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Solutions

Exercise 1 (Small and regular)
We prove that the graph on Figure 1 is a minimal 3-regular graph with connec-
tivity 1.

Figure 1: 3-regular graph with connectivity 1.

Consider an arbitrary 3-regular graph G = (V,E) with connectivity 1. By the
definition it has an articulation point v ∈ V , and since it is 3-regular there are
either 2 or 3 connected components in G \ v. Moreover, in every connected
component of G \ v there exist either one or two vertices with degree 2, and
all others have degree 3. On the other hand, there has to be an even number
of vertices of degree 3 in every component of G \ v, and further there has to
be at least 4 vertices in each component. Since the graph on Figure 1 satisfies
all these minimal constraints, we conclude that there doesn’t exist a 3-regular
graph with less vertices which has connectivity 1.

Exercise 2 (Long Cycles)
For k ≥ 2, let G be a k-connected graph on n ≥ 2k vertices. We want to show
that G contains a cycle of length at least 2k. As k ≥ 2 there has to be some
cycle in G.

Let C be the longest cycle in G and suppose the length l of C was less than 2k.
Then there is a vertex v not on the cycle. Define sets A = Γ(v) and B = V (C)
(not necessarily disjoint).

Then |A| ≥ k and 3 ≤ |B| ≤ 2k − 1. From Menger’s theorem we obtain that
there are min(k, |B|) disjoint A-B-paths. As the length of C is at most 2k − 1,
at least two of these paths must have endpoints that are neighbors on C by the
pigeonhole principle. Let these two paths be P = (a, . . . , b) and P ′ = (a′, . . . , b′)
where a, a′ ∈ A and b, b′ ∈ B.



Now, we distinguish two cases. If v /∈ V (P ) ∪ V (P ′), we can create a new cycle
by taking out the edge {b, b′} from C and adding the paths P , P ′ and the two
edges connecting v with those paths. Even though P and P ′ might contain only
one vertex, the new cycle (C − bb′) + P + av + va′ + P ′ is of length at least
l − 1 + 2 = l + 1.

If one of the paths P , P ′ contains v, say v ∈ P ′, let P ′′ be the path that goes
from b′ to v along P ′. Now, again taking out the edge {b, b′} from C and this
time adding P , P ′′ and the edge {a, v} gives a cycle (C − bb′) + P + av + P ′′.
Because v is not in C, P ′′ consists of at least one edge. Hence, the new cycle
has length at least l− 1 + 2 = l+ 1. In both cases the choice of C as a cycle of
maximal length is contradicted.

The graph Kk,k, that is, the complete bipartite graph with parts of size k, shows
that the statement of the theorem is best possible (the graph is k-connected and
the longest cycle has length 2k).

Exercise 3 (k Connectivity of the Hypercube)
A vertex (a1, a2, . . . , ak) of Qk has neighbors (a1, a2, . . . , ai−1, āi, ai+1, . . . , ak),
1 ≤ i ≤ k, where 0̄ = 1 and 1̄ = 0. Thus, Qk is k-regular and κ(Qk) ≤ k.

To see that κ(Qk) ≥ k we proceed by induction on k. Q1 is an edge and
obviously connected. For k ≥ 2, suppose that S ⊂ V (Qk) with |S| ≤ k − 1
separates Qk. Let Vi = {x ∈ V (Qk)|xk = i} for i = 0, 1. Then Q0 = Qk(V0) and
Q1 = Qk(V1), the induced subgraphs on these vertex sets, are both isomorphic to
Qk−1. Let furthermore M = {{(x, 0), (x, 1)}|x ∈ {0, 1}k−1} such that E(Qk) =
E(Q0) ∪ E(Q1) ∪M .

If S lies completely in either V0 or V1, say V0, then Q1 is still connected and
all remaining vertices in Q0 are connected to this side by their matching edges.
If S has vertices in both V0 and V1, both copies of Qk−1 are still connected by
induction hypothesis and as 2k−1 − (k − 2) > 2k−2, there are still more than
half of the vertices on both sides. Thus, there is also a remaining matching edge
connecting both sides.

Exercise 4 (Subgraph with large minimum degree)

Proof of part (1). Heart of the proof is the following procedure: set V ′ = V ,
and as long as there exists a vertex v ∈ V ′ with degree less than d

2 · n, remove
v from V ′. Observer that G[V ′], where V ′ is the resulting subset, satisfies the
minimal degree condition.

Let us estimate size of the subset V ′. First, observe that during the process we
have removed at most

n∑
`=|V ′|+1

d

2
· n =

(n− |V ′|) · dn
2

edges. On the other hand in the remaining subgraph G[V ′] there are at most
|V ′|2
2 edges. Since the graph G has at least dn2 edges, and each edge is either
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removed or belongs to the resulting subgraph, we have

(n− |V ′|) · dn
2

+ |V ′|2/2 ≥ dn2,

and thus by ignoring the −|V ′|dn/2 term we get

|V ′| ≥
√
d · n,

which proves the claim.

Proof of part (2). First, we can assume that dn > 1, as otherwise any edge
satisfies conditions of the exercise.

Consider again the procedure described in the proof of part (1), however this
time removing vertices of degree less than dn. Note that, to prove the exercise,
it suffices to show that |V ′| > 0 once the procedure stops. Let us assume the
opposite and observe that in the last two steps we have removed at most 1 edge.
Thus the total number of removed edges is at most

n∑
`=3

dn+ 1 = (n− 3) · dn+ 1 = dn2 − 3dn+ 1.

On the other hand, in this case we have that all edges are removed, and therefore

dn2 − 3dn+ 1 ≥ dn2,

which implies 1 > dn – contradiction! Therefore, the procedure has stopped
before reaching |V ′| = 0, thus G[V ′] satisfies the claim.

Note: a more direct proof by induction on the number of vertices is also possible.
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