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Solutions

Exercise 1 (Vertex vs. edge connectivity)
For a given t ∈ N, consider a graph G = (V,E) on 2t + 1 vertices (labeled
from 1 to 2t + 2), such that G[{1, . . . , t + 1}] and G[{t + 1, . . . , 2t + 1}] are
complete graphs on t+ 1 vertices, and further there is no edge between vertices
a, b ∈ [2t+1] such that a < t+1 and b > t+1 (or the other way around). Clearly,
the vertex with label t+ 1 is an articulation point, thus the vertex connectivity
of G is 1. We show that edge-connectivity of G is t.

To prove that edge-connectivity ofG is t, it suffices to prove that edge-connectivity
of Kt+1, a complete graph on t+ 1 vertices, is t. To this end, suppose that t− 1
edges are removed from a Kt+1, and consider two endpoints, say vertices u and
v, of one such removed edge. If there exists a vertex w, different from u and v,
such that both {u,w} and {w, v} are not removed, then u and v belong to the
same connected component. Since there are t− 1 such possible vertices w, and
at most t− 2 edges removed (since we already assumed that {u, v} is removed),
we conclude that at least one such vertex exists. This proves that Kt+1 stays
connected after removal of an arbitrary set of at most t− 1 edges.

Exercise 2 (Exam question, 2010.)
Let G = (V,E) be a graph which satisfies condition of the exercise, and let
X ⊆ V be any subset of size at most k−1. Idea of the proof is to show that any
two vertices u, v ∈ V \X are either directly connected or there exists a vertex
z ∈ V \X such that {u, z}, {z, v} ∈ E. Note that this implies k-connectivity of
G.

Let u, v ∈ V \X be two distinct vertices, and assume that {u, v} /∈ G. By an
inclusion-exclusion principle, we have

|Γ(u) ∪ Γ(v)| = |Γ(u)|+ |Γ(v)| − |Γ(u) ∩ Γ(v)|,

and thus |Γ(u) ∩ Γ(v)| = deg(u) + deg(v) − |Γ(u) ∪ Γ(v)|. On the other hand
we assumed that {u, v} /∈ E, thus u /∈ Γ(v) and v /∈ Γ(u), which implies an easy
upper bound |Γ(u) ∪ Γ(v)| ≤ n− 2. Therefore,

|Γ(u) ∩ Γ(v)| ≥ deg(u) + deg(v)− n + 2

≥ n + k − 2− n + 2 = k,

hence (Γ(u) ∩ Γ(v)) \X 6= ∅. In other words, there exists z ∈ V \X such that
z is connected to both u and v.



Exercise 3 (The k-dimensional grid)
Let’s assume that n ≥ 2 since for n = 1 the k dimensional grid is a single vertex.
We have that the k dimensional grid is at most k-connected since the vertex
(0, . . . , 0) has degree k and removing its neighbors will disconnect the graph.

We show that for every pair of vertices x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk)
there exist at least k disjoint paths between them. This implies, by Menger’s
theorem, that the k-dimensional grid is k-connected. First let us assume that
the coordinates are all different, i.e. xi 6= yi for i ∈ [k]. We’ll construct the k
disjoint paths by fixing the coordinates, the first path we consider is

P1 = (x1, x2, . . . , xk) · · · (y1, x2, . . . , xk) · · · (y1, y2, . . . , xk) · · · (y1, y2, . . . , yk),

i.e. we first fix coordinate one, then the second and so on. We construct paths
P2, . . . , Pk in the same way except for path Pi we start by fixing coordinate i,
then i + 1 and after fixing coordinate k we fix the first coordinate, then second
and so on. We now claim that any two such paths will never intersect at an
intermediate vertex. If there exists a vertex v such that paths Pi and Pj for
i 6= j both traverse v then it must hold that at vertex v both paths have fixed
the same set of coordinates, but by our construction this cannot hold.

Now let’s consider the case if x and y agree in some coordinates. Let’s assume
that they agree in t < k coordinates and differ in k− t coordinates. Then by the
above construction we can construct k − t disjoint paths by fixing coordinates.
Now if xi = yi we can create a new path by first changing coordinate i arbitrarily
then use any of the k− t coordinate fixing paths and then in the end step we fix
coordinate i again. This way we can create at least tmore disjoint paths totaling
with at least k disjoint paths and thus the k-dimensional grid is k-connected.

Exercise 4 (Dilworth’s theorem)
Let (P,≤) be a finite partially ordered set, and consider an antichain A ⊆ P .
Then for any chain C ⊆ P we have |A ∩ C| ≤ 1. Otherwise, there would exist
two distinct elements a, b ∈ A ∩ C such that neither a ≤ b nor b ≤ a, but then
by the definition of a chain they cannot both belong to C – thus a contradiction.
Therefore, we need at least |A| chains to cover elements of A, hence at least |A|
chains to cover P .

Let us now prove that there exists an antichain A an a set of chains C =
{C1, . . . , Ct} which covers P , such that |C| ≤ |A|. Consider a bipartite graph
G = (P1 ∪ P2, E), as suggested in the hints. First, observe that if Vc ⊆ P1 ∪ P2

is a vertex cover of G, then P \ Vc is an antichain. If it’s not an antichain, then
there exist two vertices a ∈ P1 and b ∈ P2 such that {a, b} ∈ E and a, b ∈ P \Vc.
But this implies that the edge {a, b} is not covered by Vc, thus a contradiction
with the fact that Vc is a vertex cover. Let us now consider a smallest vertex
cover Vc ⊆ P1 ∪ P2, and an antichain A that it induces. Since some vertices
in Vc might correspond to the same element of P , the antichain A has at least
|P | − |Vc| elements. On the other hand, for any maximum matching M ⊆ E in
G, by Kőnig’s theorem, we have |M | = |Vc|. We now create the family of chains
by including a and b in the same chain whenever {a, b} ∈ M , where a ∈ P1

and b ∈ P2. It is easy to see that such sets are indeed chains. If a and b end
up in the same set, then there has to exists a set of vertices {a, x1, . . . , xk, b}
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such that {a, x1}, {x1, x2}, . . . , {xk, b} ∈ M . Let us assume that a ≤ x1. Then
we also have x1 ≤ x2, as otherwise we would have edges {a, x1}, {x2, x1} ∈ M
such that a, x2 ∈ P1 and x1 ∈ P2, which cannot be because M is a matching.
Repeating the same argument, and using transitivity, we get a ≤ b. Similar
argument shows that if x1 ≤ a then b ≤ a. Since every edge in M joins two
chains (left as an exercise to the reader), and in the beginning every element of
P is a chain for itself (since we want to have a set of chains that cover P ), we
end up with |P | − |M | chains that cover P . From |M | = |Vc| we conclude that
there are at most as many chains as there are elements in A.
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