
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Institut für Theoretische Informatik
Peter Widmayer
Yann Disser

Exam
Datenstrukturen und Algorithmen

D-INFK
August 9, 2012

last name, first name:

stud.-number:

With my signature I confirm that I was able to participate in the exam under regular conditi-

ons, and that I read and understood the notes below.

signature:

Please note:

• You may not use any accessories except for a dictionary and writing materials .

• Please record your student number on every sheet.

• Immediately report any circumstances that disturb you during the exam.

• Use a new sheet for every problem. You may only give one solution for each problem. Invalid
attempts need to be clearly crossed out.

• Please write legibly with blue or black ink. We will only grade what we can read.

• You may use algorithms and data structures of the lecture without explaining them again. If
you modify them, it suffices to explain your modifications.

• You have 120 minutes to solve the exam.

Good luck!

Datenstrukturen & Algorithmen

stud.-number:

problem 1 2 3 4 5 Σ
max. score 9 7 9 9 9 43
Σ score

stud.-number: Datenstrukturen & Algorithmen page 1

Problem 1

Please note:

1. In this problem, you have to provide solutions only. You can write them right on this sheet.
2. If you use algorithms and notation other than that of the lecture, you need to briefly explain

them in such a way that your results can be understood and checked.
3. We assume letters to be ordered alphabetically and numbers to be ordered ascendingly,

according to their values.

1 P
a) For each of the following data structures, mark with a cross, whether the tree it uses always

has logarithmic height (balanced) or not (unbalanced):

(natural) search tree � balanced / � unbalanced
AVL tree � balanced / � unbalanced
optimum search tree � balanced / � unbalanced
heap � balanced / � unbalanced
interval tree � balanced / � unbalanced
segment tree � balanced / � unbalanced
range tree � balanced / � unbalanced

1 P
b) Execute one pivoting step of quicksort on the following array (in-situ, i.e., without auxiliary

array). Use the leftmost element of the array as pivot.

32 13 19 8 69 34 77 52 17 49 37 26 5

1 2 3 4 5 6 7 8 9 10 11 12 13

1 P
c) The following array contains the elements of a min-heap stored in the usual fashion. Specify

the array after the minimum has been removed and the heap condition has been reestablished.

5 7 21 13 45 36 67 22 17 49 87 86 42

1 2 3 4 5 6 7 8 9 10 11 12 13

1 P d) Insert the keys 26,37,33,45,49,29,10,21,7 in this order into the following open-addressing hash
table using double hashing. Use the hash function h(k) = k mod 13, and the hash function
h´(k) = 1 + (k mod 11) for probing.

0 1 2 3 4 5 6 7 8 9 10 11 12

stud.-number: Datenstrukturen & Algorithmen page 2

1 P
e) Mark the edges of a minimum spanning tree in the following graph:

9

22

8

30

7

4

12

2

5

10

6

16

23

14

1

2

8

16
5

7
5

6

2

22
13

12
14

7

4

5

9
24

18

3

1 P f) How many edges can a directed graph with n nodes have at most, while still having a topo-
logical sorting?

1 P g) Provide a sequence in which the nodes of the following graph can be visited during a breadth-
first search starting at A, and a sequence in which the nodes can be visited during depth-first
search starting at A.

stud.-number: Datenstrukturen & Algorithmen page 3

1 P
h) We consider any bipartite graph G (the nodes on the left form one set, the nodes on the right

form the other):

?

Add to G a source and a target node and additional edges with capacities, such that an
integer flow in the resulting graph uses exactly the edges of a maximum matching in G. For
the flow computation, you may assume that all edges of G have capacity 1 and are directed
from left to right.

1 P i) Name an algorithm that can be used for finding a shortest path from s to t in the following
graph as efficiently as possible. What is the running time of this algorithm in general for
graphs with n nodes and m edges?

9

8

8

10

3

4

7

2

6

2

6

 −5

1

5

−2

3

s t

stud.-number: Datenstrukturen & Algorithmen page 5

Problem 2

1 P a) Specify an order for the functions below, such that the following holds: If function f is left
of function g, then f ∈ O(g).

Example: The three functions n3, n7, n9 are already in a correct order, since n3 ∈ O(n7) and
n7 ∈ O(n9).

• n1000

• log(n2)

• (log n)2

• n!

• 1000n

• 5
√
n

•
√
n

• n2 + 1000

• nn

3 P b) Consider the following recursive formula:

T (n) :=

{
2 + 3T (n7) n > 1

2 n = 1

Specify a closed form (i.e., non-recursive) for T (n) that is as simple as possible, and prove its
correctness using mathematical induction.

Hints:
(1) You may assume that n is a power of 7.

(2) For q 6= 1, we have
∑k

i=0 q
i = qk+1−1

q−1 .

stud.-number: Datenstrukturen & Algorithmen page 6

1 P
c) Specify (as concisely as possible) the asymptotic running time of the following code fragment

in Θ-notation depending on n ∈ N. You do not need to justify your answer.

for (int i = 0 ; i < n ; ++i)
for (int j = 0 ; j < i /2 ; ++j)

;

1 P d) Specify (as concisely as possible) the asymptotic running time of the following code fragment
in Θ-notation depending on n ∈ N. You do not need to justify your answer.

for (int i = 0 ; i < n∗n ; ++i)
for (int j = 1 ; j <= i ; j ∗= 3)

;

1 P e) Specify (as concisely as possible) the asymptotic running time of the following function in
Θ-notation depending on n ∈ N. You do not need to justify your answer.

int f (int n)
{

i f (n <= 0)
return 1 ;

else
return f (n−1) + f (n−1);

}

stud.-number: Datenstrukturen & Algorithmen page 7

Problem 3

We consider a game in which coins lie in a row from left to right. Each coin has an integer value,
and the initial number of coins n is divisible by 3. In every move, the player either may take (and
keep) the leftmost coin or the rightmost coin, but must discard two coins from the other end. The
discarded coins are lost for the player. For instance, if the player takes the leftmost coin, he has to
discard the two rightmost coins. The goal of the player is to maximize the value of the coins that
he takes.

Example: In the following example with n = 21, the player can take a total value of at most 803.
To do this, he first needs to take one coin from the right end, then one from the left, then two from
the right again, and finally three from the left end. Every other strategy (obviously) has the same
number of moves (n/3 = 7), but yields a smaller total value.

20 20 500 20 20 20 20 100 100 100 5 5 5 5 5 5 1 1 1 1 1

5 P
a) Design an algorithm using dynamic programming that, as efficiently as possible, computes

the maximum value that the player can take. Describe your dynamic program and provide
its running time.

1 P b) Briefly describe how you can adapt your algorithm if it has to not only compute the maximum
possible value, but also a sequence of moves that achieves this value. (For the example above,
this would be something of the type ,,RLRRLLL“.)

3 P c) We consider an extended version of the game with a player A and an opponent B. The players
take turns alternatingly, and A starts the game. Whenever it is player A’s turn, he takes the
leftmost or the rightmost coin. Player B takes two coins in every move, either both from the
left end or both from the right end.

We are interested in a good strategy for player A, independent of what B does. In other
words, we want to determine what maximum value player A can guarantee, independent of
B’s strategy.

Describe an efficient algorithm that, given a row of coins, computes the maximum value that
player A can always achieve. Provide the running time of your algorithm.

Hint: It is safe to assume that B always does a move that is worst-possible for A. The moves
of B aim at minimizing the final value, while A’s moves try to maximize it. In the example
above, player A can guarantee a value of at most 632. In particular, player B cannot prevent
A from getting the 500 (A can just take from the right end until the 500 becomes available).

stud.-number: Datenstrukturen & Algorithmen page 9

Problem 4

You are to design an algorithm for optimizing multi-day bike tours with camping during the nights.
A tour consists of n sections and n + 1 sites, where the i-th section connects the sites i and i + 1.
You are given such a tour, a duration T (in days) of the tour, and a weather forecast for all areas
of the tour. The weather forecast describes the precipitation (rain) along each section for every day
and the precipitation for each night at each site. An instance with n = 3 and T = 6 might look as
follows:

section 1 section 2 section 3

day 1 2mm 3mm 1mm

day 2 1mm 4mm 0mm

day 3 3mm 0mm 8mm

day 4 3mm 7mm 5mm

day 5 10mm 1mm 2mm

day 6 5mm 5mm 5mm

site 1 site 2 site 3 site 4

night 1→ 2 0mm 2mm 0mm 0mm

night 2→ 3 1mm 0mm 2mm 1mm

night 3→ 4 0mm 1mm 15mm 0mm

night 4→ 5 2mm 0mm 15mm 4mm

night 5→ 6 0mm 4mm 0mm 3mm

We are looking for a schedule that plans which sections should be completed on each day, such
that the sum of the precipitations for each section and each overnight stay is minimized (according
to the forecast). The sections have to be completed in order (i.e., section i before section i + 1),
but any number of sections can be scheduled for a single day. Also, every night has to be spent at
some site, while multiple nights can be spent at the same site. This means that if the first section
is planned for day j, then j − 1 nights have to be spend at site 1. Similarly, T − j nights need to
be spent at site n + 1 if the last section is scheduled for day j.

Example: The best solution for the example above achieves a precipitation of 8mm. To obtain this,
first, one night at site 1 has to be planned (0mm), on day 2 section 1 is completed (1mm), then three
nights are spent at site 2 (0+1+0=1mm), on day 5 the sections 2 and 3 are completed (1+2=3mm),
and, finally, one night needs to be spent at site 4 (3mm). If, instead, we decide to complete all
sections on day 1 (2+3+1=6mm), we need to stay at site 4 for five nights (0+1+0+4+3=8mm),
and have a total precipitation of 14mm.

4 P a) Construct a directed graph G, such that a shortest path in G corresponds to a schedule
with minimum precipitation. Introduce a node of G for every state of the system and de-
fine (directed and weighted) edges that correspond to transitions between states. Describe
your construction and derive an efficient algorithm to schedule bike tours with minimum
precipitation.

2 P b) What is the running time of your algorithm depending on n and T?

3 P
c) Now, assume that no more than three sections can be completed each day. How can you

adapt the construction of G, such that a schedule with minimum precipitation and at most
3 sections per day corresponds to a shortest path in G (and vice-versa)? How does this affect
the running time of your algorithm?

stud.-number: Datenstrukturen & Algorithmen page 11

Problem 5

You are given a set of triangles in the plane. Each triangle is provided by the coordinates of its
corners. For simplicity, we assume that no two vertices share the same x-coordinate. We want to
determine whether the set contains two triangles that overlap.

3 P a) We first determine whether there are triangles whos boundaries intersect (left figure). Describe
a scanline algorithm that determines this as efficiently as possible. You may assume that no
two triangle boundaries touch without crossing. What is the running time of your algorithm?

6 P b) If there are no triangle boundaries that intersect, we still need to determine whether there is a
triangle that is contained in some other triangle (right figure). Describe a scanline algorithm
that determines this as efficiently as possible. You may assume that no two triangle boundaries
touch or intersect. What is the running time of your algorithm?

