
Sparse Fault-Tolerant BFS Trees�

Merav Parter		 and David Peleg

Department of Computer Science and Applied Mathematics,
The Weizmann Institute, Rehovot, Israel

{merav.parter,david.peleg}@weizmann.ac.il

Abstract. A fault-tolerant structure for a network is required to con-
tinue functioning following the failure of some of the network’s edges or
vertices. This paper considers breadth-first search (BFS) spanning trees,
and addresses the problem of designing a sparse fault-tolerant BFS tree,
or FT-BFS tree for short, namely, a sparse subgraph T of the given net-
work G such that subsequent to the failure of a single edge or vertex,
the surviving part T ′ of T still contains a BFS spanning tree for (the
surviving part of) G. For a source node s, a target node t and an edge
e ∈ G, the shortest s− t path Ps,t,e that does not go through e is known
as a replacement path. Thus, our FT-BFS tree contains the collection of
all replacement paths Ps,t,e for every t ∈ V (G) and every failed edge
e ∈ E(G). Our main results are as follows. We present an algorithm that
for every n-vertex graph G and source node s constructs a (single edge
failure) FT-BFS tree rooted at s with O(n · min{Depth(s),

√
n}) edges,

where Depth(s) is the depth of the BFS tree rooted at s. This result is
complemented by a matching lower bound, showing that there exist n-
vertex graphs with a source node s for which any edge (or vertex) FT-BFS
tree rooted at s has Ω(n3/2) edges. We then consider fault-tolerant multi-
source BFS trees, or FT-MBFS trees for short, aiming to provide (following
a failure) a BFS tree rooted at each source s ∈ S for some subset of
sources S ⊆ V . Again, tight bounds are provided, showing that there
exists a poly-time algorithm that for every n-vertex graph and source
set S ⊆ V of size σ constructs a (single failure) FT-MBFS tree T ∗(S)
from each source si ∈ S, with O(

√
σ · n3/2) edges, and on the other

hand there exist n-vertex graphs with source sets S ⊆ V of cardinality
σ, on which any FT-MBFS tree from S has Ω(

√
σ · n3/2) edges. Finally,

we propose an O(log n) approximation algorithm for constructing FT-BFS
and FT-MBFS structures. The latter is complemented by a hardness result
stating that there exists no Ω(log n) approximation algorithm for these
problems under standard complexity assumptions. In comparison with
previous constructions our algorithm is deterministic and may improve
the number of edges by a factor of up to

√
n for some instances. All our

algorithms can be extended to deal with one vertex failure as well, with
the same performance.

� Supported in part by the Israel Science Foundation (grant 894/09), the I-CORE
program of the Israel PBC and ISF (grant 4/11), the United States-Israel Binational
Science Foundation (grant 2008348), the Israel Ministry of Science and Technology
(infrastructures grant), and the Citi Foundation.

�� Recipient of the Google European Fellowship in distributed computing; research is
supported in part by this Fellowship.

H.L. Bodlaender and G.F. Italiano (Eds.): ESA 2013, LNCS 8125, pp. 779–790, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



780 M. Parter and D. Peleg

1 Introduction

Background and Motivation. Modern day communication networks support
a variety of logical structures and services, and depend on their undisrupted
operation. As the vertices and edges of the network may occasionally fail or
malfunction, it is desirable to make those structures robust against failures.
Indeed, the problem of designing fault-tolerant constructions for various network
structures and services has received considerable attention over the years.

Fault-resilience can be introduced into the network in several different ways.
This paper focuses on a notion of fault-tolerance whereby the structure at hand
is augmented or “reinforced” (by adding to it various components) so that sub-
sequent to the failure of some of the network’s vertices or edges, the surviving
part of the structure is still operational. As this reinforcement carries certain
costs, it is desirable to minimize the number of added components. To illustrate
this type of fault tolerance, let us consider the structure of graph k-spanners (cf.
[19,20,21]). A graph spanner H can be thought of as a skeleton structure that
generalizes the concept of spanning trees and allows us to faithfully represent
the underlying network using few edges, in the sense that for any two vertices
of the network, the distance in the spanner is stretched by only a small fac-
tor. More formally, consider a weighted graph G and let k ≥ 1 be an integer.
Let dist(u, v,G) denote the (weighted) distance between u and v in G. Then
a k-spanner H satisfies that dist(u, v,H) ≤ k · dist(u, v,G) for every u, v ∈ V .
Introducing fault tolerance, we say that a subgraph H is an f -edge fault-tolerant
k-spanner of G if dist(u, v,H \ F ) ≤ k · dist(u, v,G \ F ) for any set F ⊆ E of
size at most f , and any pair of vertices u, v ∈ V . A similar definition applies to
f -vertex fault-tolerant k-spanners. Sparse fault-tolerant spanner constructions
were presented in [6,10]. This paper considers breadth-first search (BFS) span-
ning trees, and addresses the problem of designing fault-tolerant BFS trees, or
FT-BFS trees for short. By this we mean a subgraph T of the given network G,
such that subsequent to the failure of some of the vertices or edges, the surviving
part T ′ of T still contains a BFS spanning tree for the surviving part of G. We
also consider a generalized structure referred to as a fault-tolerant multi-source
BFS tree, or FT-MBFS tree for short, aiming to provide a BFS tree rooted at each
source s ∈ S for some subset of sources S ⊆ V .

The notion of FT-BFS trees is closely related to the problem of constructing
replacement paths and in particular to its single source variant, studied in [13].
That problem requires to compute the collection Ps of all s − t replacement
paths Ps,t,e for every t ∈ V and every failed edge e that appears on the s − t
shortest-path in G. The vast literature on replacement paths (cf. [4,13,24,26,28])
focuses on time-efficient computation of the these paths as well as their effi-
cient maintenance in data structures (a.k.a distance oracles). In contrast, the
main concern in the current paper is with optimizing the size of the result-
ing fault tolerant structure that contains the collection Ps of all replacement
paths given a source node s. A typical motivation for such a setting is where



Sparse Fault-Tolerant BFS Trees 781

the graph edges represent the channels of a communication network, and the
system designer would like to purchase or lease a minimal collection of channels
(i.e., a subgraph G′ ⊆ G) that maintains its functionality as a “BFS tree” with
respect to the source s upon any single edge or vertex failure in G. In such a
context, the cost of computation at the preprocessing stage may often be negli-
gible compared to the purchasing/leasing cost of the resulting structure. Hence,
our key cost measure in this paper is the size of the fault tolerant structure, and
our main goal is to achieve sparse (or compact) structures. Most previous work
on sparse / compact fault-tolerant structures and services concerned structures
that are distance-preserving (i.e., dealing with distances, shortest paths or short-
est routes), global (i.e., centered on “all-pairs” variants), and approximate (i.e.,
settling for near optimal distances), such as spanners, distance oracles and com-
pact routing schemes. The problem considered here, namely, the construction of
FT-BFS trees, still concerns a distance preserving structure. However, it deviates
from tradition with respect to the two other features, namely, it concerns a “sin-
gle source” variant, and it insists on exact shortest paths. Hence our problem is
on the one hand easier, yet on the other hand harder, than previously studied
ones. Noting that in previous studies, the “cost” of adding fault-tolerance (in the
relevant complexity measure) was often low (e.g., merely polylogarithmic in the
graph size n), one might be tempted to conjecture that a similar phenomenon
may reveal itself in our problem as well. Perhaps surprisingly, it turns out that
our insistence on exact distances plays a dominant role and makes the problem
significantly harder, outweighing our willingness to settle for a “single source”
solution.

Contributions. We obtain the following results. In Sec. 2, we define the Mini-
mum FT-BFS and Minimum FT-MBFS problems, aiming at finding the minimum
such structures tolerant against a single edge or vertex fault. We show that these
problems are NP-hard and moreover, cannot be approximated (under standard
complexity assumptions) to within a factor of Ω(logn), where n is the number of
vertices of the input graph G. Section 3 presents lower bound constructions for
these problems. For the single source case, we present a lower bound stating that
for every n there exists an n-vertex graph and a source node s ⊆ V for which
any FT-MBFS tree from s requires Ω(n3/2) edges. We then show that there exist
n-vertex graphs with source sets S ⊆ V of size σ, on which any FT-MBFS tree
from the source set S has Ω(

√
σ ·n3/2) edges. These results are complemented by

matching upper bounds. In Sec. 4, we present a simple algorithm that for every
n-vertex graph G and source node s, constructs a (single edge failure) FT-BFS
tree rooted at s with O(n ·min{Depth(s),

√
n}) edges. A similar algorithm yields

an FT-BFS tree tolerant to one vertex failure, with the same size bound. In ad-
dition, for the multi source case, we show that there exists a polynomial time
algorithm that for every n-vertex graph and source set S ⊆ V of size |S| = σ
constructs a (single failure) FT-MBFS tree T ∗(S) from each source si ∈ S, with
O(

√
σ · n3/2) edges.



782 M. Parter and D. Peleg

Note that while those algorithms match the worst-case lower bounds, they
might still be far from optimal for certain instances, see [18]. Consequently, in
Sec. 5, we complete the upper bound analysis by presenting an O(log n) ap-
proximation algorithm for the Minimum FT-MBFS problem. This approximation
algorithm is superior in instances where the graph enjoys a sparse FT-MBFS tree,
hence paying O(n3/2) edges is wasteful. In light of the hardness result for these
problems (in Sec. 2), the approximability result is tight (up to constants). All
our results hold for directed graphs as well.

Related Work. To the best of our knowledge, this paper is the first to study the
sparsity of fault-tolerant BFS structures for graphs. The question of whether it is
possible to construct a sparse fault tolerant spanner for an arbitrary undirected
weighted graph, raised in [8], was answered in the affirmative in [6], present-
ing algorithms for constructing an f -vertex fault tolerant (2k − 1)-spanner of

size O(f2kf+1 · n1+1/k log1−1/k n) and an f -edge fault tolerant 2k − 1 span-
ner of size O(f · n1+1/k) for a graph of size n. A randomized construction
attaining an improved tradeoff for vertex fault-tolerant spanners was shortly
afterwards presented in [10], yielding (with high probability) for every graph
G = (V,E), odd integer s and integer f , an f -vertex fault-tolerant s-spanner with

O
(
f2− 2

s+1n1+ 2
s+1 logn

)
edges. This should be contrasted with the best stretch-

size tradeoff currently known for non-fault-tolerant spanners [25], namely, 2k−1
stretch with Õ(n1+1/k) edges. Fault tolerant spanners for the d-dimensional Eu-
clidean case were studied in [8,16,17].

A related network service is the distance oracle [3,23,26], which is a succinct
data structure capable of supporting efficient responses to distance queries on
a weighted graph G. A distance query (s, t) requires finding, for a given pair
of vertices s and t in V , the distance (namely, the length of the shortest path)
between u and v in G. The query protocol of an oracle S correctly answers
distance queries on G. In a fault tolerant distance oracle, the query may include
also a set F of failed edges or vertices (or both), and the oracle S must return,
in response to a query (s, t, F ), the distance between s and t in G′ = G\F . Such
a structure is sometimes called an F -sensitivity distance oracle. The focus is on
both fast preprocessing time, fast query time and low space. It has been shown
in [9] that given a directed weighted graph G of size n, it is possible to construct
in time Õ(mn2) a 1-sensitivity fault tolerant distance oracle of size O(n2 logn)
capable of answering distance queries in O(1) time in the presence of a single
failed edge or vertex. The preprocessing time was recently improved to Õ(mn),
with unchanged size and query time [4]. A 2-sensitivity fault tolerant distance
oracle of size O(n2 log3 n), capable of answering 2-sensitivity queries in O(log n)
time, was presented in [11].

Recently, distance sensitivity oracles have been considered for weighted and
directed graphs in the single source setting [13]. Specifically, Grandoni and
Williams considered the problem of single-source replacement paths where one
aims to compute the collection of all replacement paths for a given source node s,
and proposed an efficient randomized algorithm that does so in Õ(APSP (n,M))



Sparse Fault-Tolerant BFS Trees 783

where APSP (n,M) is the time required to compute all-pairs-shortest-paths in
a weighted graph with integer weights [−M,M ].

A relaxed variant of distance oracles, in which distance queries are answered
by approximate distance estimates instead of exact ones, was introduced in [26],
where it was shown how to construct, for a given weighted undirected n-vertex
graph G, an approximate distance oracle of size O(n1+1/k) capable of answering
distance queries in O(k) time, where the stretch (multiplicative approximation
factor) of the returned distances is at most 2k− 1. An f -sensitivity approximate
distance oracle S was presented in [5]. For an integer parameter k ≥ 1, the

size of S is O(kn1+ 8(f+1)
k+2(f+1) log (nW )), where W is the weight of the heaviest

edge in G, the stretch of the returned distance is 2k − 1, and the query time is
O(|F | · log2 n · log logn · log log d), where d is the distance between s and t in
G \ F . A fault-tolerant label-based (1 + ε)-approximate distance oracle for the
family of graphs with doubling dimension bounded by α is presented in [2]. Our
final example concerns fault tolerant routing schemes. A fault-tolerant routing
protocol is a distributed algorithm that, for any set of failed edges F , enables any
source vertex ŝ to route a message to any destination vertex d̂ along a shortest
or near-shortest path in the surviving network G\F in an efficient manner (and
without knowing F in advance). Compact routing schemes are considered in
[1,7,19,22,25]. Fault-tolerant routing schemes are considered in [5].

2 Preliminaries

Notation. Given a graph G = (V,E) and a source node s, let T0(s) ⊆ G be
a shortest paths (or BFS) tree rooted at s. For a source node set S ⊆ V , let
T0(S) =

⋃
s∈S T0(s) be a union of the single source BFS trees. Let π(s, v, T )

be the s − v shortest-path in tree T , when the tree T = T0(s), we may omit
it and simply write π(s, v). Let Γ (v,G) be the set of v neighbors in G. Let
E(v,G) = {(u, v) ∈ E(G)} be the set of edges incident to v in the graph G
and let deg(v,G) = |E(v,G)| denote the degree of node v in G. When the
graph G is clear from the context, we may omit it and simply write deg(v). Let
depth(s, v) = dist(s, v,G) denote the depth of v in the BFS tree T0(s). When
the source node s is clear from the context, we may omit it and simply write
depth(v). Let Depth(s) = maxu∈V {depth(s, u)} be the depth of T0(s). For a
subgraph G′ = (V ′, E′) ⊆ G (where V ′ ⊆ V and E′ ⊆ E) and a pair of nodes
u, v ∈ V , let dist(u, v,G′) denote the shortest-path distance in edges between
u and v in G′. For a path P = [v1, . . . , vk], let LastE(P ) be the last edge of
path P . Let |P | denote the length of the path and P [vi, vj ] be the subpath of
P from vi to vj . For paths P1 and P2, P1 ◦ P2 denote the path obtained by
concatenating P2 to P1. Assuming an edge weight function W : E(G) → R+, let
SP (s, vi, G,W ) be the set of s − vi shortest-paths in G according to the edge
weights ofW . Throughout, the edges of these paths are considered to be directed
away from the source node s. Given an s− v path P and an edge e = (x, y) ∈ P ,
let dist(s, e, P ) be the distance (in edges) between s and e on P . In addition,



784 M. Parter and D. Peleg

for an edge e = (x, y) ∈ T0(s), define dist(s, e) = i if depth(x) = i − 1 and
depth(y) = i.

Definition 1. A graph T ∗ is an edge (resp., vertex) FT-BFS tree for G with
respect to a source node s ∈ V , iff for every edge f ∈ E(G) (resp., vertex f ∈ V )
and for every v ∈ V , dist(s, v, T ∗ \ {f}) = dist(s, v,G \ {f}).

A graph T ∗ is an edge (resp., vertex) FT-MBFS tree for G with respect to source
set S ⊆ V , iff for every edge f ∈ E(G) (resp., vertex f ∈ V ) and for every s ∈ S
and v ∈ V , dist(s, v, T ∗ \ {f}) = dist(s, v,G \ {f}).

For simplicity, we refer to edge FT-BFS (resp., edge FT-MBFS) trees simply by
FT-BFS (resp., FT-MBFS) trees. Throughout, we focus on edge fault, yet the entire
analysis extends trivially to the case of vertex fault as well.

Like other papers in this field [14,4], throughout, we assume without loss of
generality that the shortest paths are unique since we can always add small
perturbations to break any ties. Let W be a weight assignment that captures
these symbolic perturbations.

The Minimum FT-BFS Problem. Denote the set of solutions for the instance
(G, s) by T (s,G) = {T̂ ⊆ G | T̂ is an FT-BFS tree w.r.t. s}. Let Cost∗(s,G) =

min{|E(T̂ )| | T̂ ∈ T (s,G)} be the minimum number of edges in any FT-BFS

subgraph of G. These definitions naturally extend to the multi-source case where
we are given a source set S ⊆ V of size σ. Then
T (S,G) = {T̂ ⊆ G | T̂ is a FT-MBFS with respect to S} and Cost∗(S,G) =

min{|E(T̂ )| | T̂ ∈ T (S,G)}.
In the Minimum FT-BFS problem we are given a graph G and a source node

s and the goal is to compute an FT-BFS T̂ ∈ T (s,G) of minimum size, i.e., such

that |E(T̂ )| = Cost∗(s,G). Similarly, in the Minimum FT-MBFS problem we are
given a graph G and a source node set S and the goal is to compute an FT-MBFS

T̂ ∈ T (S,G) of minimum size i.e., such that |E(T̂ )| = Cost∗(S,G). We begin by
establishing hardness (for missing proofs see full version [18]).

Theorem 1. The Minimum FT-BFS problem is NP-complete and cannot be ap-
proximated to within a factor c logn for some constant c > 0 unless NP ⊆
T IME(npoly log(n)).

3 Lower Bounds

We now present a lower bound for the case of a single source.

Theorem 2. There exists an n-vertex graph G(V,E) and a source node s ∈ V
such that any FT-BFS tree rooted at s has Ω(n3/2) edges, i.e., Cost∗(s,G) =
Ω(n3/2).

Proof: Let us first describe the structure of G = (V,E). Set d = �
√
n/2 .



Sparse Fault-Tolerant BFS Trees 785

The graph consists of four main
components. The first is a path
π = [s = v1, . . . , vd+1 = v∗]
of length d. The second compo-
nent consists of a node set Z =
{z1, . . . , zd} and a collection of
d disjoint paths of deceasing
length, P1, . . . , Pd, where Pj =

[vj = pj1, . . . , zj = pjtj ] con-
nects vj with zj and its length
is tj = |Pj | = 6 + 2(d − j), for
every j ∈ 1, · · · , d. Altogether,
the set of nodes in these paths,
Q =

⋃d
j=1 V (Pj), is of size |Q| =

d2 + 7d.

X 

Z 

xi 

zj 

ej 
vj 

Pj 

v* 

jj
B 

S

z1 

vd 

zd 

The third component is a set of nodes X of size n− (d2 + 7d), all connected
to the terminal node v∗. The last component is a complete bipartite graph B =
(X,Z, Ê) connectingX to Z. Overall, V = X∪Q and E = Ê∪E(π)∪

⋃d
j=1 E(Pj).

Note that n/4 ≤ |Q| ≤ n/2 for sufficiently large n. Consequently, |X | = n−|Q| ≥
n/2, and |Ê| = |Q|·|X | ≥ n3/2/4. A BFS tree T0 rooted at s for thisG (illustrated
by the solid edges in the figure) is given by

E(T0) = {(xi, zi) | i ∈ {1, . . . , d}} ∪
d⋃

j=1

E(Pj) \ {(pj�j , p
j
�j−1)},

where �j = tj − (d − j) for every j ∈ {1, . . . , d}. We now show that every
FT-BFS tree T ′ ∈ T (s,G) must contain all the edges of B, namely, the edges
ei,j = (xi, zj) for every i ∈ {1, . . . , |X |} and j ∈ {1, . . . , d} (the dashed edges
in the figure). Assume, towards contradiction, that there exists a T ′ ∈ T (s,G)
that does not contain ei,j (the bold dashed edge (xi, zj) in the figure). Note
that upon the failure of the edge ej = (vj , vj+1) ∈ π, the unique s− xi shortest
path connecting s and xi in G \ {ej} is P ′

j = π[v1, vj ] ◦ Pj ◦ [zj , xi], and all
other alternatives are strictly longer. Since ei,j /∈ T ′, also P ′

j � T ′, and therefore
dist(s, xi, G \ {ej}) < dist(s, xi, T

′ \ {ej}), in contradiction to the fact that T ′

is an FT-BFS tree. It follows that every FT-BFS tree T ′ must contain at least
|Ê| = Ω(n3/2) edges. The theorem follows.

We next consider an intermediate setting where it is necessary to construct a
fault-tolerant subgraph FT-MBFS containing several FT-BFS trees in parallel, one
for each source s ∈ S, for some S ⊆ V . In the full version [18], we establish the
following.

Theorem 3. There exists an n-vertex graph G(V,E) and a source set S ⊆ V of
cardinality σ, such that any FT-MBFS tree from the source set S has Ω(

√
σ ·n3/2)

edges, i.e., Cost∗(S,G) = Ω(
√
σ · n3/2).



786 M. Parter and D. Peleg

4 Upper Bounds

Single Source. In this section we consider the case of FT-BFS trees and establish
the following.

Theorem 4. There exists a polynomial time algorithm that for every n-vertex
graph G and source node s constructs an FT-BFS tree rooted at s with O(n ·
min{Depth(s),√n}) edges.

To prove the theorem, we first describe a simple algorithm for the problem
and then prove its correctness and analyze the size of the resulting FT-BFS

tree. Using the sparsity lemma of [24] and the tools of [13], one can provide a
randomized construction for an FT-BFS tree with O(n3/2 logn) edges with high
probability. In contrast, the simple algorithm presented here is deterministic and
achieves an FT-BFS tree with O(n3/2) edges, matching exactly the lower bound
established in Sec. 3. We note that known time-efficient (and rather involved)
algorithms for constructing replacement paths and distance sensitivity oracles
(cf., [14,24,4,28,13]) can be modified to construct sparse FT-BFS and FT-MBFS

trees by breaking shortest path ties properly and maintaining the successors
of the computed replacement paths. Since our focus here is on the size of the
resulting FT-BFS trees, and not on optimizing the running time, we introduce
the construction using a simple but slow (O(nm + n2 logn) round) algorithm.
In the analysis section we then show that as long as the collection of the single-
source replacement paths are computed in a way that breaks shortest path ties
properly, the total number of edges in this collection is bounded by O(n3/2).

The Algorithm. Recall that W is a weight assignment that guarantees the
uniqueness of the shortest paths, by introducing some symbolic perturbation
to the edge lengths. Let T0 = BFS(s,G) be the BFS tree rooted at s in G,
computed according to the weight assignment W . For every ej ∈ T0, let T0(ej)
be the BFS tree rooted at s in G \ {ej}. Then the final FT-BFS tree is given by
T ∗(s) = T0 ∪

⋃
ej∈T0

T0(ej). The correctness is immediate by construction.

Observation 5. T ∗(s) is an FT-BFS tree.

It remains to bound the size of T ∗(s).

Size Analysis. We first provide some notation. For a path P , let Cost(P ) =∑
e∈P W (e) be the weighted cost of P , i.e., the sum of its edge weights. An

edge e ∈ G is defined as new if e /∈ E(T0). For every vi ∈ V and ej ∈ T0, let
P ∗
i,j = π(s, vi, T0(ej)) ∈ SP (s, vi, G \ {ej},W ) be the optimal replacement path

of s and vi upon the failure of ej ∈ T0. Let New(P ) = E(P ) \ E(T0) and

New(vi) = {LastE(P ∗
i,j) | ej ∈ T0} \ E(T0)

be the set of vi new edges appearing as the last edge in the replacement paths
P ∗
i,j of vi and ej ∈ T0. It is convenient to view the edges of T0(ej) as directed

away from s. We then have that

T ∗(s) = T0 ∪
⋃

vi∈V \{s}
New(vi).



Sparse Fault-Tolerant BFS Trees 787

I.e., the set of new edges that participate in the final FT-BFS tree T ∗(s) are those
that appear as a last edge in some replacement path.

We now upper bound the size of the FT-BFS tree T ∗(s). Our goal is to prove
that New(vi) contains at most O(

√
n) edges for every vi ∈ V . The following

observation is crucial in this context.

Observation 6. If LastE(P ∗
i,j) /∈ E(T0), then ej ∈ π(s, vi).

Obs. 6 also yields the following.

Corollary 1. (1) New(vi) = {LastE(P ∗
i,j) | ej ∈ π(s, vi)} \ E(T0) and

(2) |New(vi)| ≤ min{depth(vi), deg(vi)}.
This holds since the edges of New(vi) are coming from at most depth(vi) replace-
ment paths P ∗

i,j (one for every ej ∈ π(s, vi)), and each such path contributes at
most one edge incident to vi.

For the reminder of the analysis, let us focus on one specific node u = vi
and let π = π(s, u), N = |New(u)|. For every edge ek ∈ New(u), we define the
following parameters. Let f(ek) ∈ π be the failed edge such that ek ∈ T0(f(ek))
appears in the replacement path Pk = π(s, u, T ′) for T ′ = T0(f(ek)). (Note that
ek might appear as the last edge on the path π(s, u, T0(e

′)) for several edges
e′ ∈ π; in this case, one such e′ is chosen arbitrarily).

Let bk be the last divergence point of Pk and π, i.e., the last vertex on the
replacement path Pk that belongs to V (π) \ {u}. Since LastE(Pk) /∈ E(T0), it
holds that bk is not the neighbor of u in Pk.

Let New(u) = {e1, . . . , eN} be sorted in non-decreasing order of the distance
between bk and u, dist(bk, u, π) = |π(bk, u)|. I.e.,

dist(b1, u, π) ≤ dist(b2, u, π) . . . ≤ dist(bN , u, π). (1)

We consider the set of truncated paths P ′
k = Pk[bk, u] and show that these paths

are vertex-disjoint except for the last common endpoint u. We then use this fact
to bound the number of these paths, hence bound the number N of new edges.
The following observation follows immediately by the definition of bk.

Observation 7. (V (P ′
k) ∩ V (π)) \ {bk, u} = ∅.

Lemma 1.
(
V (P ′

i ) ∩ V (P ′
j)
)
\ {u} = ∅ for every i, j ∈ {1, . . . , N}, i 	= j.

Proof: Assume towards contradiction that there exist i 	= j, and a node

u′ ∈
(
V (P ′

i ) ∩ V (P ′
j)
)
\ {u}

in the intersection. Since LastE(P ′
i ) 	= LastE(P ′

j), by Obs. 7 we have that
P ′
i , P

′
j ⊆ G\E(π). The faulty edges f(ei), f(ej) belong to E(π). Hence there are

two distinct u′ − u shortest paths in G \ {f(ei), f(ej)}. By the optimality of P ′
i

in T0(f(ei)), (i.e., Pi ∈ SP (s, u,G\{f(ei)},W )), we have that Cost(P ′
i [u

′, u]) <
Cost(P ′

j [u
′, u]). In addition, by the optimality of P ′

j in T0(f(ej)), (i.e., Pj ∈
SP (s, u,G \ {f(ej)},W )), we have that Cost(P ′

j [u
′, u]) < Cost(P ′

i [u
′, u]). Con-

tradiction.

We are now ready to prove our key lemma.



788 M. Parter and D. Peleg

Lemma 2. |New(u)| = O(n1/2) for every u ∈ V .

Proof: Assume towards contradiction that N = |New(u)| >
√
2n. By Lemma

1, we have that b1, . . . , bN are distinct and by definition they all appear on the
path π. Therefore, by the ordering of the P ′

k, we have that the inequalities of
Eq. (1) are strict, i.e., dist(b1, u, π) < dist(b2, u, π) < . . . < dist(bN , u, π). Since
b1 	= u (by definition), we also have that dist(b1, u, π) ≥ 1. We Conclude that

dist(bk, u, π) = |π(bk, u)| ≥ k . (2)

Next, note that each P ′
k is a replacement bk − u path and hence it cannot be

shorter than π(bk, u), implying that |P ′
k| ≥ |π(bk, u)|. Combining with Eq. (2),

we have that
|P ′

k| ≥ k for every k ∈ {1, . . . , N} . (3)

Since by Lemma 1, the paths P ′
k are vertex disjoint (except for the common

vertex u), we have that∣∣∣∣∣
N⋃

k=1

(V (P ′
k) \ {u})

∣∣∣∣∣ =
N∑

k=1

|V (P ′
k) \ {u}| ≥

N∑
k=1

(k − 1) > n,

where the first inequality follows by Eq. (3) and the last by the assumption that
N >

√
2n. Since there are n nodes in G, we end with contradiction.

Multiple Sources. For the case of multiple sources, in the full version [18], we
establish the following upper bound.

Theorem 8. There exists a polynomial time algorithm that for every n-vertex
graph G = (V,E) and source set S ⊆ V of size |S| = σ constructs an FT-MBFS

tree T ∗(S) from each source si ∈ S, with a total number of
n ·min{

∑
si∈S depth(si), O(

√
σn)} edges.

We note that both our lower and upper bound analysis naturally extend to the
case of directed and edge weighted graphs with integer weights in the range
[−M,M ] by paying an extra factor of O(

√
M) in the size of the FT-MBFS trees.

5 O(logn)-Approximation for FT-MBFS Trees

In Sec. 4, we presented an algorithm that for every graph G and source s con-
structs an FT-BFS tree T̂ ∈ T (s,G) with O(n3/2) edges. In Sec. 3, we showed
that there exist graphs G and s ∈ V (G) for which Cost∗(s,G) = Ω(n3/2), es-
tablishing tightness of our algorithm in the worst-case. Yet, there are also inputs
(G′, s′) for which the algorithm of Sec. 4, as well as algorithms based on the

analysis of [13] and [24], might still produce an FT-BFS T̂ ∈ T (s′, G′) which
is denser by a factor of Ω(

√
n) than the size of the optimal FT-BFS tree, i.e.,

such that |E(T̂ )| ≥ Ω(
√
n) · Cost∗(s′, G′). For an illustration of such a case see

[18]. Clearly, a universally optimal algorithm is unlikely given the hardness of



Sparse Fault-Tolerant BFS Trees 789

approximation result of Thm. 1. Yet the gap can be narrowed down. The goal of
this section is to present an O(log n) approximation algorithm for the Minimum
FT-BFS Problem (hence also to its special case, the Minimum FT-BFS Problem,
where |S| = 1).

Theorem 9. There exists a polynomial time algorithm that for every n-vertex
graph G and source node set S ⊆ V constructs an FT-MBFS tree T̂ ∈ T (S,G)

such that |E(T̂ )| ≤ O(log n) · Cost∗(S,G).

To prove the theorem, we first describe the algorithm and then bound the number
of edges. Let ApproxSetCover(F, U) be an O(log n) approximation algorithm for
the Set-Cover problem, which given a collection of sets F = {S1, . . . , SM} that
covers a universe U = {u1, . . . , uN} of size N , returns a cover F′ ⊆ F that is
larger by at most O(logN) than any other F′′ ⊆ F that covers U (cf. [27]).

The Algorithm. Starting with T̂ = ∅, the algorithm adds edges to T̂ until it
becomes an FT-MBFS tree.

Set an arbitrary order on the vertices V (G) = {v1, . . . , vn} and on the edges
E+ = E(G) ∪ {e0} = {e0, . . . , em} where e0 is a new fictitious edge whose role
will be explained later on. For every node vi ∈ V , define

Ui = {〈sk, ej〉 | sk ∈ S \ {vi}, ej ∈ E+}.

The algorithm consists of n rounds, where in round i it considers vi. Let Γ (vi, G)=
{u1, . . . , udi} be the set of neighbors of vi in some arbitrary order, where di =
deg(vi, G). For every neighbor uj, define a set Si,j ⊆ Ui containing certain
source-edge pairs 〈sk, e�〉 ∈ Ui. Informally, a set Si,j contains the pair 〈sk, e�〉 iff
there exists an sk − vi shortest path in G \ {e�} that goes through the neigh-
bor uj of vi. Note that Si,j contains the pair 〈sk, e0〉 iff there exists an sk − vi
shortest-path in G \ {e0} = G that goes through uj . I.e., the fictitious edge e0 is
meant to capture the case where no fault occurs, and thus we take care of true
shortest-paths in G. Formally, every pair 〈sk, e�〉 ∈ Ui is included in every set
Si,j satisfying that

dist(sk, uj, G \ {e�}) = dist(sk, vi, G \ {e�})− 1. (4)

Let Fi = {Si,1, . . . , Si,di}. The edges of vi that are added to T̂ in round i are
now selected by using algorithm ApproxSetCover to generate an approximate
solution for the set cover problem on the collection F = {Si,j | uj ∈ Γ (vi, G)}.
Let F′

i = ApproxSetCover(Fi, Ui). For every Si,j ∈ F′
i, add the edge (uj, vi) to

T̂ . In [18], we prove the correctness of this algorithm and establish Thm. 9.

Acknowledgment.We are grateful to Gilad Braunschvig, Alon Brutzkus, Adam
Sealfon, Oren Weimann and the anonymous reviewers for helpful comments.

References

1. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Compact distributed data struc-
tures for adaptive network routing. In: STOC, pp. 230–240 (1989)



790 M. Parter and D. Peleg

2. Abraham, I., Chechik, S., Gavoille, C., Peleg, D.: Forbidden-Set Distance Labels
for Graphs of Bounded Doubling Dimension. In: PODC, pp. 192–200 (2010)

3. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in ex-
pected O(n2) time. ACM Trans. Algorithms 2(4), 557–577 (2006)

4. Bernstein, A., Karger, D.: A nearly optimal oracle for avoiding failed vertices and
edges. In: STOC, pp. 101–110 (2009)

5. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f -sensitivity distance oracles and
routing schemes. Algorithmica, 861–882 (2012)

6. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for gen-
eral graphs. In: STOC, pp. 435–444 (2009)

7. Chechik, S.: Fault-Tolerant Compact Routing Schemes for General Graphs. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756,
pp. 101–112. Springer, Heidelberg (2011)

8. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discrete & Computa-
tional Geometry 32 (2003)

9. Demetrescu, C., Thorup, M., Chowdhury, R., Ramachandran, V.: Oracles for dis-
tances avoiding a failed node or link. SIAM J. Computing 37, 1299–1318 (2008)

10. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In:
PODC, pp. 169–178 (2011)

11. Duan, R., Pettie, S.: Dual-failure distance and connectivity oracles. In: SODA (2009)
12. Feige, U.: A Threshold of ln n for Approximating Set Cover. J. ACM, 634–652 (1998)
13. Grandoni, F., Williams, V.V.: Improved Distance Sensitivity Oracles via Fast

Single-Source Replacement Paths. In: FOCS (2012)
14. Hershberger, J., Subhash, S.: Vickrey prices and shortest paths: What is an edge

worth? In: FOCS (2001)
15. Hershberger, J., Subhash, S., Bhosle, A.: On the difficulty of some shortest path

problems. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 343–354.
Springer, Heidelberg (2003)

16. Levcopoulos, C., Narasimhan, G., Smid, M.: Efficient algorithms for constructing
fault-tolerant geometric spanners. In: STOC, pp. 186–195 (1998)

17. Lukovszki, T.: New results on fault tolerant geometric spanners. In: Dehne, F.,
Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp.
193–204. Springer, Heidelberg (1999)

18. Parter, P., Peleg, D.: Sparse Fault-Tolerant BFS Trees (2013),
http://arxiv.org/abs/1302.5401

19. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
20. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)
21. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J.

Computing 18(2), 740–747 (1989)
22. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J.

ACM 36, 510–530 (1989)
23. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate dis-

tance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung,M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg
(2005)

24. Roditty, L., Zwick, U.: Replacement paths and k simple shortest paths in un-
weighted directed graphs. ACM Trans. Algorithms (2012)

25. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA, pp. 1–10 (2001)
26. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52, 1–24 (2005)
27. Vazirani, V.: Approximation Algorithms. Georgia Inst. Tech. (1997)
28. Weimann, O., Yuster, R.: Replacement paths via fast matrix multiplication. In:

FOCS (2010)


