
ETH Zürich
Institute of Theoretical Computer Science
Dr. J. Lengler
H. Einarsson, R. Nenadov

FS 2013
Proposed solutions for sheet 2

Graphs and Algorithms

Solutions

Exercise 1 (Large bipartite subgraph)
We will create the partitioning by adding the vertices of V to A or B one by
one. Let us assume V ′ is the set of vertices we have already added and at least
half of the edges in G[V ′] are in between A and B. Now if u is the next vertex
to insert we will greedily add it to A if |Γ(u) ∩ B| > |Γ(u) ∩ A| otherwise we
add it to B. Thus after inserting u the invariant that at least half of the edges
in G[V ′ ∪ {u}] still holds so adding the vertices greedily using this method will
result in at least half of the edges being between A and B when we have inserted
all of V .

Exercise 2 (Graph isomorphisms)
(a) θα is bijective since it is the composition of two bijective maps. We have

{u, v} ∈ E(G)
(i)⇐⇒ {α(u), α(v)} ∈ E(G)

(ii)⇐⇒ {θ(α(u)), θ(α(v))} ∈ E(H)

because (i) α is an automorphism, and (ii) θ is an isomorphism. Taking
both equivalences together, θα is an isomorphism.

(b) Let I be the set of all isomorphisms from G to another graph. (a) proves
that θAut(G) ⊆ I.

To show I ⊆ θAut(G), take any φ ∈ I. Then θ−1φ is an automorphism
on G: clearly it exists and is bijective. Similar to (a) we have

{u, v} ∈ E(G) ⇐⇒ {φ(u), φ(v)} ∈ E(H) ⇐⇒ {θ−1φ(u), θ−1φ(v)} ∈ E(G).

But this means θ−1φ ∈ Aut(G), hence φ ∈ θAut(G).

(c) Let P be the set of permutations of V (G). Thus |P| = n!. Let ∼ be
the equivalence relation given by π ∼ τ iff π−1τ is an automorphism on
G. Then the equivalence class [id] ∈ P/ ∼ of the identity permutation id
is exactly Aut(G), and because of (b) each equivalence class is the set of
isomorphisms from G to some H, and in particular all classes are of order
|Aut(G)|. Thus we have

n! = |Aut(G)| · |G/ ∼| = |Aut(G)| · {H isomorphic to G}

as desired.

(d) Let us define Gn as the set of all isomorphism classes of graphs on n vertices
and let us define h(n) as the number of labelled graphs on n vertices. We
know that h(n) is equal to 2(n

2) since for each edge we either include it or
not. Now

g(n) =
∑
g∈Gn

1

= n!
∑
g∈Gn

1

n!

≤ n!
∑
g∈Gn

1

#Aut(g)

= h(n)

which gives the upper bound and for the lower bound we have that

n! · g(n) = n! ·
∑
g∈Gn

1

≥ n!
∑
g∈Gn

1

#Aut(g)

= h(n).

We now have that

log
(

2(n
2)
)

=

(
n

2

)
· log(2) and log(n!) =

n∑
i=1

log(i) ≤ n log(n).

That is (
n

2

)
· log(2)− n log(n) ≤ log(g(n)) ≤

(
n

2

)
· log(2)

which yields log(g(n)) = n2

2 · log(2) + O(n · log(n)) which is the desired
result.

Remark: Actually, almost all graphs have trivial automorphism group,
so that g(n) is combinatorially equivalent to 1

n!2
(n
2). The proof requires

combinatorial means that are beyond the scope of this course.

Exercise 3 (Tree Counting)
(a) The number of labelled trees with a prescribed degree sequence d1, . . . , dn

is
(n− 2)!∏n
i=1(di − 1)!

.

This can be seen as follows. First observe that each vertex i appears
dT (i) − 1 times in the Prüfer code of a tree T : A non-leaf vertex v ap-
pears one time for each deleted neighbor. When v has only one remaining
neighbor, it is either deleted or remains with the last edge. Leaves are not
recorded at all.

2

To count trees with prescribed degree sequence d1, . . . , dn we can therefore
count lists of length n− 2 that contain di − 1 entries of vertex i for each
i = 1, . . . , n. For every vertex i we make its occurences in the list distin-
guishable by introducing subscripts to each occurence. Then we are per-
muting n − 2 distinct objects, namely {11, . . . , 1d1−1, . . . , n1, . . . , ndn−1},
and there are (n − 2)! lists with these objects. Since every entry ij in
the list refers to the same vertex i, we counted each desired arrangement∏n

i=1(di − 1)! times, once for each permutation of the subscripts on each
vertex.

(b) There are (
n

3

)
· (n− 3) · (n− 2)!

2

labelled trees with three leaves. This can be seen as follows. Each such
tree corresponds to a Prüfer code in which exactly three vertices do not
appear, and hence exactly one vertex appears twice. This shows that in
each such tree there are three vertices of degree 1, one vertex of degree 3,
and all remaining vertices have degree 2. There are

(
n
3

)
·
(
n−3
1

)
=
(
n
3

)
·(n−3)

degree sequences with this property. And by (a) each such sequence gives
us (n−2)!

2 trees.

(c) Obviously, the number of trees on n vertices that contain the edge e is
the same for every fixed edge e ∈

(
[n]
2

)
. (The choice of the edge {3, 4} has

no influence on the result. Asking for the number of trees containing the
edge {1, 4} yields the same number.) Combining that

– there are in total nn−2 trees on n vertices by Cayley’s formula,

– there are in total
(
n
2

)
edges on n vertices, and

– every tree has n− 1 edges

we obtain that the number of trees containing any fixed edge e is

n− 1(
n
2

) · nn−2 =
2

n
· nn−2 = 2nn−3.

(We tacitly imply that n ≥ 4. Otherwise there are clearly no trees con-
taining the edge {3, 4}.)

(d) Let Kn,m be a labeled complete bipartite graph with partition sets A and
B of size n and m respectively. We say that a word w′ ∈ Sk′

is a subword
of w ∈ Sk (or, equivalently, w contains w′) if there exists an injective
function fI : [k′] → [k] such that w′i = wfI(i), for all i ∈ [k′], and further
fI(i) < fI(i+ 1) for all i ∈ [k′ − 1]. We prove the following,

1. in the Prüfer code of a spanning tree of Kn,m, there are exactly n−1
elements from B and m− 1 elements from A,

2. for any a ∈ Am−1 and b ∈ Bn−1, there exists a unique Prüfer code
w ∈ [n+m]n+m−2 which corresponds to a spanning tree of Kn,m and
contains a and b.

3

Note that these two observations yield that there are

nm−1 ·mn−1

spanning trees of a labelled Kn,m.

We first prove the claim (1). This easily follows from an inspection of the
algorithm: each time when we remove a vertex from the given tree, we
append the label of its neighbour (in the remaining tree) to the output
word. Thus, whenever we remove a vertex from A we append some vertex
b ∈ B, and vice versa. On the other hand, since each edge goes between
A and B, and we know that there exists an edge between the last two
remaining vertices, it follows that it is not possible that both of those
vertices belong either to A or B. Therefore, during the algorithm we have
removed all but one vertex from A and all but one vertex from B, thus
the claim follows.

Next we prove the claim (2). We will, by induction on the number of
iterations of the inverse algorithm, construct the word w ∈ [n+m]n+m−2.
In the first step of the algorithm we have S = ∅, and let s1 ∈ [n + m]
be the smallest number that doesn’t appear in either a or b. Note that
we trivially have w1 ∈ {a1, b1}, as otherwise w coulnd’t contain both a
and b. If s1 ∈ A and w1 = a1, then the Prüfer code corresponds to a
tree which contains an edge {s1, a1}, which cannot be since Kn,m[A] is an
independent set. Therefore, if s1 ∈ A then w1 = b1, and similarly w1 = a1
if s1 ∈ B, thus w1 is uniquely determined. Let us now assume that we
have uniquely determined the first t− 1 ≤ m+ n− 3 elements of w, such
that it contains the first ta elements of a and tb elements of b. Let st
be the smallest element of [n + m] \ S. By the same argument we have
wt ∈ {ata+1, btb+1}, and further wt = ata+1 if st ∈ B and wt = btb+1 if
st ∈ A. Therefore, there exists a unique Prüfer code w ∈ [n + m]n+m−2

that corresponds to a spanning tree of Kn,m and contains both a and b.

Exercise 4 (Block graphs are trees)
Let G = (V,E) be a connected graph and let B(G) = (A ∪ B,E′) denote its
block graph, where A ⊂ V is the set of articulation points, B the set of blocks
and E′ =

{
{a, b} | a ∈ A, b ∈ B, a ∈ V (b)

}
.

As said in the lecture, in order to prove the exercise we may use the following
fact without a proof.

Fact 1. Let ≈ ⊆ E × E be a relation such that e1 ≈ e2, e1, e2 ∈ E, if and
only if there exists a cycle in G which contains both e1 and e2. Then ≈ is an
equivalence relation.

Proof. In order to make the proof of the exercise complete, we also give a proof
of this fact. Clearly ≈ is symmetric and reflexive, thus the only thing left to
show is that it is transitive. Let e1 = {v1, v2}, e2 = {u1, u2} and e3 = {w1, w2}
be such that e1 ≈ e2 and e2 ≈ e3. Since e1 ≈ e2, there exist at least two
disjoint paths between sets e1 and e2 (we interchangebly use that edge is a set
of two elements), and thus by Menger’s theorem the minimum size of a e1 − e2
separating set is at least 2. Similarly, we get that a e2− e3 separating set is also

4

of size at least 2. Therefore, by removing any vertex v ∈ V we get, without loss
of generality, that there exists a path from v1 to u1 and also from u1 to w1. In
particular, this imples that there exists a walk from v1 to w1, and thus a path,
which avoids v. Hence {v} is not e1 − e3 separating set, and it holds for every
v ∈ V . Therefore, again by Menger’s theorem we have that there are at least
two disjoint e1 − e3 paths, thus there exists a cycle which contains both e1 and
e3.

Proof of (1). The statement is true for blocks which do not intersect. Assume
now that two blocks b1, b2 intersect in at least two vertices v and w. If b1 (b2,
respectively) contains at least two edges, then there exists a path between v
and w which uses only edges in b1 and avoids edge {v, w} (if such exists). To
see this, consider edges ev, ew ∈ b1 incident to v and w. Then, following the
definition, there exists a cycle in b1 which contains ev and ew, and thus v and
w. This cycle induces two paths, and at least one of these paths doesn’t contain
edge {v, w}. We can assume that either b1 or b2 contains at least two edges.
Otherwise, since v and w belong to a subgraph induced by edges from b1 and
b1, and |b1| = |b2| = 1, we get b1 = b2. Further, without loss of generality we
may assume that b1 contains at least two edges. On the other hand, we have
a path from v to w which uses only edges from b2 (there exists either a direct
edge or b2 contains at least two edges). However, this path together with a path
from v to w which uses only edges from b1 forms a cycle, again contradiction
the maximality of blocks.

It remains to show that if the intersection consists of exactly one vertex v, then
this vertex is an articulation point. Let w1 and w2 be vertices of b1, b2 adjacent
to v. If v is not an articulation point, then G \ v is connected and contains a
path from w1 to w2 not using v. We can turn this path into a cycle adding
the edges {w1, v} and {v, w2}. However this cycle uses edges of both b1 and b2,
again a contradiction to their maximality.

Proof of (2). Assume that at least one edge is contained in no block. But then
by definition it is a block itself. If one edge is contained in two blocks then their
intersection contains at least two vertices, which contradicts part (1).

Proof of (3). Assume that this is not the case. Then there are two vertices x,
y of B(G) which are not in the same component. Take any vertex v ∈ x and
w ∈ y in G. As G is connected there is a path P from v to w. This path
consists of edges and by part (2) we can map each edge uniquely to a block.
Therefore we can segment P in smaller paths which are completely contained
in one block. The intersection between subsequent path-segments must be an
articulation point by part (1). But this means that we can map P to a path P ′
in B(G) by simply taking the alternating B−A path that starts with the block
corresponding to the first path segment, goes to the intersection of the first and
second path segment, then the block corresponding to the second segment and
so on. Note that P ′ must not yet necessarily start on x and end on y. This
is the case if v or w are articulation points. But then we can trivially extend
P ′ to include x and y by either adding them directly to the path (if they are
articulation points) or by adding the articulation point between v and the end
of the path (i.e. x) and v itself (and equivalently for w).

5

Proof of (4). Assume that B(G) contains a cycle C. As B(G) is bipartite this
cycle must have length at least 4 and contain at least two blocks b and b1.
Remove b from C and denote with P ′ = (a0, b1, . . . , an) the resulting path.
Each 3 consecutive vertices of P ′ of the form (a1, b, a2) where a1, a2 ∈ A and
b ∈ B can be mapped to a path from a1 to a2 in G only using edges of b. By
concatenating all these paths we obtain a path P in G from a0 to an which does
not use any edges of b. Note that P ′ must contain at least one block b1 6= b and
therefore P must contain some edges which are not part of b. But then we have
two edges e1, e2, such that e1 ∈ b and e2 /∈ b and e1 ≈ e2, which contradicts the
maximality of blocks.

Exercise 5 (Cops and robber 2)
We first show that a single cop cannot catch a robber for k = 2, 3 and n ≥ 2
by giving a winning strategy of the robber. Color the grid in a black and white
as you would do for a chessboard (formally, a position is white if the sum of
its coordinate is even, otherwise it is odd). Then no two positions of the same
color are adjacent to each other. The cop starts by picking some position. Then
the robber picks a different field of the same color. Such a field exists whenever
n ≥ 2. Whenever the cop moves, then the robber moves to an arbitrary neighbor
which is not occupied by the cop. (This is possible since each field has at least
two neighbors). Whenever the cop stands still, the robber does so as well. In
this way, after the robber’s move his position will have the same color as the
position of the cop, so in particular they are not adjacent. Thus the cop cannot
catch the robber.

Now we prove that two cops suffice to catch the robber. Let c = (c1, c2, c3) and
d = (d1, d2, d3) be the position of the cops, and r = (r1, r2, r3) be the position
of the robber. (So they are changing over time.) We will call the first, second,
and third entry the x-,y-, and z-dimension, respectively. Note that we include
the case k = 2 by setting the third coordinate to 1. Thus the proof will work
for both k = 3 and k = 2 at the same time.

We will start with cops at c = (1, 1, 1) and d = (n, n, n) and give a strategy for
the cops.

Claim 1. Cop 1 can reach position with c3 = r3 within the first n rounds.

The strategy of Cop 1 is to reach a position given by Claim 1, while Cop 2 stays
put. Note that this takes at most n rounds, and from now on whenever the
robber moves in z-dimension, Cop 1 maintains c3 = r3.

Claim 2. Assuming c3 = r3, if the robber makes at least n1 = (n−1)+(2n−2)
moves along the x- or y-dimension, then Cop 1 will catch him.

Proof. We prove the claim in two steps. First we show that Cop 1 can reach a
position with c1−c2 = r1−r2 in at most n−1 moves. If c1−c2 = r1−r2 at start,
then we are done. So we may assume that c1− c2 < r1− r2. Cop 1 increases c1.
Then either c1− c2 = r1− r2, and we are done, or we still have c1− c2 < r1− r2.
Then after the robber’s move, we still have c1−c2 ≤ r1−r2, and we can continue.
If we never have equality then after n− 1 moves the cop is at position (n, 1, 1),
so c1 − c2 = n− 1 ≥ r1 − r2. This contradicts c1 − c2 < r1 − r2.

6

Next, we show that if the robber makes additional 2n − 2 steps along x- or y-
coordinate, he will be caught by Cop 1. Assume that c1 < r1 (and thus c2 < r2).
When the robber increases r1 or decreases r2, then Cop 1 increases c1 (which
is possible since c1 < r1 ≤ n). When the robber decreases r1 or increases r2,
then Cop 1 increases c2 (which is possible since c1 < r1 ≤ n). Thus, in all cases
he maintains the invariant c1 − c2 = r1 − r2. Moreover, the cop only increases
his x- and y-coordinates, and he does so at most 2n− 2 times. Thus eventually
c1 ≥ r1. Since in each step at most one of c1 and r1 changes (by at most 1), at
some point we must have c1 = r1, and thus c2 = r2. Since c3 = r3, this proves
the claim.

By Claim 1, we can assume that c3 = r3. At this point, Cop 2 changes his
strategy such that he greedily moves towards the robber in x- and y-dimension.

Claim 3. Assuming c3 = r3, Cop 2 can reach a position with d1 = r1 and
d2 = r2 within 2n+ n1 rounds.

Proof. Whenever the robber moves along x- or y-dimension, Cop 1 follows the
strategy from Claim 2 while Cop 2 maintains the difference |d1− r1|+ |d2− r2|.
In the case that the robber moves along z-dimension or stays put, Cop 2 moves
along x- or y-dimension such that the difference |d1 − r1| + |d2 − r2| decreases
by one. Since in the next 2n + n1 rounds there are at least 2n moves when
the robber doesn’t move in x- or y- dimension (otherwise he will be caught
by Cop 1) and |d1 − r1| + |d2 − r2| ≤ 2n, we arrive in the position where
|d1 − r1|+ |d2 − r2| = 0.

By Claim 1 and Claim 3, we can assume that after at most n+ 2n+ n1 rounds
we are in a situation with c3 = r3, d1 = r1 and d2 = r2. Cops strategy is
now simple – if the robber moves along x- or y-dimension then Cop 1 follows
the strategy from Claim 2 while Cop 2 maintains d1 = r1 and d2 = r2, and
otherwise Cop 1 maintains c3 = r3 and Cop 2 decreases d3 (assuming r3 < d3).
If there are at least n1 moves of the robber along x- or y-dimension, then by
Claim 2 he will be caught by Cop 1. Therefore there has to be at least n moves
where the robber either stays put or moves along the z-dimension, in which case
he is caught by Cop 2.

Bonus question: what is the minimal number of cops needed to catch the robber
in a k-dimensional grid?

7

