in G, and δ(G) = min{degG(v) | v ∈ G}. If it is clear in which graph
we are interested, we simply write deg(v) instead of degG(v). We call an edge
e ∈ G a bridge if number of connected components of G \ {e} is strictly larger
than the number of connected components of G.

Solutions

Exercise 1 (Tree embedding)
We show by induction on d that we can embed any tree T on d+ 1 vertices into
a graph G for which δ(G) ≥ d.

For d = 0 the claim trivially holds. Let us assume that it holds for all d′ < d,
for some d > 0, and consider any graph G such that δ(G) ≥ d. By deleting an
arbitrary leaf v from T , we get a tree T ′ = T \{v} on d−1 vertices (exercise 2.a,
sheet 0). By induction we have T ′ ⊆ G, that is, there exists a homomorphism
f ′ : T ′ → G. We now try to extend this homomorphism to T . Let w be the
unique neighbour of v in T . Since T ′ has d vertices, degT ′(w) is at most d− 1.
On the other hand, we have that the degree of f(w) in G is at least d. Therefore,
there exists at least one neighbour of f ′(w), say v′ ∈ G, such that v′ 6= f(t) for
all t ∈ T ′. This proves that f : T → G,

f(v) =

{
v′ if t = v′,

f ′(t) otherwise,

is a homomorphism, and thus T is a subgraph of G.



Exercise 2 (Bridges)
We prove that a bridge in a graphG = (V,E) cannot belong to a cycle. Note that
this implies the claim of the exercise. If there are more than n− 1 bridges then
consider the subgraph of G where we remove all non-bridges. By the pigeonhole
principle, this subgraph must have a component with at least as many edges as
vertices. Thus, by the characterization of trees, the component contains a cycle.
Altogether we have shown that there exists a cycle in G which consist only of
bridges – contradiction!

It remains to prove that a bridge in G cannot belong to a cycle. Let e = {u, v}
be an edge which belongs to a cycle in G, and consider a shortest such cycle
C = {u, c1, . . . , ct, v}, with {u, c1}, {ci−1, ci}, {ct, v} ∈ E for i ∈ {2, t}. Since C
is a cycle, we have t ≥ 1. Further, let a, b ∈ V be any pair of vertices which
belong to the same component of G. We prove that there exists a path from a
to b in G\{e}. Consider any path from a to b in G. If the path does not contain
e, then we are done. Otherwise, without loss of generality, we may assume that
the path traverses e from u to v. This in particular implies that there exists a
path from a to u and v to b in G \ {e}. However, by merging three paths, the
path from a to u, a path from u to v along the cycle C and the path from v to
b, we get a walk from a to b in G \ {e}. Therefore, there also has to exists a
path from a to b in G \ {e}.

u v

c1

ci

ct

a b

Figure 1: Walk from a to b

We have shown that the connected components of G and G\{e} coincide. There-
fore, e is not a bridge.

Remark: As an alternative, it is possible to prove that removing a bridge from
a graph does not destroy other bridges. Therefore, we can remove the bridges
one by one, each time increasing the number of components by 1. Since we start
with at least one component, and end up with at most n components, we can
remove at most n− 1 bridges.

Exercise 3 (Maximal graphs)
The statement is false. Consider a graph on 2 · (2k) vertices, where the first 2k
vertices form a clique (graph with all edges) and the rest 2k vertices are paired
such that each vertex appears in exactly one pair. Clearly, by interpreting
any such pair as an edge, we get a graph that is maximal and has

(
2k
2

)
+ k =

2



k(2k − 1) + k = 2k2 edges, which is less than
(
2k+1

2

)
= k(2k + 1) = 2k2 + k.

The reason why the given proof is incorrect is that it relies on the wrong fact
that every maximal graph on 2n vertices contains a maximal graph on 2(n− 1)
vertices as a subgraph.

Exercise 4 (Cops and robber)
Let G be a graph with girth at least 5. We want to show that the robber can
avoid being caught forever if there are at most p = δ(G)− 1 cops in the play.

Let us denote the positions of cops and the robber with c1, . . . , cp and r, respec-
tively. We will show that the robber can maintain the following invariant: right
before the cops turn, the shortest path from robber to any cop is at least 2. We
denote the shortest path between vertices u and v with d(u, v).

We first prove the following claim: for any vertex r /∈ {c1, . . . , cp}, there ex-
ists a vertex r′ ∈ Γ(r) such that d(r′, ci) ≥ 2 for every i ∈ {1, . . . , p}. Let
{w1, . . . , wt} = Γ(r), and by the assumption on the minimal degree of G we
have t ≥ p + 1. Further, let Γ+(v) = Γ(v) ∪ {v} for all v ∈ V . The crucial
observation is that Γ+(wi) ∩ Γ+(wj) = {r} for any i, j ∈ {1, . . . , p + 1} and
i 6= j, as otherwise we would have either a cycle of length 3 or 4 which is a
contradiction with the fact that girth of G is at least 5. On the other hand, no
cop occupies r. Therefore, each cop can occupy a position in at most one of the
Γ+(wi). Since the number of cops is at most p, there exists an i ∈ {1, . . . , p+1}
such that no cop is in the set Γ+(wi). Therefore, setting r′ = wi satisfies the
claim.

We will now use this claim to prove the exercise. In the initialisation round,
after cops have chosen their position, there has to exists at least one vertex r
such that r /∈ {c1, . . . , cp}. This simply follows from the fact that there are at
least δ(G) ≥ p+ 1 vertices in G. Then by the claim there exists a vertex r′ such
that d(r′, ci) ≥ 2 for all i. Choosing r′ to be the robber’s initial position satisfies
the invariant. Further, note that after each move of cops we have d(r, ci) ≥ 1
for all i. In particular, we have r /∈ {c1, . . . , cp}, and thus by the claim there
exists r′ ∈ Γ(r) such that d(r′, ci) ≥ 2. Therefore, moving the robber from r to
r′ maintains the invariant! To summarize, we have proven that the robber has
a strategy to avoid cops forever if there are at most δ(G)− 1 cops.

Exercise 5 (Spanning trees)
Note that removing any two links between kites (we will call them simply links)
separates the graph into two components. Thus at least m − 1 links need to
belong to a spanning tree.

Let us first consider the case when there are exactly m− 1 links in a spanning
tree, and let T be any such tree. Let K = {k1, k2, k3, k4} be vertices of a kite,
connected as in the figure 2.

If T [K] is not connected, T cannot be a spanning tree, which is a contradiction
to our choice of T . To see this, observe that any path from ki to kj , i 6= j
which is not completely contained in T [K] has to use least one link. However,
then such path has to use all links, but since exactly one link is missing in
T , this cannot happen. Further, if T ′ is any spanning tree of a kite K, then

3



k2

k1

k4

k3

Figure 2: Kite K

(T \ T [K]) ∪ T ′ (edge-wise set operations) is again a spanning tree. Therefore,
we can construct a spanning tree with exactlym−1 links by first choosing which
link we omit, and then independently choose a spanning tree of every kite. By
simple enumeration we see that there are exactly 8 possible spanning trees of a
kite, thus in total we have

m · 8m

spanning trees with exactly m− 1 links.

Next we consider the case when all links are in a spanning tree T . Then there
has to exists a kite K such that T [K] is not connected subgraph, as otherwise
we would have that T contains a cycle. On the other hand, if there are two or
more kites, say K1 and K2, such that both T [K1] and T [K2] are disconnected
subgraphs, then T itself is also disconnected. Therefore, there exists exactly one
kite K which is disconnected. However, we have to be a bit careful here. The
subgraph T [K] indeed has to be disconnected, but k2 and k4 have to belong to
the same component with either k1 or k3. Otherwise, even adding all other edges
outside of K to a tree T wouldn’t "cover" k2 (or k4). We can now count the
number of spanning trees with exactly m links by first choosing a disconnected
kite K, edges of T [K] and edges of every other kite (which now has to form a
spanning tree of a kite). From previous consideration, we have that there are
exactly 8 possible spanning trees of a connected kite. By simple enumeration
we have that there are also 8 possible choices for edges of T [K] such that T [K]
is disconnected and ki belongs to the same component as either k1 or k3, for
i ∈ {2, 4}. Thus, there are

m · 8m

spanning trees with m links. In total, there are 2m · 8m spanning trees of the
given graph.

4


