
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Department Informatik
Markus Püschel David Steurer
Johannes Lengler Gleb Novikov
Chris Wendler Ulysse Schaller

Exam

Algorithmen und Datenstrukturen
January 26, 2021

DO NOT OPEN!

Last name, first name:

Student number:

With my signature I confirm that I can participate in the exam under regular conditions. I will
act honestly during the exam, and I will not use any forbidden means.

Signature:

Good luck!

T1 (20P) T2 (19P) T3 (9P) T4 (12P) P1 (??P) P2 (??P) Σ (100P)

Score

Corrected by

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 1

Theory Task T1.
/ 20 P

In this problem, you have to provide solutions only. You do not need to justify your answer.

a) Asymptotic notation quiz: For each of the following claims, state whether it is true or false./ 5 P

You get 1P for a correct answer, -1P for a wrong answer, 0P for a missing answer. You get at
least 0 points in total.

Assume n ≥ 2.

Claim true false

n2 + 10n− 23 ≥ Ω(n2.5) � �

3
√
n ≤ O(

√
n

logn) � �

log3(n
4) = Θ(log6(n

2)) � �∑n
i=1

√
i = Θ(n1.5) � �∑n

i=1 i! ≥ Ω(n · n!) � �

b) Max-Heaps:/ 2 P

i) Draw a Max-Heap that contains the keys 8, 4, 2, 3, 5, 7 (note that several solutions are
possible here).

Solution:

8

5

3 4

7

2

ii) Draw the Max-Heap obtained from the following Max-Heap by performing the operation
DELETE-MAX once.

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 2

42

10

8

6

1

24

15 7

Solution:

24

10

8 1

15

6 7

c) Graph quiz: For each of the following claims, state whether it is true or false. You get 1P for/ 5 P

a correct answer, -1P for a wrong answer, 0P for a missing answer. You get at least 0 points
in total.

Claim true false

The topological ordering of a directed acyclic graph is unique. � �

For all n ∈ N, there exists a directed acyclic graph on n vertices with
(
n
2

)
edges. � �

Let v ∈ V be a vertex of an undirected graph G = (V,E) with adjacency matrix A.
It takes time Θ(1 + deg(v)) to compute deg(v) from A.

� �

If every vertex of an undirected graph G has even degree, then G has an
Eulerian walk.

� �

In order to run Dijkstra’s algorithm on a directed graph G, you first need to
have a topological ordering of G.

� �

d) Depth-first search / Breadth-first search: Consider the following directed graph:/ 2 P

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 3

1 6

5 2 3

7 4

i) Draw the depth-first tree resulting from a depth-first search starting from vertex 1.
Process the neighbors of a vertex in increasing order.

Solution:

1

2

4

3

7

5

6

ii) Draw the breadth-first tree resulting from a breadth-first search starting from vertex 1.
Process the neighbors of a vertex in increasing order.

Solution:

1

2

4

3

7

5 6

e) Minimum Spanning Tree: Consider the following graph:/ 1 P

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 4

a b

c

d

e

f
6

5
9

8

7

10

3

1

2

Highlight the edges that are part of the minimum spanning tree.

Solution:

a b

c

d

e

f
6

5
9

8

7

10

3

1

2

f) Topological sorting: Consider the following directed graph G:/ 2 P

a c

b

d

e

f

i) Remove the smallest possible number of edges from G such that a topological ordering
of its vertices exists.

Solution: We remove the edge (b, e):

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 5

a c

b

d

e

f

ii) Compute a topological ordering of the vertices of your modified graph.

Solution: e, d, a, c, b, f

g) Sorting algorithms:/ 3 P

i) Consider the sequence 6, 5, 4, 1, 2, 3. How many swaps does Bubble Sort perform to
sort this sequence? Give the exact number of swaps required.

Solution: 12

ii) Consider the sequence 6, 5, 4, 1, 2, 3. How many swaps does Selection Sort perform
to sort this sequence? Give the exact number of swaps required.

Solution: 4

iii) Let n ∈ N be an even number and consider the sequence with the following structure:

2, 1, 4, 3, 6, 5, . . . , n, n− 1.

How many swaps does Insertion Sort perform to sort this sequence? Give the exact
number, not just the asymptotics.

Solution: n/2

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 6

Theory Task T2.
/ 19 P

In this part, you should justify your answers briefly, e.g. by sketching the derivation.

a) Induction: For the following task you may use the identity/ 3 P (
n + 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
for all 1 ≤ k ≤ n

without proof. Show by mathematical induction that for any integer n ≥ 1,

n∑
k=0

(
n

k

)
= 2n.

Solution:

Base case n = 1:

1∑
k=0

(
1

k

)
=

(
1

0

)
+

(
1

1

)
= 1 + 1 = 21.

Induction hypothesis: For some n ≥ 1,

n∑
k=0

(
n

k

)
= 2n.

Induction step n → n + 1:

n+1∑
k=0

(
n + 1

k

)
=

(
n + 1

0

)
+

(
n + 1

n + 1

)
+

n∑
k=1

(
n + 1

k

)

= 2 +
n∑

k=1

[(
n

k

)
+

(
n

k − 1

)]

=

(
1 +

n∑
k=1

(
n

k

))
+

(
1 +

n−1∑
k=0

(
n

k

))

=

n∑
k=0

(
n

k

)
+

n∑
k=0

(
n

k

)
= 2n + 2n = 2n+1.

b) Recurrence relations:/ 2 P

For this exercise, you may use the following master theorem from exercise sheet 4:

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 7

Theorem 1 (Master theorem) Let a,C > 0 and b ≥ 0 be constants and T : N → R+ a
non-decreasing function such that for all k ∈ N and n = 2k,

T (n) ≤ aT (n/2) + Cnb.

Then

• If b > log2 a, T (n) ≤ O(nb).

• If b = log2 a, T (n) ≤ O(nlog2 a · log n).

• If b < log2 a, T (n) ≤ O(nlog2 a).

Consider the following recursive function that takes as an input a positive integer m that is a
power of two (that is, m = 2k for some integer k ≥ 0).

Algorithm 1 g(m)

if m > 1 then
g(m/2)
g(m/2)
for i = 1, . . . , 6b

√
mc do

f()

else
f()

Let T (m) be the number of calls of the function f in g(m).

i) Give a recursive formula for T (m). Don’t forget to provide the base case as well.

Solution:

If m > 1, we have T (m) = 2T (m/2) + 6b
√
mc. Moreover, the base case is T (1) = 1.

ii) Determine T (m) in O-notation. Your answer should be as tight as possible.

Solution:

By part i), we have T (m) ≤ 2T (m/2) + 6m1/2. So we can use the Master theorem with
a = 2, b = 1/2 and C = 6 (which corresponds to case 3) to deduce that T (m) ≤ O(m).

c) Graph connectivity/ 4 P

Recall the following two definitions from the exercises.

Definition 1 A vertex v in a connected graph is called a cut vertex if the subgraph obtained
by removing v (and all its incident edges) is disconnected.

Definition 2 An edge e in a connected graph is called a cut edge if the subgraph obtained by
removing e (but keeping all the vertices) is disconnected.

In the following, we always assume that the original graph is connected. Prove or find a
counterexample to the following statements:

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 8

i) If a vertex v is part of a cycle, then it is not a cut vertex.

Solution:

The following graph is a counterexample:

v

u

w

Indeed, v is clearly part of a cycle (the triangle uvw for example), but removing v yields
the following graph:

u

w

The above graph is disconnected. Hence, v is also a cut vertex.

ii) If a vertex v is not a cut vertex, then v must be part of a cycle.

Solution:

The following graph is a counterexample:

v

Indeed, v is not part of a cycle (remember that the vertices forming a cycle must be
disjoint). However, removing v yields the following connected graph:

Hence, v is also not a cut vertex.

iii) If an edge e is part of a cycle (that is, e connects two consecutive vertices in a cycle),
then it is not a cut edge.

Solution:

This statement is correct. Let G be a connected graph and let e = {v1, v2} be an edge
of G that is part of a cycle v1 . . . vk for some k ≥ 3. Let u and w be arbitrary vertices

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 9

and consider any walk between u to w in G. Let’s replace every appearance of v1v2 in
this walk by the path v1vkvk−1 . . . v2 and every appearance of v2v1 by v2v3 . . . vkv1. This
yields a walk from u to w that does not use the edge e. Hence there exists a walk between
any two vertices in the subgraph of G obtained by removing e, so e is not a cut edge.

iv) If v is a cut vertex and e is an edge incident to v, then e is a cut edge.

Solution:

The following graph is a counterexample:

v

e

Indeed, we have seen in part a) that v is a cut vertex of this graph. However, removing
e yields the following connected graph:

v

Hence e is an edge incident to v that is not a cut edge.

d) Insertion sort invariant/ 5 P

Let A[0, . . . , n − 1] be an integer array of size n. Consider the following implementation of
insertion sort:

Algorithm 2 InsertionSort(A)

for i = 1 . . . n− 1 do
Find the smallest index j ∈ {0, . . . , i} such that A[i] ≤ A[j].
Shift the subarray A[j, . . . , i− 1] by one to the right, and move the element A[i] to position j.

i) Formulate an invariant INV (i) that holds after the ith iteration of the for-loop (the
iteration with i = 1 is the first iteration).

Solution: INV (i): After the i-th iteration, A[0, . . . , i] is sorted.

ii) Use this invariant to prove correctness of the algorithm InsertionSort.

1. Show that the invariant holds at the beginning (base case).

Solution: Let’s show that INV (1) holds after the first loop iteration. If before the
first iteration A[0] < A[1], then j = 1, elements of the array are not moved, and
A[0, 1] is sorted. If A[0] ≥ A[1], then j = 0 and A[0] is swapped with A[1], and after
the swap A[0, 1] is sorted.

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 10

2. Let 1 ≤ i ≤ n−2. Show that if INV (i) holds after the ith iteration of the for-loop,
then INV (i + 1) holds after the (i + 1)st iteration (induction step).

Solution: At the start of the (i + 1)-th loop iteration A[0, . . . , i] is sorted (since
INV (i) holds). Since A[j, . . . i] is sorted and index j satisfies A[j] ≥ A[i + 1], all
elements in A[j, . . . , i] are not smaller than A[i + 1]. Since j is the smallest index
with such property and A[0, . . . j − 1] is sorted, all elements in A[0, . . . , j − 1] are
smaller than A[i+1]. Hence after A[j, . . . , i] is shifted and A[i+1] is moved to position
j, we get A[0] ≤ . . . ≤ A[j − 1] ≤ A[j] ≤ A[j + 1] . . . ≤ A[i+ 1], so INV (i+ 1) holds
after the (i + 1)-th loop iteration.

3. Show that if INV (n − 1) holds at the end of the algorithm, then the array A is
sorted.

Solution: INV (n− 1) by definition means that A[0, . . . , n− 1] = A is sorted.

e) Finding a cheap cycle/ 5 P

Let G = (V,E) be a weighted undirected graph, where all edge weights are positive. Provide
an efficient algorithm that, given an edge e ∈ E, outputs the weight of the cheapest cycle (that
is, the cycle of smallest total weight) that contains e, and outputs ∞ if e is not contained in
any cycle. Give the running time of your algorithm in terms of |V | and |E|. In order to get
full points, your algorithm should run in time O((|V |+ |E|) log |V |)

You do not need to write a proof of correctness or a runtime analysis. If you use algorithms
known from the lecture as sub-routines, you do not need to re-discuss how they work.

Solution:

The following algorithm takes as input a graph G = (V,E) and an edge e = {u, v} ∈ E, and
returns the desired quantity. Here, w(e) denotes the weight of the edge e.

Algorithm 3

For e = {u, v}, let E′ := E \ {e} and consider the graph G′ := (V,E′).
Run Dijkstra’s algorithm on the graph G′ with starting vertex u to get the distance d between u
and v in G′.
return d + w(e)

Indeed, in order to find the cycle containing e = {u, v} of smallest weight, we need to find the
path between u and v of smallest weight among all such paths that do not use the edge e. The
weight of the cycle will then be the sum of the weight of this path and the weight of e. This
is exactly what the above algorithm does. Note that if e is not contained in any cycle in G,
then u and v will not be in the same connected component of G′. Thus, Dijkstra’s algorithm
will return d =∞, and hence our algorithm will also return ∞, as desired.

The running time of the algorithm is simply the time that Dijkstra’s algorithm requires to
run on G′, which is

O((|V |+ |E′|) log |V |) = O((|V |+ (|E| − 1)) log |V |) = O((|V |+ |E|) log |V |) ,

if implemented with binary heap.

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 11

Theory Task T3.
/ 9 P

Consider the following problem. You are given an array of n integers a1, . . . , an ∈ N summing to
A :=

∑n
i=1 ai, which is a multiple of 3. You want to determine whether it is possible to partition

{1, . . . , n} into three disjoint subsets I, J,K such that their corresponding elements yield the same
sum, i.e. ∑

i∈I
ai =

∑
j∈J

aj =
∑
k∈K

ak =
A

3
.

Note that I, J,K form a partition of {1, . . . , n} if and only if I ∩ J = I ∩ K = J ∩ K = ∅ and
I ∪ J ∪K = {1, . . . , n}.

For example, the answer for the input [2, 4, 8, 1, 4, 5, 3] is yes, because there is the partition {3, 4},
{2, 6}, {1, 5, 7} (corresponding to the subarrays [8, 1], [4, 5], [2, 4, 3], which are all summing to 9).
On the other hand, the answer for the input [3, 2, 5, 2] is no.

Provide a dynamic programming algorithm that determines whether such a partition exists. Your
algorithm should have an O(nA2) runtime to get full points. Address the following aspects in your
solution:

1) Definition of the DP table: What are the dimensions of the table DP [. . .] ? What is the
meaning of each entry?

2) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others. Justify your answer.

3) Calculation order: In which order can entries be computed so that values needed for each
entry have been determined in previous steps?

4) Extracting the solution: How can the final solution be extracted once the table has been filled?

5) Running time: What is the running time of your algorithm? Provide it in Θ-notation in terms
of n and A, and justify your answer.

Size of the DP table / Number of entries: (n + 1)× (A + 1)× (A + 1).

Meaning of a table entry: For 0 ≤ m ≤ n and 0 ≤ B,C ≤ A, the corresponding entry in the DP
table is defined as

DP [m,B,C] =

1
if there are two disjoint sets I, J ⊆ {1, . . . ,m}
such that

∑
i∈I ai = B and

∑
j∈J aj = C,

0 otherwise.

Computation of an entry (initialization and recursion):

We initialize the values for m = 0 as

DP [0, B,C] =

{
1 if B = C = 0,

0 otherwise.

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 12

The other entries are then computed as

DP [m + 1, B,C] = max{DP [m,B,C], DP [m,B − am+1, C], DP [m,B,C − am+1]} .

In this formula we assume that if am+1 > B, then DP [m,B − am+1, C] = 0, and if am+1 > C, then
DP [m,B,C − am+1] = 0.

Indeed, it is possible to get two disjoint subsets of {a1, . . . , am+1} summing to B and C if and only
if there are two disjoint subsets of {a1, . . . , am} that are summing to either B and C (so we don’t
need to use am+1), B − am+1 and C (so we add am+1 to the first subset), or B and C − am+1 (so
we add am+1 to the second subset).

Order of computation: We can compute the values DP [m,B,C] by increasing order in m. The
order for B and C doesn’t matter.

Extracting the result: The answer to the problem is yes if DP [n,A/3, A/3] = 1 and no if
DP [n,A/3, A/3] = 0.

Running time: We need to fill (n + 1)(A + 1)2 entries, and each of them can be computed in
constant time Θ(1). Therefore, the running time is Θ(nA2).

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 13

Theory Task T4.
/ 12 P

1. Consider the following problem. The Swiss government is negotiating a deal with Elon Musk
to build a tunnel system between all major Swiss cities. They put their faith into you and
consult you. They present you with a map of Switzerland. For each pair of cities it depicts
the cost of building a bidirectional tunnel between them. The Swiss government asks you to
determine the cheapest possible tunnel system such that every city is reachable from every
other city using the tunnel network (possibly by a tour that visits other cities on the way).

i) Model the problem as a graph problem. Describe the set of vertices, the set of edges and
the weights in words. What is the corresponding graph problem?

Solution: The map of Switzerland defines a undirected graph. There is a vertex v ∈ V
for each city. For each pair of cities u, v ∈ V we create an edge {u, v} ∈ E. The edge
{u, v} gets a weight w({u, v}) equal to the cost of building a tunnel between the cities u
and v.

The graph problem corresponding to the computation of the cheapest possible tunnel
system is the computation of the minimum spanning tree in this graph.

ii) Use an algorithm from the lecture to solve the graph problem. State the name of the
algorithm and its running time in terms of |V | and |E| in Θ-notation.

Solution: We can compute the minimum spanning tree using Kruskal’s algorithm, which
has a running time of Θ(|E| log |V |).

2. Now, the Swiss tunneling society contacts the government and proposes to build the tunnel
between Basel and Geneva for half of Musk’s cost. Thus, the government contacts you again.
They want you to solve the following problem: Given the solution of the old problem in a) and
an edge for which the cost is divided by two, design an algorithm that updates the solution such
that the new edge cost is taken into account. In order to achieve full points, your algorithm
must run in time O(|V |).

Hint: You are only allowed to use the solution from 1., i.e. the set of tunnels in the chosen
tunnel system. You are not allowed to use any intermediate computation results from your
algorithm in 1.

i) Describe your algorithm (for example, via pseudocode). A high-level description is enough.

Solution: Let E1 be the edge set of the MST T1 from the previous part of the exercise.

We have to distinguish the following two cases:

a) The updated edge is part of E1: If the updated edge is already part of E1, E1 is also
a MST for the updated graph.

b) The updated edge is not part of E1: If the updated edge e = {u, v} ∈ E is not part
of E1, we observe that adding e to E1 creates a cycle C as E1 is a tree. In order to
fix that and to obtain the new MST E2, we remove the edge e′ with the largest cost
from the cycle C in (V,E1 ∪ {e}) by performing the following steps:

1) We compute the path P from u to v in T1 by performing BFS.

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 14

2) We extend the path P to a cycle C by adding the edge {u, v} to it.

3) We search the edge e′ ∈ C with the largest cost in C by iterating over all the
edges of C.

4) We return T2 = (V,E2) with E2 = (E1 ∪ {e}) \ {e′}.

ii) Prove the correctness of your algorithm and show that it runs in time O(|V |).

Solution:

Running time: Computing a path between u and v using BFS in 1) and searching the
edge e′ also requires only O(|V |) in 3) both only requires O(|V |) because |E1| = |V | − 1.
The other steps are possible in constant time.

Correctness: In the case a) we just reduce the weight of an edge of the MST, thus, it
trivially stays the MST and our algorithm is correct.

The case b) works as follows:

Case e 6∈ MST of G′: If any MST of G′ (the new graph) does not contain e, then any
MST of G′ is an MST of G and vice versa, and the statement is true (in this case e is
always the unique maximal edge in the cycle C).

Case e ∈ MST of G′: We compare which edge Kruskal’s algorithm adds/rejects in G
and G′. Let the resulting trees be T = T1 and T ′ respectively. We prove (by induction
over the steps of the algorithm) that the algorithms make the same decisions except that
e is accepted and e′ is rejected for G′ (unless e = e′, then the decisions are completely
identical). In other words, we prove that T ′ = T2 ∩ {processed edges}.

The only difference between the two algorithms is that e is processed earlier for G′.
Before e is processed, it is clear that both algorithms make the same decisions. Similarly,
after both algorithms have processed e′, the accepted edge set has the same connected
components (in either case all vertices on C are connected with each other), so the
algorithms make the same decisions after e′ is processed.

When e is processed for G′, there are two cases. Either e = e′. In this case all other
edges of C have already been accepted, so e is rejected. In this case it is clear that the
algorithms continue to make the same decisions. Or e 6= e′. In this case, the accepted edge
set is a subset of T2 \ {e}, so the endpoints of e are in different connected components,
and e is accepted.

In the remainder, we may assume e 6= e′. When e′ is processed for G′, all other edges of
C are already added, so e′ is rejected.

It remains to consider the steps of G′ between processing e and e′. In this stage, the
accepted edges for G form a subset of the accepted edges for G′. Namely, the latter set
also contains e. Therefore, it is clear that any edge rejected for G is also rejected for G′.
On the other hand, consider an edge ẽ that is accepted for G in this phase. When ẽ is
processed for G′, the set of accepted edges is a subset of T2 \ {ẽ}, so the endpoints of ẽ
are in different connected components, and ẽ is accepted for G′ as well.

Exam Winter 2020/21 Algorithmen & Datenstrukturen page 15

Therefore, we have shown that the algorithms make the same decisions except that e is
accepted and e′ is rejected (or exactly the same decisions if e = e′). Hence, at termination
the algorithm outputs T ′ = T ∪ {e} \ {e′} = T2, as desired.

Alternative proof for the Case e ∈ MST of G′:

Some MST of G′ contains e. Let T ′ be such an MST in G′. Consider the trees Tu and Tv

that remain after removing e from T ′. If we add e∗ — the smallest edge in G that connects
Tu and Tv — we get a spanning tree T ∗ of G. Note that w(T ∗) = w(T ′′) +w(e∗)−w(e).

Now consider the MST T1 in G from part a) and replace by e the edge e1 = {u1, v1} from
the path (in T1) from u to v such that u1 is a vertex in Tu and v1 is a vertex in Tv. Denote
the resulting spanning tree in G′ by T ′′. Note that by definition of e∗, w(e1) ≥ w(e∗).
Let’s show that T ′′ is an MST in G′. Indeed, since T1 is an MST in G,

w(T ′′) = w(T1)+w(e)−w(e1) ≤ w(T ∗)+w(e)−w(e1) ≤ w(T ∗)+w(e)−w(e∗) = w(T ′) .

Hence for any MST T1 in G there exists an edge e1 in the path from u to v such that
replacing this edge by e gives MST T2 in G′. It is easy to see that such e1 has maximal
weight in the cycle C (otherwise we could get a smaller tree than T2 by removing maximal
edge instead of e1).

