1 Trees

- 1. A δ -regular tree is a tree where all inner vertices have degree δ . Show that there is a δ -regular tree with n vertices if and only if $n \ge \delta + 1$ and if $n \equiv 2 \pmod{(\delta 1)}$.
- 2. Show that if $n \equiv 2 \pmod{(\delta-1)}$, the number of labelled δ -regular trees is $\binom{n}{k}\binom{n-2}{\delta-1,\delta-1,\dots,\delta-1}$ where the multinomial coefficient $\binom{m}{k_1,k_2,\dots,k_t}$ is defined as $\binom{m}{k_1,k_2,\dots,k_t} := \frac{m!}{k_1!k_2!\cdots k_t!}$.

2 Planar Graphs

- 1. Show that the complement of a simple planar graph with n vertices is non-planar for $n \ge 11$.
- 2. Let G be a planar graph with $n \ge 3$ vertices and 3n 6 edges embedded in the plane.
 - (a) Show that all faces of G are triangles.
 - (b) Show that if G has chromatic number 3, then it is Eulerian.

3 Connectivity

- 1. Let G = (V, E) be a k-connected graph and let D be the diameter of G. Show that $|V| \ge k(D-1)+2$ and that the size of the largest independent set of $G \alpha(G) \ge \lceil (D+1)/2 \rceil$.
- 2. Let G = (V, E) be a graph with minimum degree $\delta(G) \ge |V|/2 + t$ for $0 \le t < |V|/2 1$. Show that G is (2t + 2)-connected.
- 3. Let G be a graph with n vertices such that any two distinct vertices x and y satisfy $\deg(x) + \deg(y) \ge n 1$. Prove that G is connected.
- 4. For each $n \ge 2$ give an example for a disconnected graph on n vertices such that any two distinct vertices x and y satisfy $\deg(x) + \deg(y) \ge n-2$.

4 Coloring

Let k and n be natural numbers with $k \ge 1$ and $n \ge k(k+1)$. Place n points on a circle and let $G_{n,k}$ be the 2k-regular graph obtained by joining each point to the k nearest points in each direction on the circle. For example $G_{n,1}$ is a cycle on n vertices.

- 1. Prove that $\chi(G_{n,k}) = k+1$ if k+1 divides n and otherwise $\chi(G_{n,k}) = k+2$.
- 2. Show that the lower bound on n cannot be weakened by proving that $\chi(G_{k(k+1)-1,k}) > k+2$ if $k \ge 2$.