
Witnesses for Boolean Matrix Multiplication and for Shortest Paths

Noga Alon' Zvi Galilt
Department of Mathematics Department of Computer Science

Tel Aviv University Tel Aviv University Columbia University
Tel Aviv, 69978 Tel Aviv, 69978 and New York, NY 10027

ISRAEL ISRAEL USA

Oded Margalit
Department of Computer Science

Tel Aviv University
Tel Aviv, 69978

ISRAEL

Abstract

The subcubic (O(nW) for w < 3) algorithms to mul-
tiply Boolean matrices do not provide the witnesses;
namely, they compute C = A. B but i f Cij = 1 they do
not find an index k (a witness) such that & = Bkj =
1. W e design a deterministic algorithm for compui-
ing the matrix of witnesses that runs in O(nW) time,
where here d(nw) denotes O(nW(logn)O(')).

The subcubic methods t o compute the shortest dis-
tances between all pairs of vertices also do not provide
for witnesses; namely they compute the shortest dis-
tances but do not generate information for computing
quickly the paths themselves. A witness for a short-
est path f iom vi to vj is an index k such that vk i s
the first vertex on such a path. (The last sentence is
not suficient as a definition of a witness matrix when
nonpositive edges are present, see Figure 3 in page 6
for details). We describe subcubic methods to com-
pute such witnesses for several versions of the all pairs
shortest paths problem. As a result, we derive shortest
paths algorithms that provide characterization of the
shortest paths in addition t o the shortest distances in
the same time (up t o a polylogarithmic factor) needed
for computing the distances; namely O(n(*")/2) time
in the directed case and d(nw) time in the undirected
case.

We also design an algorithm that computes wit-
nesses for the transitive closure in the same time
needed to compute witnesses for Boolean matrix mul-
tiplication.

Grant.
'Research supported in part by a United states Israel BSF

t Work partially supported by NSF Grant CCR-9014605.

Moni Naor

IBM Almaden Research Center
San Jose, CA 95120

USA

1 Introduction

Consider a Boolean matrix multiplication: C =
AB, Cij = V:=,(Ait A & j) . The n3 time method
that evaluates these expressions gives for every i, j for
which Cjj = 1 all the k's for which Ail: = Bkj = 1.
The subcubic methods on the other hand consider
A and B as matrices of integers and do not provide
any of these k's. We call a k such that Aik = Bkj = 1
a witness (for the fact that Cjj = 1). We want to
compute in addition to the matrix C a matrix of wit-
nesses. When there is more than one witness for a
given i and j we are satisfied with one such witness.

We use O(nw) to denote the running time of some
subcubic algorithm for Boolean matrix multiplication.
All our algorithms can be derived from any such al-
gorithm yielding a corresponding time bound as a
function of w. The best asymptotic bound known at
present is the one with the exponent w < 2.376 and is
due to Coppersmith and Winograd [3].

For two functions f(n) and g(n) we let the nota-
tion g(n) = d(f(n)) denote the statement that g(n)
is O(f (n) (log n)O@ 1).

Several researchers, including Seidel [6], Karger
(personal communication) and the first three authors,
discovered a simple randomized algorithm that com-
putes witnesses in d(nw) time. In Section 2 we de-
scribe a deterministic algorithm for computing the
witnesses in d(nw) time. It is essentially a derandom-
ization of a modified version of the simple randomized
algorithm, and relies heavily on the known construc-
tions of small sample spaces with almost independent
random variables. We also outline an alternative ap-
proach that gives slightly worse running time but may

417
0-8186-2900-2192 $3.00 8 1992 IEBE

still be useful for matrices of moderate size.
Our motivation for studying the computation of

witnesses for Boolean matrix multiplication is related
to our work on the all pair shortest paths prob-
lem. We use the following notation. D = {d i j }G=I

is the matrix of edge lengths, djj = +oo in case
there is no edge from vi to V j . In the positive case
dij E {1 ,2 , . . . , M, +OO) and in the unrestricted case
di, E { O , f l , f 2 ,..., fM,+oo). D' = {d: j) is the
matrix of shortest distances.

In an earlier paper [2] the first three authors de-
signed subcubic algorithms for computing all pair
shortest distances of directed graphs with integer edge
lengths whose absolute value is bounded by M. We de-
note the problem and its time bound by APSD(n, M),
where n is the number of vertices in the graph. We
showed that A P S D (n , M) = O((Mn)Y), where v =
(3 + w)/2. For w < 2.376, we have v < 2.688.
In a more recent work [4] the second and third au-
thors have improved the dependence on M and ob-
tained better bounds for undirected graphs, in which
case APSD(n, M) = O(M("+1)/2nW log n). A simple
O(nw logn) algorithm for undirected APSD(n, 1) was
discovered independently by Seidel[6], but it does not
seem to be extendable to larger edge lengths. All these
algorithms do not provide any subcubic deterministic
way for finding the shortest paths themselves, only the
shortest distances.

One cannot have a subcubic algorithm for explic-
itly outputing the shortest paths between all pairs of
vertices simply because in the example depicted in Fig-
ure 1 there are more than n3/27 edges in all shortest
paths. In fact, this holds for an exponential number
of input graphs. (Replace each cycle in Figure 1 by an
arbitrary connected graph of n / 3 vertices.)

Figure 1: All shortest paths can yield a cubic output

One may use the following definition to obtain a
more concise representation of all shortest paths: A
witness f o r a shortest path from vi to v j is an index k
such that V k is the first vertex on such a path. This
definition is certainly sufficient in case of positive edge

418

lengths. A shortest path can be easily constructed
from these witnesses.

This definition is insufficient in case of nonpositive
cycles. If d t = -CO we want to be able to construct
from the witnesses a simple path from vi to v, together
with a vertex v k on the path and a negative cycle
containing vk (i , j and k need not be distinct). This
leads to the need to define witnesses for paths, not
necessarily shortest paths.

Consider the transitive closure of a directed graph.
One could try to define a witness for a path identically
to the definition of a witness for a shortest path: A
witness for a path from vi to vj is an index k such
that v k is the first vertex on such a path. Any method
for computing witnesses for Boolean matrix multipli-
cation can be immediately used for computing these
"witnesses": compute witnesses for A . T, where A is
the incidence matrix and T the transitive closure. Un-
fortunately this definition is inappropriate as can be
seen in Figure 2: v k is a possible witness for the path
from vi to v i , but it is a bad choice which leads to a
cycle.

Figure 2: A naive first step is not enough for transitive
closure

We require a matrix of witnesses f o r the transitive
closure to satisfy the following condition: If a path
from vi to v j exists then such a path can be con-
structed by following the witnesses. Namely, there is
a path vi = vi,,, ..,vi), = v j and for 1 5 r 5 k, i, is the
witness for the path from vir- l to v j . In Section 3 we
give an an 6 (n W) algorithm that computes witnesses
for the transitive closure .

Coming back to the shortest paths problem we
would like to compute in addition to the matrix D' of
shortest distances also

1. Witnesses for shortest paths.

2. A simple negative cycle for each i such that qi =
-cQ.

Consequently, shortest paths of finite length can
be easily obtained from 1. On the other hand, a
shortest path of length -CO can be represented as a

(possibly empty) path from 1 together with a nega-
tive cycle (from 2). We denote the problem of gen-
erating these witnesses for the APSD(n, M) problem
by APSP(n, M) (All Pairs Shortest Paths).

In Section 4 we first give an algorithm for com-
puting witnesses for shortest paths when edge lengths
are positive, then when edge lengths are nonnegative.
Finally we give an algorithm that generates the char-
acterization of stortest paths in the general case. Its
running time is o(d3+")I2).

Summarizing, we get the following bounds for
APSP(n, l) : 0(n(3+w)/2) in the directed case and
6 (n W) in the undirected case. Recall that the time
bounds for APSD(n , l) are 0(71(~+")/~) in the di-
rected case and O(nWlogn) in the undirected case.
Indeed, some of the Boolean matrix multiplications
are now augmented to compute also witnesses, which
explains our motivation to study the latter. (We be-
lieve that witnesses for Boolean matrix multiplication
will be found useful elsewhere as well.) The fact that
the bounds for APSP are obtained from the bounds
for APSD by adding polylogarithmic factors is not im-
mediate. This would be a simple consequence of our
algorithm for matrix multiplication with witnesses if
the algorithms just added witnesses to each Boolean
matrix multiplication. However, this reason is not the
only one needed to explain this coincidence. More de-
tails are given in Section 4.

2 Boolean matrix multiplication with
witnesses

All the matrices in this section are n by n matri-
ces, unless otherwise specified. If A4 is such a matrix,
we let Mij denote the entry in its ith row and j t h
column. Let A and B be two matrices with (0 , l)
entries, and let C be their product over the integers.
Our objective is to find witnesses for all the positive
entries of C, i.e., for each entry Cij > 0 of C we
wish to find a k such that Aik = Bkj = 1. This is
clearly equivalent to the problem of finding witnesses
for the Boolean matrix multiplication A B . As ob-
served by several researchers (including Seidel, Karger
and the first three authors) there is a simple random-
ized algorithm that solves this problem in expected
running time O(nW). Here we consider determinis-
tic algorithms for the problem. Our best algorithm,
described in the next subsection, is, in a sense, a de-
randomized version of the simple randomized solution,
and its running time is O(nw). The derandomization
requires several modifications in the straightforward

randomized algorithm together with an interesting ap-
plication of the known constructions of [5] (or [l]) of
almost c-wise independent random variables in small
sample spaces.

2.1 The algorithm

The first simple observation is the fact that if E
and F are two matrices with (0 , l) entries and G =
EF then one multiplication of matrices with entries at
most n suffices for finding witnesses for all the entries
of G which are precisely 1. Indeed, simply replace
every 1-entry in the kth row of F by k (for all 1 5
k 5 n) to get a matrix F' and compute G' = EFt .
Now observe that if Gjj = 1 and Gij = k then k is a
witness for Gij.

Define c = [loglogn + 91 and Q = 8. For two
matrices E and F with (0 , l) entries define G = E A F

Here is an outline of the algorithm. Besides A,B
and C = AB it uses twoadditionalmatrices: R and D.
The way to perform steps 3c and 3d will be described
later.

by Gij = Eij A Fij.

e While not all witnesses are known

1. Let L denote the set of all positive entries of
C for which there are no known witnesses.

2. Let R be the all 1 matrix.
3. Perform the following 11 + 3 log,/, n1 times:

(a) D +- A (B A R) (The matrix multipli-

(b) Let L' denote the set of all entries of D

(c) Find witnesses for all entries in L'.
(d) R t good matrix (see definition of good

cation is over the integers)

in L which are a t most c.

below).

A matrix R is good (in step 3d above) if the following
two conditions hold:

a) The total sum of the entries of I) = A . (B A R)
in L is a t most 3/4 of what this sum was while
using the previous matrix R. (Observe that this
guarantees that after 1 + 3 lo&/, n iterations all
these entries of D will vanish.)

b) The fraction of entries of D in L that go from a
value bigger than c to 0 is a t most a.

Lemma 1 If R +- R A S in step 3d where S is a
random 0 , l matrix, then the new R is good with prob-
ability ut least 1/6.

419

The lemma follows from the following three claims:

Claim 1 The probability that the sum of entries of D
in L goes down b y at least a factor of 3/4 is at least
1/3.

To see this, observe that the expected sum of entries
of D in L goes down by 1/2. Thus, the claim follows
from Markov’s Inequality. 0

Claim 2 The probability that a fized entry of D which
is at least c drops down to 0 as at most 1/2c.

This is obvious. Observe that the claim holds even
if we only assume that every c entries of S are inde
pendent. 0

Claim 3 The probability that more than a fiaction a
of the entries of D in L drop from at least c t o 0 is at
most 84 = i.

This follows from Claim 2 by Markov’s Inequality.
Since 1/3 - 1/8 > 1/6 the lemma follows. 0

Define 6 = &. The crucial point is to observe
that the proof of the above lemma still holds, with
almost no change, if the matrix S is not totally random
but its entries are chosen from a c-wise c-dependent
distribution in the sense of [5], [I]. Recall that if m
random variables whose range is (0 , l) are c-wise 6-
dependent then every subset of i 5 c of them attains
each of the possible 2’ configurations of 0 and 1 with
probability that deviates from 1/2’ by a t most 6.

Lemma 2 If R c R AS in step 9d where the entries
of S are chosen as n2 random variables that are c-wise
c-dependent, then the new R is good with probability
at least 1/12 - 26.

We note that in fact it is sufficient to choose only
one column and copy it n times. The proof is by the
following modified three claims, whose proof is analo-
gous to that of the corresponding previous ones.

Claim 4 The probability that the sum of entries of D
in L goes down by at least a factor of 3/4 is at least
1/3- 2 ~ . 0

Claim 5 The probability that a fixed entry of D which
as at least c drops down to 0 is ai most 1/2c + 6. 0

Claim 6 The probability that more than a fraction a
of the entries of D in L drop f .om at least c to 0 is at
most (& + e) $ < &$ = 1/4. 0

The lemma follows from the above three claims. 0

ability spaces with n2
c-wise €-dependent, whose size is

As shown in [5] and in [l] there are explicit prob-
random variables which are

(l o g n - c o t) 2+0(1) ,

which is less than, e.g., O((10gn)~). Moreover, these
spaces can be easily constructed in time negligible with
respect to the total running time of our algorithm.
Now suppose that in step 3d all the matrices S de-
fined by such a probability space are searched, until a
good one is found. Checking whether a matrix is good
requires only matrix multiplication plus O(n2) oper-
ations. Therefore the inner loop (starting at step 3)
takes polylog n times matrix multiplication time. It is
important to note that during the performance of step
3d, while considering all possible matrices S provided
by our distribution, we can accomplish step 3c as well.
This is true since c-wise €-dependence guarantees that
every entry in L’ will drop to precisely 1 for some of
the matrices S and hence, by the observation in the
beginning of this subsection, if we replace each matrix
multiplication in the search for a good S by two ma-
trix multiplications as described in that observation,
we complete steps 3c and 3d together.

In every iteration of the inner loop 3 a t most a
fraction of the entries of L are “thrown” (i.e. their
witness will not be found in this iteration of the outer
loop). Therefore a t least (1 - a)1+310g4/3n fraction
of the entries of D in L will not be thrown during
the completion of these iterations. For those entries,
which are at least 1/2 of the entries in L, a witness
is found. Therefore, only O(1ogn) iterations of the
outer loop are required, implying the desired O(nw)
total running time.

We have thus proved the following:

Theorem 1 The witnesses for the Boolean multipli-
cation o f j w o n b y n matrices can be found in deter-
ministic O(nw) time.

2.2 An alternative approach

The witnesses for Boolean matrix multiplication
can be computed in a different manner. Although
the running time obtained is slightly worse’ than that
of our previous algorithm, it may give better perfor-
mance for matrices of moderate size.

Here is a rough outline of the approach: We design
a sequence of algorithms, the first algorithm ALGo,

420

is the naive cubic way: test all the n possible wit-
nesses for every positive entry C;j. The next a lge
rithm ALGl, is the following: Consider each of the
two matrices A and B as an L x L block matrix where
each block is of size n/L x n/L. Multiply the two block
matrices using the trivial L3 time algorithm, and us-
ing fast matrix multiplication for any multiplication of
two blocks. Now we know for each positive entry Cjj,
a product of a block of A and a block of B which con-
tains a witness. Use ALGo for finding witnesses inside
that block. The running time is

0 (L3 (;)w + L2 (;)3) .

An appropriate choice of L gives an O (n e) time
algorithm

The sequence starting with these two algorithms
can be extended, where each algorithm uses the
previous one and the time complexity converges to
O(n”+o(’og-”s(“))). This requires several additional
ideas including a generalization of the problem to that
of finding witnesses for a prescribed subset of entries of
the product of two rectangular matrices, given certain
information on the location of these witnesses. The
details are complicated and since the running time is
inferior to that of our previous algorithm we do not in-
clude them. For any given problem, one can apply any
of the algorithms from the sequence above. It seems
that for certain possible sizes, one of the algorithms
ALG, for some small integer s may actually be faster
than the algorithm in the previous subsection.

3 Computing witnesses for the transi-
tive closure

In the introduction we explained why the immedi-
ate solution that computes witnesses for A - T does not
work. Another simple solution is to add lengths to the
edges and compute witnesses for shortest paths. How-
ever, the best time for computing only the distances
in the directed case (even without the witnesses for
the paths) is O(n(w+3)/2).

The only reason that the immediate solution does
not work are the cycles. So we first find the strongly
connected components of G, then we contract them
into new vertices. Now we can use the immediate al-
gorithm to solve the new problem. Lastly, we “open”
the contracted vertices and transform the solution to
a solution for the original problem. More formally:

Algorithm

1. Compute the strongly connected components of
the input graph G = (V,E), where V = { V I , -

..., v ” } . Denote by V‘ = vi,^;,.. . , v k } the
set of strongly connected components of G, where
vi = { q l , vj2,. . . , v i r , } . We build the contracted
graph G’ = (V’, E’), where E’ = { (v i , v;) :
3(vjo, v iy) E E}. Each edge (v i , 3) E E’ is ar-
bitrarily associated with one edge (v iz , vjy) E E.
This can be done in O(n2) time.

2. Solve the transitive closure problem of the graph
G’, denote the solution by T’. Compute witnesses
for the Boolean matrix multiplication T’ . A‘ by
W’. This step can be done in 6 (n W) time.

3. For each strongly connected component we find
witnesses for the transitive closure (which is a
clique). Denote the witnesses matrix for that
problem by W ; this matrix is defined only for
pairs which are in the same strongly connected
component. This can be done in O(n2) time, as
described in Algorithm 3.1.

4. Expand the solution of the contracted problem
into a solution for the whole problem. This can be
done in O(n2) time as described in Algorithm 3.2.

Theorem 2 The algorithm above computes the ma-
trix of wiinesses in time b (n w) .

3.1 Computing witnesses for a strongly
connected graph

The algorithm has two stages. In the first, we per-
form breadth first search (BFS) from one of the ver-
tices WO. In the process we generate a BFS tree T.
For each edge (U , U) E T and every descendant w of v
we set W (u , w) + v . In the second stage, we use
the reverse edges and perform another BFS from w.
We process a vertex when it is first visited. Assume
we enter first U using edge (u , v) . We then consider
all w E V and if W (U , w) is undefined we set it to v .

Obviously, each stage takes O(n2) time. Correct-
ness follows by induction. The induction hypothesis
states that for every processed vertex U , and every w ,
starting with U and following W we obtain a simple
path from U to w. The base is true because the first
stage essentially processes Q. For the induction step,
assume we process U . If W (u , w) = z is defined, it
was defined in the first stage and (U , z) is in the BFS
tree of the first stage and following W we follow a
path on the tree from U to w. If it is undefined, we

42 1

set W (u , w) + U, where v was processed before. The
claim now follows from the induction hypothesis.

3.2 Joining solutions

Examine the solution for G‘. Suppose that W’(i, j)-
= k ; by the definition of a witness, there exists an edge
(v i , v i) . Let (viz, vky) be the edge ofG associated with
it.

The time complexity of this algorithm is O(n2).

4 Finding paths

In this section we solve the APSP(n, 1) problem.
Solving the A P S P (n , M) problem is similar, since
the treatment of ‘large’ edges is the same as in the
APSD problem. We first show what cannot be done.
Then we solve the positive case (subsection 4.1). We
solve the nonnegative case in subsection 4.2. The solu-
tion for the unrestricted case is complicated, and due
to space limitations we omit most of the proofs for this
case in subsection 4.4. In subsection 4.3 we consider
the simpler special case of undirected graphs.

As explained in the introduction, one way to avoid
the cubic bottleneck is to compute witnesses. For each
pair (i , j) we compute an index k of a first vertex on
a shortest path from vi to V j . This certainly works in
the positive case.

4.1 Positive A P S P

Consider the algorithm for the positive A P S D (n , 1)
problem [2]. It uses Boolean matrix multiplications to
compute short distances. Computing Boolean matrix
multiplication with witnesses gives witnesses for these
shortest paths.

For computing large distances, we use the separa-
tor trick: We consider in turn each vertex as a source
and the layered graph obtained by single source short-
est paths. We take a block of consecutive layers,
choose the smallest one and use it as a separator.
Each path that goes beyond the separator must go
through the separator. Hence we minimize over the
choice of the vertex on the separator. This part is per-
formed naively and provides witnesses: If a shortest
path from V i to v j goes through V k , where v k belongs
to the separator, then the i , j witness can be taken to
be the i , k witness that has already been computed.

Conszquently, to obtain the time bound we can sub-
stitute O(nw) (the time for witnessed Boolean matrix
multiplication) for O(nW) in the bound for the positive
APSD(n, 1):

Theorem 3 The positive APSP(n, 1) problem can be
solved in 6(n(3+W)/2) time.

4.2 Nonnegative A P S P

Consider the nonnegative APSD(n, 1) problem.
One way to solve it is to eliminate the zero length
edges first. We first compute 2, the transitive clo-
sure of the zero edges. It gives us all zero (shortest)
distances. Let D’ be obtained from D by replacing
the +oo entries by zero. Compute the Boolean ma-
trix multiplication E gf (2 + I)D’(Z + I) . An edge
in E corresponds to a path of length 1. Solve the
APSP problem for E to obtain all shortest nonzero
distances.

A first attempt to obtain witnesses for shortest
paths is simply to combine three sets of witnesses: the
ones obtained from the solution of the positive A P S P ,
the witnesses implied by the definition of E (two per
entry) and the witnesses of the transitive closure 2.
This approach does not give witnesses for the shortest
paths as the following example shows.

Figure 3: An example of failure of the naive solution

Consider Figure 3. E contains a direct edge of
length 1 from a to t and from b to x. Suppose that
the witness which was chosen in the (2 + I)D’(Z + I)
multiplication for the a -+ t pair is bl and for the
b -+ x pair is a l . Simply combining the three sets of
witnesses would lead us to the infinite path a , b , a , b , . . .
for the pair a + x.

The difficulty above is caused by zero length cy-
cles in G. But we overcome it as in Section 3. We find
the strongly connected components of 2, compute wit-
nesses for them and contract them in G, forming the
contracted graph G‘. We avoid multiple edges by al-
ways choosing a minimum length edge. We next find
the witnesses for shortest paths in G by the method

422

described above. (In G' there are no zero length cy-
cles.) Finally, we combine the two sets of witnesses as
in Section 3 to obtain the witnesses for shortest paths
of G. The full details are omitted.

Theorem 4 The nonnegative APSP(n, 1) problem
can be solved in 6 (n (3+w) /2) time.

4.3 Undirected APSP

In the undirected case, zero edges or negative edges
pose no problem and can be eliminated easily. The
special algorithm for the undirected APSP uses essen-
tially only Boolean matrix multiplications, which can
easily be replaced by ones with witnesses. A random-
ized algorithm that solves the_ undirected APSP(n, 1)
problem in (expected) time O(nW) has been found by
Seidel as well as by ourselves. Our result in Section
2 enable us to obtain a deterministic algorithm with
the same running time.

Theorem 5 The undirected APSP(n, 1) problem can
be solved in 6(nW) time.

4.4 The general case

We consider the case of dij E (0, fl}. We first solve
the corresponding APSD problem, so we know D.
We reduce the unrestricted problem step by step: In
Subsubsection 4.4.1 we show how to eliminate the
-00 distances. In Subsubsection 4.4.2 we show how
to eliminate the zero cycles. In Subsubsection 4.4.3
we solve the reduced problem where all the cycles are
positive.

4.4.1 Removing the negative cycles

To handle the -00 distances, we start with the nega-
tive cycles. A negative component is a maximal set of
vertices C such that if vi, vj E C then d t = dii = -00.

The output for the unrestricted APSP problem con-
sists of the following parts:

1. D" a matrix of distances which matches D' in
all its entries which are not -00.

2. A matrix of witnesses W : for every 1 5 i, j 5 n
starting from vi and using W one obtains a simple
path nij from vi to U, if one exists. Otherwise Wij
is undefined. In case qj is finite xij is a shortest
path and in case 4, = -00, nij passes through a
negative component. Its length, in any case is d$.

3. An array Neg representing a subgraph G' of G
of outdegree 5 1. G' contains a simple negative
cycle uc for every negative component C and a
simple path from every vertex in C to uc.

Obviously the witnesses generate all finite length
shortest paths. In case of 4, = -00 this output can
be used to generate a path from vi to vj of length
under any specified bound: Given a bound L on the
length of the path, start generating the path and up-
date the bound. If, after reaching v k , DE; is less than
the bound L, or if the N e g pointer is not defined,
then follow the witnesses matrix W . Otherwise follow
the Neg pointer. In any case update the bound by
subtracting the len,gth of the current edge (9 + U k l) .

The matrix D' can be computed from the wit-
nesses matrix W using the algorithm in Figure 4.

Set Q? c { 00 i f j ,
0 . otherwise

For all pairs i, such that d:, < 00 do Upd(i, j)

Figure 4: Algorithm for computing D"

Lemma 3 The algorithm in Figure 4 computes D"
in O(n2) time.

The computation of the array N e g is the most com-
plicated. The reason for that is that we can not make
any use of the distance matrix inside a negative com-
ponent; all distances are -00. Let P (n , m) be the
problem of testing whether a graph with-n vertices
and m edges has a negative cycle and let P(n, m) be
the problem of constructing a negative cycle given the
matrix D' of shortest distances (and thus knowing
that one exists).

Lemma 4 The time complexity of P , T (n , m) satis-
fies T (n , m) 5 ?(2n, m + 3n - 2) + O(n), where f is
the time complezity of P^.

Thejroof const:ucs for an input G to P a new
graph G input to P with only constant factor more
vertices and edges. Thus any subcubic algorithm will
be transformed into a subcubic algorithm. (Actually
the complexity in terms of number of vertices and
number of edges is preserved.) Therefore, since we
believe that the problem of finding whether a contains

423

a negative cycle or not is a difficult one (no subcubic
algorithm was known before), we get that the problem
of explicitly finding. even a single negative cycle given
all the shortest distances is a difficult problem. We
solve it below.

The subcubic algorithm for the unrestricted APSP
is a modification of the unrestricted APSD of [2]. The
latter is a recursive algorithm that uses Boolean ma-
trix multiplications, transitive closure computations
and the separator trick. Some recursive calls construct
a new graph and then operate cn it. We now show how
to compute the array N e g in O(nw) time.

First we run the APSD algorithm and replace the
Boolean matrix multiplications by witnessed multipli-
cations. The resulting recursive structure has loga-
rithmic depth and each layer contains at most n edges.
More precisely, we have log(n) types of edges, the zero
type is an edge which appears in the input graph, and
every type t edge V i A V j is a path d. = {vk,}r=-,
such that ko = i , k , = j , m 5 n and its length dij
satisfies

'?

m- 1

d i j L dki;,+,* (1)
t = O

Call the process of replacing a type t edge with a
type t - 1 path a refinement of that edge.

Consider i with d& = -00. The APSD algo-
rithm finds it by dicovering the existence of a triangle
(V i) V k l , V k 2) V i) such that G k l) d i a i 5 0, dglka < 0 for
some t 5 logn (the recursion depth). It discovers the
triangle by two Boolean matrix multiplications and
computing them with witnesses yields also kl and k2.
We start with such a triangle and maintain a char-
acterization of the path from vi to V i . We keep a
linked list which specifies the refinement degree for
every edge.

Repeat t times refining all the edges to edges which
are one type smaller. The problem with this process
is that we can end up with a path of SZ(n'O~")) edges.
To avoid this, in every refinement we keep the number
of vertices to be no more than n by making sure that
no vertex will appear more than once in the current
path. To do this we also keep for every vertex Vk on
the linked list a bound dist (k) on the distance from v i

to V k along the path which is being built and a unique
index num(k) which enables us to determine which
vertex comes first on the path.

The refinement step is simple: we use the wit-
nesses from the witnessed APSD algorithm to convert
a type t edge into a path of type t - 1. Note that we
always use type t - 1 edges, it can be that some of
these edges have lower type, say f < t - 1; e.g. in
the triangles mentioned above. In this case we regard

424

them as a type t - 1 edge which consists of a path of
one edge of type t - 2 etc. We maintain the linked list
and update the functions dist and num. If while re-
fining some edge v i -+ v j of type t , we get a vertex Vk

which already was on that path, thus forming a cycle,
there are two cases:

Negative cycle: We change our target: set i + k and
start with the cycle between k and k which we
currently have. We release the subpaths from v i

to the first occurrence of vk and from the second
occurrence of Vk to v i (mark them as not in the
current path).

Nonnegative cycle: We bypass the section between
the two copies of vk: define the successor of Vk

in the list as the successor of the copy which is
further in the path, and release the cycle.

It is easy to verify that while performing this al-
gorithm we maintain a negative cycle which is refined
all the time, but never has more than n vertices. So
finally we will have a type zero negative cycle.

Theorem 6 The algorithm sketched above finds a
negative cycle in O(n2 logn) time.

After one negative cycle is build: vio , v i , , . . . , v i m - , ,

we fix N e g to follow it: N e g (i t) + ir+l (mod m) . To
define N e g on the other vertices of the negative com-
ponent C, remove all outgoing edges from the cycle
(all edges U -+ w where U is in the,cycle and w not).
After the change there is still a path from every vertex
of C to the cycle. Then run a BFS on the reverse edges
from vio. Set Neg(v, ,) = vq if you reach up from vq in
the BFS. Clearly, Neg will not change on the cycle,
and following it will lead from any vertex in C to v i o .

The time complexity of the algorithm is O(n2) per
refining step (we refine no more than n edges of
type t , each one of them into O(n) edges of type t - 1
and each takes 0(1) time), therefore the total time
is O(nZlogn). We may run this algorithm several
times, once for each strongly connected component
with ni vertices. The complexity will be Ci n: log ni,
where ci ni = n. From the convexity of n2 logn we
get that the time complexity is O(n2 log n).

Now, that we have the array N e g , we remove all
the --6o distances. The reduction is as follows:

1. Identify the negative components and find the
N e g pointers for each one of them. All these
pointers fit into a single array N e g .

2. Solve the witnessed transitive closure problem for
each one of the negative components. Denote the
witness matrix by T.

3. Construct a new graph G by contracting the neg-
ative components. I! case of multiple edges we
keep only one. In G we give edge length zero
to original edges and -1 to edges incident with
new vertices. Note that G does not have negative
cycles. In 4 we compute witnesses for shortest
paths (as explained in the next ybsubsections).
Denote the witnesses matrix by W .

4. Join the last two matrices into W 89 follows: For
every pair of vertices i and j , let i and j be the
contracted negative components which contains
i and j if such components txists, or the original
vertices otherwise. Let k = W;; and let i' + k.' be
the edge in the original graph which was chosen
to represent the contracted edge i + k. Set

A , .

Tij i = j ,
k'
Tiit i # it.

;# j and i = i'

This completes the computation of witnesses for the
-ca distances. At this point we can delete all edges
which are adjacent to any vertex in a negative compo-
nent, resulting in a graph G with-no negative cycles.
We so l2 the APSP problem for G and merge the SG
lution W with that of the -CO distances W - by taking

Fjj Zjj finite
W c otherwise.

wij =

It is easy to verify that defining the witness matrix W
in this way, we can follow it and get the finite distances
as W gives them, and get for the -CO distances a
simple finite path which passes though at least one
negative component.

It remains to show how to compute witnesses for
graphs with no negative cycles. Because of the pres-
ence of negative length edges we cannot use the simple
algorithm that contracts the zero length cycles of Sub-
section 4.2.

4.4.2 Removing the zero cycles

We define viRv, if and only if dTj +di i = 0 and refer to
the equivalence classes of R as zero components. We
then compute witnesses as follows.

1. Find witnesses inside zero components.

2. Replace each zero component with a new struc-
ture called a U-structure, so that the resulting
graph has no non-trivial zero components and
compute witnesses for the resulting graph.

3. Combine the two sets of witnesses.

To find witnesses inside a zero component we define
a subgraph GI with edges (vi, v j) such that vi and v j

are in the same zero component and dij = d t . Thus
each edge in GI is a shortest path, furthermore

Lemma 5 Each path in GI is a shortest path in G.

Given a component with m vertices, its correspond-
ing U-structure has a set of vertices containing two
vertices 4 and v r for each original vertex vi and the
edges are:

1. An edge from v: to vi of length -1 for every
vi and vj such that dzj = -1.

2 . An edge from U:' to v r of length +1 for every
vi and vj such that dij = +l.

3. Zero length edges from vi to v(i and from v? to vy
for every pair of vertices vi and v j such that 4, =
0 and i < j .

4. For every k, a zero length edge from ~ h ~ ~ (~)
to ~ k ~ ~ (~) where "(k) ef max{t : dik = 0)

and min(k) %f min{l : dik = 0). Note that we
may count the same edge several times (there are
no multiple edges).

The U-structure replaces the corresponding compo-
nent by replacing any edge from vi of some component
to wj of another component by an edge from to w j .
An example is shown in Figure 5 . In this example, all
down going edges in the U-structure have length -1,
all up going edges have length +1 and all horizontal
edges have length 0. The thick edges are the edges
from vLax(k) to Vkin(k).

Lemma 6 Lei G be a graph with no negative cycles.
The graph Gz obtained from G by replacing each zero
component by a U structure satisfies the following
properties

1. Its edge lengths are in { - l , O , l},

2. it contains no zero length cycles,

9. it has twice the number of vertices as G and

4. it contains the shortest distances structure of G.

Every shortest path in G2 can be translated into
a shortest path in G by replacing the edges in the U-
structures by paths in G (which exists from Lemma 6).
Thus, we have reduced the unrestricted case to the
case in which all cycles have positive lengths.

425

V" side V' side I

A component The corresponding U-structure

Figure 5: An example of a Ustructure

4.4.3 Positive cycles only

Here, we find witnesses by unwinding the recursive
APSD algorithm taking always the first edge.

Lemma 7 Given a graph G with no directed nonpos-
itive cycles, we can solve the APSP problem by re-
placing all the Boolean matrix multiplications in the
APSD algorithm by witnessed Boolean matrix multi-
plications.

Theorem 7 The unrestricted APSP(n, 1) problem
can be solved in 6(n(3+w)/2) t ime.

Proof. Subsubsection 4.4.1 reduced the general
problem into one without negative cycles. Subsub-
section 4.4.2 reduced the problem even further to the
case where there is no nonpositive length cycle. In this
subsubsection we solved this case. 0

5 Open Problems

Of course one would like to improve the time
bounds for computing various types of witnesses. In
particular, can we compute the witnesses for Boolean
matrix multiplication in time O(nw)? Alternatively,
one would like to improve the best algorithms for
APSD(n, M) and APSP(n, M), for directed graphs
and for undirected graphs, for the nonnegative case
and for the unrestricted case, by improving the expe
nent (in the undirected case this is not possible with-
out improving Boolean matrix multiplication) or by
improving the dependence on M.

We are also looking for other problems for which
one may need the witnesses in addition to Boolean
matrix multiplication or to transitive closure. It seems

very plausible that these will find additional applica-
tions in the future.

Given the shortest distances, how hard is it to com-
pute witnesses for the shortest paths? Possibly, this
can be solved in O(n2) time, but all our algorithms
need additional matrix multiplications.

References

[l] N. Alon, 0. Goldreich, J. Hastad and R. Peralta,
Simple constructions of almost k-wise indepen-
dent random variables, Proc. 31a' IEEE FOCS,
St. Louis, Missouri, IEEE (1990), pp. 544-553.

[2] N. Alon, Z. Galil and 0. Margalit, On the expo-
nent of the All Pairs Shortest Path problem, Proc.
32th IEEE FOCS, IEEE (1991), pp. 569-575.

[3] D. Coppersmith and S. Winograd, Matrix multi-
plication via arithmetic progressions, Journal of
Symbolic Computation 9(1990), pp. 251-280.

[4] Z. Galil and 0. Margalit, A faster algorithm for
the all pairs shortest path problem f o r undirected
graphs, August 1991.

[5] J. Naor and M. Naor, Small-baas probability
spaces: eficient constructions and applications,
Proc. 22"d annual ACM STOC, ACM Press
(1990), pp. 213-223.

[6] R. Seidel, On the All-Pairs-Shortest-Path Prob-
lem, Proc. 24th ACM STOC, ACM Press (1992),
pp. 745-749.

426

