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Graphs and Algorithms

Exercise 1 (Hamiltonian Graphs)
We proceed similarly as in the proof of the Dirac’s theorem.

First we check that the graph is connected. Consider any two vertices u, v ∈ V (G), and suppose
that there is no edge between them. Then |Γ(v)∩Γ(u)| = deg(v)+deg(u)−|Γ(v)∪Γ(u)| ≥ n−(n−2),
thus u and v have a common neighbour. Therefore there exists a path between any two vertices
in G.

Let us now assume that the graph is not Hamiltonian, and consider a longest path P in G. Let
v1, . . . , vt, where t = |P |, be the vertices of P such that there is an edge between vi and vi+1

for every 1 ≤ i ≤ t − 1. By the assumption that P is the longest path, we have Γ(v1) ⊆ P and
Γ(vt) ⊆ P . Let us now define sets S1 and S2 as following,

S1 = {i ∈ [t− 1] | {v1, vi+1} ∈ E(G)}
S2 = {i ∈ [t− 1] | {vi, vt} ∈ E(G)}.

Since |S1| = deg(v1) and |S2| = deg(vt), we have

|S1 ∩ S2| = deg(v1) + deg(v2)− |S1 ∪ S2| ≥ n− t.

On the other hand, from assumption that G is not Hamiltonian we have |T | ≤ n − 1, thus
S1 ∩ S2 6= ∅. Let us consider any z ∈ S1 ∩ S2, and observe that

C = (v1, vz+1, vz+2, . . . , vt, vz, vz−1, . . . , v2, v1)

forms a cycle of length t < n. However, the fact that G is connected implies that there exists an
edge between a vertex from C and a vertex from V (G) \ C, hence we can construct a path which
is by at least one longer than the path P – a contradiction! Therefore G has to be Hamiltonian.

Exercise 2 (Hamilton Paths in Tournaments)
We argue by induction over the number of vertices. The basis for the induction is trivial. Now let
v be any vertex of a tournament Tn, and N← and N→ the set of in-neighbors and out-neighbors of
v, respectively. As Tn−v is a tournament on n−1 vertices, we can apply the induction hypothesis
and obtain a Hamilton path H from some vertex x to another vertex y in Tn−v. If x ∈ N→, then
vx+P is a Hamilton path in Tn. If y ∈ N←, then P + yv is a Hamilton path in Tn. Otherwise we
have x ∈ N← and y ∈ N→, implying that there is an edge z1z2 on P with z1 ∈ N← and z2 ∈ N→.
Then P − z1z2 + z1v + vz2 is a Hamilton path in Tn.

With a similar induction one can show that there is exactly one Hamilton path in an acyclic
tournament. Since the tournament is acyclic it contains a sink, thus all Hamiltonian paths must
end in the sink. Removing the sink will give another acyclic tournament on n− 1 vertices which
also contains a sink. Thus there is only a single Hamiltonian path in an acyclic tournament.



Exercise 3 (Adjacency Matrix)
As we saw in the lecture, if A is the adjacency matrix of a graph G, then the element ai,j of Ak,
for some k ∈ N, is exactly the number of walks of length k from i to j.

Observe that any walk of length 3, which starts and finishes in the same vertex v, is neccesarily a
triangle. Additionaly, for each triangle there are exatly 3 starting vertices, and each can tour the
triangle in two directions. Thus the number of triangles in G equals to
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6
·

n∑
i=1

ai,i = tr(A3)/6,

where A3 = (ai,j)n×n.

Let us now count the number of cycles of length 4. Similarly as in the previous case, every cycle
of length 4 can be represented as two (distinct) walks of length 2 between vertices u and v. Since
for every cycle we have 2 possible choices for pairs of opposite vertices, the number of cycles of
length 4 equals to
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·
∑
i<j

(
ai,j
2

)
,

where A2 = (ai,j)n×n.


