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Abstract 

The subcubic (O(nW) for w < 3) algorithms to mul- 
tiply Boolean matrices do not provide the witnesses; 
namely, they compute C = A.  B but i f  Cij = 1 they do 
not find an index k (a  witness) such that & = Bkj = 
1. W e  design a deterministic algorithm for compui- 
ing the matrix of witnesses that runs in O(nW) time, 
where here d(nw) denotes O(nW(logn)O(')). 

The subcubic methods t o  compute the shortest dis- 
tances between all pairs of vertices also do not provide 
for witnesses; namely they compute the shortest dis- 
tances but do not generate information for computing 
quickly the paths themselves. A witness for a short- 
est path f iom vi to  vj is  an index k such that vk i s  
the first vertex on such a path. (The last sentence is 
not suficient as a definition of a witness matrix when 
nonpositive edges are present, see Figure 3 in page 6 
for details). We describe subcubic methods to com- 
pute such witnesses for several versions of the all pairs 
shortest paths problem. As a result, we derive shortest 
paths algorithms that provide characterization of the 
shortest paths in  addition t o  the shortest distances in 
the same time (up t o  a polylogarithmic factor) needed 
for computing the distances; namely O(n(*")/2) time 
in  the directed case and d(nw) time in the undirected 
case. 

We also design an algorithm that computes wit- 
nesses for the transitive closure in  the same time 
needed to compute witnesses for Boolean matrix mul- 
tiplication. 
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1 Introduction 

Consider a Boolean matrix multiplication: C = 
AB, Cij = V:=,(Ait A & j ) .  The n3 time method 
that evaluates these expressions gives for every i, j for 
which Cjj = 1 all the k's for which Ail: = Bkj = 1. 
The subcubic methods on the other hand consider 
A and B as matrices of integers and do not provide 
any of these k's. We call a k such that Aik = Bkj = 1 
a witness (for the fact that Cjj = 1). We want to 
compute in addition to the matrix C a matrix of wit- 
nesses. When there is more than one witness for a 
given i and j we are satisfied with one such witness. 

We use O(nw) to denote the running time of some 
subcubic algorithm for Boolean matrix multiplication. 
All our algorithms can be derived from any such al- 
gorithm yielding a corresponding time bound as a 
function of w. The best asymptotic bound known at  
present is the one with the exponent w < 2.376 and is 
due to Coppersmith and Winograd [3]. 

For two functions f(n) and g(n) we let the nota- 
tion g(n) = d(f(n)) denote the statement that g(n) 
is O( f ( n) (log n)O@ 1). 

Several researchers, including Seidel [6], Karger 
(personal communication) and the first three authors, 
discovered a simple randomized algorithm that com- 
putes witnesses in d(nw) time. In Section 2 we de- 
scribe a deterministic algorithm for computing the 
witnesses in d(nw) time. It is essentially a derandom- 
ization of a modified version of the simple randomized 
algorithm, and relies heavily on the known construc- 
tions of small sample spaces with almost independent 
random variables. We also outline an alternative ap- 
proach that gives slightly worse running time but may 
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still be useful for matrices of moderate size. 
Our motivation for studying the computation of 

witnesses for Boolean matrix multiplication is related 
to our work on the all pair shortest paths prob- 
lem. We use the following notation. D = {d i j }G=I  

is the matrix of edge lengths, djj = +oo in case 
there is no edge from vi to V j .  In the positive case 
dij E {1 ,2 , .  . . , M, +OO) and in the unrestricted case 
di, E { O , f l , f 2  ,..., fM,+oo). D' = {d: j )  is the 
matrix of shortest distances. 

In an earlier paper [2] the first three authors de- 
signed subcubic algorithms for computing all pair 
shortest distances of directed graphs with integer edge 
lengths whose absolute value is bounded by M. We de- 
note the problem and its time bound by APSD(n,  M), 
where n is the number of vertices in the graph. We 
showed that A P S D ( n , M )  = O((Mn)Y), where v = 
(3 + w)/2. For w < 2.376, we have v < 2.688. 
In a more recent work [4] the second and third au- 
thors have improved the dependence on M and ob- 
tained better bounds for undirected graphs, in which 
case APSD(n, M) = O(M("+1)/2nW log n). A simple 
O(nw logn) algorithm for undirected APSD(n, 1) was 
discovered independently by Seidel[6], but it does not 
seem to be extendable to larger edge lengths. All these 
algorithms do not provide any subcubic deterministic 
way for finding the shortest paths themselves, only the 
shortest distances. 

One cannot have a subcubic algorithm for explic- 
itly outputing the shortest paths between all pairs of 
vertices simply because in the example depicted in Fig- 
ure 1 there are more than n3/27 edges in all shortest 
paths. In fact, this holds for an exponential number 
of input graphs. (Replace each cycle in Figure 1 by an 
arbitrary connected graph of n / 3  vertices.) 

Figure 1: All shortest paths can yield a cubic output 

One may use the following definition to obtain a 
more concise representation of all shortest paths: A 
witness f o r  a shortest path from vi  to v j  is an index k 
such that V k  is the first vertex on such a path. This 
definition is certainly sufficient in case of positive edge 
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lengths. A shortest path can be easily constructed 
from these witnesses. 

This definition is insufficient in case of nonpositive 
cycles. If d t  = -CO we want to  be able to construct 
from the witnesses a simple path from vi to v, together 
with a vertex v k  on the path and a negative cycle 
containing vk ( i , j  and k need not be distinct). This 
leads to the need to define witnesses for paths, not 
necessarily shortest paths. 

Consider the transitive closure of a directed graph. 
One could try to define a witness for a path identically 
to the definition of a witness for a shortest path: A 
witness for a path from vi to vj is an index k such 
that v k  is the first vertex on such a path. Any method 
for computing witnesses for Boolean matrix multipli- 
cation can be immediately used for computing these 
"witnesses": compute witnesses for A . T, where A is 
the incidence matrix and T the transitive closure. Un- 
fortunately this definition is inappropriate as can be 
seen in Figure 2: v k  is a possible witness for the path 
from vi  to v i ,  but it is a bad choice which leads to a 
cycle. 

Figure 2: A naive first step is not enough for transitive 
closure 

We require a matrix of witnesses f o r  the transitive 
closure to satisfy the following condition: If a path 
from vi to  v j  exists then such a path can be con- 
structed by following the witnesses. Namely, there is 
a path vi  = vi,,, ..,vi), = v j  and for 1 5 r 5 k, i, is the 
witness for the path from vir- l  to v j .  In Section 3 we 
give an an 6 ( n W )  algorithm that computes witnesses 
for the transitive closure . 

Coming back to the shortest paths problem we 
would like to compute in addition to the matrix D' of 
shortest distances also 

1. Witnesses for shortest paths. 

2. A simple negative cycle for each i such that qi = 
-cQ. 

Consequently, shortest paths of finite length can 
be easily obtained from 1. On the other hand, a 
shortest path of length -CO can be represented as a 



(possibly empty) path from 1 together with a nega- 
tive cycle (from 2). We denote the problem of gen- 
erating these witnesses for the APSD(n, M) problem 
by APSP(n, M) (All Pairs Shortest Paths). 

In Section 4 we first give an algorithm for com- 
puting witnesses for shortest paths when edge lengths 
are positive, then when edge lengths are nonnegative. 
Finally we give an algorithm that generates the char- 
acterization of stortest paths in the general case. Its 
running time is o(d3+")I2). 

Summarizing, we get the following bounds for 
APSP(n, l ) :  0(n(3+w)/2)  in the directed case and 
6 ( n W )  in the undirected case. Recall that the time 
bounds for APSD(n , l )  are 0(71(~+")/~) in the di- 
rected case and O(nWlogn) in the undirected case. 
Indeed, some of the Boolean matrix multiplications 
are now augmented to compute also witnesses, which 
explains our motivation to study the latter. (We be- 
lieve that witnesses for Boolean matrix multiplication 
will be found useful elsewhere as well.) The fact that 
the bounds for APSP are obtained from the bounds 
for APSD by adding polylogarithmic factors is not im- 
mediate. This would be a simple consequence of our 
algorithm for matrix multiplication with witnesses if 
the algorithms just added witnesses to each Boolean 
matrix multiplication. However, this reason is not the 
only one needed to explain this coincidence. More de- 
tails are given in Section 4. 

2 Boolean matrix multiplication with 
witnesses 

All the matrices in this section are n by n matri- 
ces, unless otherwise specified. If A4 is such a matrix, 
we let Mij denote the entry in its ith row and j t h  
column. Let A and B be two matrices with (0 , l )  
entries, and let C be their product over the integers. 
Our objective is to find witnesses for all the positive 
entries of C, i.e., for each entry Cij > 0 of C we 
wish to find a k such that Aik = Bkj = 1. This is 
clearly equivalent to the problem of finding witnesses 
for the Boolean matrix multiplication A B .  As ob- 
served by several researchers (including Seidel, Karger 
and the first three authors) there is a simple random- 
ized algorithm that solves this problem in expected 
running time O(nW). Here we consider determinis- 
tic algorithms for the problem. Our best algorithm, 
described in the next subsection, is, in a sense, a de- 
randomized version of the simple randomized solution, 
and its running time is O(nw). The derandomization 
requires several modifications in the straightforward 

randomized algorithm together with an interesting ap- 
plication of the known constructions of [5] (or [l]) of 
almost c-wise independent random variables in small 
sample spaces. 

2.1 The algorithm 

The first simple observation is the fact that if E 
and F are two matrices with ( 0 , l )  entries and G = 
EF then one multiplication of matrices with entries at 
most n suffices for finding witnesses for all the entries 
of G which are precisely 1. Indeed, simply replace 
every 1-entry in the kth row of F by k (for all 1 5 
k 5 n) to get a matrix F' and compute G' = EFt .  
Now observe that if Gjj = 1 and Gij = k then k is a 
witness for Gij. 

Define c = [loglogn + 91 and Q = 8. For two 
matrices E and F with ( 0 , l )  entries define G = E A  F 

Here is an outline of the algorithm. Besides A,B 
and C = AB it uses twoadditionalmatrices: R and D. 
The way to perform steps 3c and 3d will be described 
later. 

by Gij = Eij A Fij.  

e While not all witnesses are known 

1. Let L denote the set of all positive entries of 
C for which there are no known witnesses. 

2. Let R be the all 1 matrix. 
3. Perform the following 11 + 3 log,/, n1 times: 

(a) D +- A (B A R) (The matrix multipli- 

(b) Let L' denote the set of all entries of D 

(c) Find witnesses for all entries in L'. 
(d) R t good matrix (see definition of good 

cation is over the integers) 

in L which are a t  most c. 

below). 

A matrix R is good (in step 3d above) if the following 
two conditions hold: 

a) The total sum of the entries of I) = A .  ( B  A R) 
in L is a t  most 3/4 of what this sum was while 
using the previous matrix R. (Observe that this 
guarantees that after 1 + 3 lo&/, n iterations all 
these entries of D will vanish.) 

b) The fraction of entries of D in L that go from a 
value bigger than c to 0 is a t  most a. 

Lemma 1 If R +- R A S in step 3d where S is a 
random 0 , l  matrix, then the new R is good with prob- 
ability ut least 1/6. 
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The lemma follows from the following three claims: 

Claim 1 The probability that the sum of entries of D 
in L goes down b y  at least a factor of 3/4 is at least 
1/3. 

To see this, observe that the expected sum of entries 
of D in L goes down by 1/2. Thus, the claim follows 
from Markov’s Inequality. 0 

Claim 2 The probability that a fized entry of D which 
is at least c drops down to  0 as at most 1/2c. 

This is obvious. Observe that the claim holds even 
if we only assume that every c entries of S are inde  
pendent. 0 

Claim 3 The probability that more than a fiaction a 
of the entries of D in L drop from at least c t o  0 is at 
most 84 = i. 

This follows from Claim 2 by Markov’s Inequality. 
Since 1/3 - 1/8 > 1/6 the lemma follows. 0 

Define 6 = &. The crucial point is to observe 
that the proof of the above lemma still holds, with 
almost no change, if the matrix S is not totally random 
but its entries are chosen from a c-wise c-dependent 
distribution in the sense of [5], [I]. Recall that if m 
random variables whose range is (0 , l )  are c-wise 6- 
dependent then every subset of i 5 c of them attains 
each of the possible 2’ configurations of 0 and 1 with 
probability that deviates from 1/2’ by a t  most 6. 

Lemma 2 If R c R AS in step 9d where the entries 
of S are chosen as n2 random variables that are c-wise 
c-dependent, then the new R is good with probability 
at least 1/12 - 26. 

We note that in fact it is sufficient to choose only 
one column and copy it n times. The proof is by the 
following modified three claims, whose proof is analo- 
gous to that of the corresponding previous ones. 

Claim 4 The probability that the sum of entries of D 
in L goes down by at least a factor of 3/4 is at least 
1/3- 2 ~ .  0 

Claim 5 The probability that a fixed entry of D which 
as at least c drops down to  0 is ai most 1/2c + 6. 0 

Claim 6 The probability that more than a fraction a 
of the entries of D in L drop f .om at least c to 0 is at 
most ( & + e ) $  < &$ = 1/4. 0 

The lemma follows from the above three claims. 0 

ability spaces with n2 
c-wise €-dependent, whose size is 

As shown in [5] and in [l] there are explicit prob- 
random variables which are 

( l o g n - c o t )  2+0(1) , 

which is less than, e.g., O((10gn)~). Moreover, these 
spaces can be easily constructed in time negligible with 
respect to the total running time of our algorithm. 
Now suppose that in step 3d all the matrices S de- 
fined by such a probability space are searched, until a 
good one is found. Checking whether a matrix is good 
requires only matrix multiplication plus O(n2) oper- 
ations. Therefore the inner loop (starting at step 3) 
takes polylog n times matrix multiplication time. It is 
important to note that during the performance of step 
3d, while considering all possible matrices S provided 
by our distribution, we can accomplish step 3c as well. 
This is true since c-wise €-dependence guarantees that 
every entry in L’ will drop to precisely 1 for some of 
the matrices S and hence, by the observation in the 
beginning of this subsection, if we replace each matrix 
multiplication in the search for a good S by two ma- 
trix multiplications as described in that observation, 
we complete steps 3c and 3d together. 

In every iteration of the inner loop 3 a t  most a 
fraction of the entries of L are “thrown” (i.e. their 
witness will not be found in this iteration of the outer 
loop). Therefore a t  least (1 - a)1+310g4/3n fraction 
of the entries of D in L will not be thrown during 
the completion of these iterations. For those entries, 
which are at least 1/2 of the entries in L, a witness 
is found. Therefore, only O(1ogn) iterations of the 
outer loop are required, implying the desired O(nw) 
total running time. 

We have thus proved the following: 

Theorem 1 The witnesses for  the Boolean multipli- 
cation o f j w o  n b y  n matrices can be found in deter- 
ministic O(nw) time. 

2.2 An alternative approach 

The witnesses for Boolean matrix multiplication 
can be computed in a different manner. Although 
the running time obtained is slightly worse’ than that 
of our previous algorithm, it may give better perfor- 
mance for matrices of moderate size. 

Here is a rough outline of the approach: We design 
a sequence of algorithms, the first algorithm ALGo, 
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is the naive cubic way: test all the n possible wit- 
nesses for every positive entry C;j. The next a lge 
rithm ALGl, is the following: Consider each of the 
two matrices A and B as an L x L block matrix where 
each block is of size n/L  x n/L. Multiply the two block 
matrices using the trivial L3 time algorithm, and us- 
ing fast matrix multiplication for any multiplication of 
two blocks. Now we know for each positive entry Cjj, 
a product of a block of A and a block of B which con- 
tains a witness. Use ALGo for finding witnesses inside 
that block. The running time is 

0 (L3 ( ; )w + L2 ( ;)3) . 

An appropriate choice of L gives an O ( n e )  time 
algorithm 

The sequence starting with these two algorithms 
can be extended, where each algorithm uses the 
previous one and the time complexity converges to 
O(n”+o(’og-”s(“))). This requires several additional 
ideas including a generalization of the problem to that 
of finding witnesses for a prescribed subset of entries of 
the product of two rectangular matrices, given certain 
information on the location of these witnesses. The 
details are complicated and since the running time is 
inferior to that of our previous algorithm we do not in- 
clude them. For any given problem, one can apply any 
of the algorithms from the sequence above. It seems 
that for certain possible sizes, one of the algorithms 
ALG, for some small integer s may actually be faster 
than the algorithm in the previous subsection. 

3 Computing witnesses for the transi- 
tive closure 

In the introduction we explained why the immedi- 
ate solution that computes witnesses for A - T  does not 
work. Another simple solution is to add lengths to the 
edges and compute witnesses for shortest paths. How- 
ever, the best time for computing only the distances 
in the directed case (even without the witnesses for 
the paths) is O(n(w+3)/2). 

The only reason that the immediate solution does 
not work are the cycles. So we first find the strongly 
connected components of G, then we contract them 
into new vertices. Now we can use the immediate al- 
gorithm to solve the new problem. Lastly, we “open” 
the contracted vertices and transform the solution to 
a solution for the original problem. More formally: 

Algorithm 

1. Compute the strongly connected components of 
the input graph G = (V,E), where V = { V I , -  

..., v ” } .  Denote by V‘ =   vi,^;,.. . , v k }  the 
set of strongly connected components of G, where 
vi = { q l ,  vj2,. . . , v i r , } .  We build the contracted 
graph G’ = (V’, E’), where E’ = { ( v i ,  v; )  : 
3(vjo, v iy)  E E}. Each edge ( v i ,  3) E E’ is ar- 
bitrarily associated with one edge (v iz ,  vjy)  E E. 
This can be done in O(n2) time. 

2. Solve the transitive closure problem of the graph 
G’, denote the solution by T’. Compute witnesses 
for the Boolean matrix multiplication T’ . A‘ by 
W’. This step can be done in 6 ( n W )  time. 

3. For each strongly connected component we find 
witnesses for the transitive closure (which is a 
clique). Denote the witnesses matrix for that 
problem by W ;  this matrix is defined only for 
pairs which are in the same strongly connected 
component. This can be done in O(n2) time, as 
described in Algorithm 3.1. 

4. Expand the solution of the contracted problem 
into a solution for the whole problem. This can be 
done in O(n2)  time as described in Algorithm 3.2. 

Theorem 2 The algorithm above computes the ma- 
trix of wiinesses in time b ( n w ) .  

3.1 Computing witnesses for a strongly 
connected graph 

The algorithm has two stages. In the first, we per- 
form breadth first search (BFS) from one of the ver- 
tices WO. In the process we generate a BFS tree T. 
For each edge ( U ,  U) E T and every descendant w of v 
we set W ( u , w )  + v .  In the second stage, we use 
the reverse edges and perform another BFS from w. 
We process a vertex when it is first visited. Assume 
we enter first U using edge (u , v ) .  We then consider 
all w E V and if W ( U ,  w)  is undefined we set it to v .  

Obviously, each stage takes O(n2)  time. Correct- 
ness follows by induction. The induction hypothesis 
states that for every processed vertex U ,  and every w ,  
starting with U and following W we obtain a simple 
path from U to w. The base is true because the first 
stage essentially processes Q. For the induction step, 
assume we process U .  If W ( u , w )  = z is defined, it 
was defined in the first stage and ( U ,  z )  is in the BFS 
tree of the first stage and following W we follow a 
path on the tree from U to w. If it is undefined, we 
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set W ( u , w )  + U, where v was processed before. The 
claim now follows from the induction hypothesis. 

3.2 Joining solutions 

Examine the solution for G‘. Suppose that W’(i, j)- 
= k ;  by the definition of a witness, there exists an edge 
( v i ,  v i ) .  Let (viz, vky) be the edge ofG associated with 
it. 

The time complexity of this algorithm is O(n2). 

4 Finding paths 

In this section we solve the APSP(n, 1) problem. 
Solving the A P S P ( n , M )  problem is similar, since 
the treatment of ‘large’ edges is the same as in the 
APSD problem. We first show what cannot be done. 
Then we solve the positive case (subsection 4.1). We 
solve the nonnegative case in subsection 4.2. The solu- 
tion for the unrestricted case is complicated, and due 
to space limitations we omit most of the proofs for this 
case in subsection 4.4. In subsection 4.3 we consider 
the simpler special case of undirected graphs. 

As explained in the introduction, one way to avoid 
the cubic bottleneck is to compute witnesses. For each 
pair ( i ,  j) we compute an index k of a first vertex on 
a shortest path from vi to V j .  This certainly works in 
the positive case. 

4.1 Positive A P S P  

Consider the algorithm for the positive A P S D ( n ,  1) 
problem [2]. It uses Boolean matrix multiplications to 
compute short distances. Computing Boolean matrix 
multiplication with witnesses gives witnesses for these 
shortest paths. 

For computing large distances, we use the separa- 
tor trick: We consider in turn each vertex as a source 
and the layered graph obtained by single source short- 
est paths. We take a block of consecutive layers, 
choose the smallest one and use it as a separator. 
Each path that goes beyond the separator must go 
through the separator. Hence we minimize over the 
choice of the vertex on the separator. This part is per- 
formed naively and provides witnesses: If a shortest 
path from V i  to v j  goes through V k ,  where v k  belongs 
to the separator, then the i ,  j witness can be taken to 
be the i ,  k witness that has already been computed. 

Conszquently, to obtain the time bound we can sub- 
stitute O(nw) (the time for witnessed Boolean matrix 
multiplication) for O(nW) in the bound for the positive 
APSD(n, 1): 

Theorem 3 The positive APSP(n, 1) problem can be 
solved in 6(n(3+W)/2)  time. 

4.2 Nonnegative A P S P  

Consider the nonnegative APSD(n, 1) problem. 
One way to  solve it is to eliminate the zero length 
edges first. We first compute 2, the transitive clo- 
sure of the zero edges. It gives us all zero (shortest) 
distances. Let D’ be obtained from D by replacing 
the +oo entries by zero. Compute the Boolean ma- 
trix multiplication E gf (2 + I)D’(Z + I ) .  An edge 
in E corresponds to a path of length 1. Solve the 
APSP problem for E to obtain all shortest nonzero 
distances. 

A first attempt to obtain witnesses for shortest 
paths is simply to combine three sets of witnesses: the 
ones obtained from the solution of the positive A P S P ,  
the witnesses implied by the definition of E (two per 
entry) and the witnesses of the transitive closure 2. 
This approach does not give witnesses for the shortest 
paths as the following example shows. 

Figure 3: An example of failure of the naive solution 

Consider Figure 3. E contains a direct edge of 
length 1 from a to t and from b to x. Suppose that 
the witness which was chosen in the (2 + I)D’(Z + I) 
multiplication for the a -+ t pair is bl  and for the 
b -+ x pair is a l .  Simply combining the three sets of 
witnesses would lead us to the infinite path a ,  b ,  a ,  b ,  . . . 
for the pair a + x. 

The difficulty above is caused by zero length cy- 
cles in G. But we overcome it as in Section 3. We find 
the strongly connected components of 2, compute wit- 
nesses for them and contract them in G, forming the 
contracted graph G‘. We avoid multiple edges by al- 
ways choosing a minimum length edge. We next find 
the witnesses for shortest paths in G by the method 
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described above. (In G' there are no zero length cy- 
cles.) Finally, we combine the two sets of witnesses as 
in Section 3 to obtain the witnesses for shortest paths 
of G. The full details are omitted. 

Theorem 4 The nonnegative APSP(n, 1) problem 
can be solved in 6 (n (3+w) /2 )  time. 

4.3 Undirected APSP 

In the undirected case, zero edges or negative edges 
pose no problem and can be eliminated easily. The 
special algorithm for the undirected APSP uses essen- 
tially only Boolean matrix multiplications, which can 
easily be replaced by ones with witnesses. A random- 
ized algorithm that solves the_ undirected APSP(n, 1) 
problem in (expected) time O(nW) has been found by 
Seidel as well as by ourselves. Our result in Section 
2 enable us to obtain a deterministic algorithm with 
the same running time. 

Theorem 5 The undirected APSP(n, 1) problem can 
be solved in 6(nW) time. 

4.4 The general case 

We consider the case of dij E (0, fl}. We first solve 
the corresponding APSD problem, so we know D. 
We reduce the unrestricted problem step by step: In 
Subsubsection 4.4.1 we show how to eliminate the 
-00 distances. In Subsubsection 4.4.2 we show how 
to eliminate the zero cycles. In Subsubsection 4.4.3 
we solve the reduced problem where all the cycles are 
positive. 

4.4.1 Removing the negative cycles 

To handle the -00 distances, we start with the nega- 
tive cycles. A negative component is a maximal set of 
vertices C such that if vi, vj E C then d t  = dii = -00. 

The output for the unrestricted APSP problem con- 
sists of the following parts: 

1. D" a matrix of distances which matches D' in 
all its entries which are not -00. 

2. A matrix of witnesses W :  for every 1 5 i, j 5 n 
starting from vi  and using W one obtains a simple 
path nij from vi  to U, if one exists. Otherwise Wij 
is undefined. In case qj is finite xij is a shortest 
path and in case 4, = -00, nij passes through a 
negative component. Its length, in any case is d$.  

3. An array Neg  representing a subgraph G' of G 
of outdegree 5 1. G' contains a simple negative 
cycle uc for every negative component C and a 
simple path from every vertex in C to uc. 

Obviously the witnesses generate all finite length 
shortest paths. In case of 4, = -00 this output can 
be used to generate a path from vi to vj of length 
under any specified bound: Given a bound L on the 
length of the path, start generating the path and up- 
date the bound. If, after reaching v k ,  DE; is less than 
the bound L, or if the N e g  pointer is not defined, 
then follow the witnesses matrix W .  Otherwise follow 
the Neg pointer. In any case update the bound by 
subtracting the len,gth of the current edge (9 + U k l ) .  

The matrix D' can be computed from the wit- 
nesses matrix W using the algorithm in Figure 4. 

Set Q? c { 00 i f j ,  
0 . otherwise 

For all pairs i, such that d:, < 00 do Upd(i, j )  

Figure 4: Algorithm for computing D" 

Lemma 3 The algorithm in Figure 4 computes D" 
in O(n2) time. 

The computation of the array N e g  is the most com- 
plicated. The reason for that is that we can not make 
any use of the distance matrix inside a negative com- 
ponent; all distances are -00. Let P ( n , m )  be the 
problem of testing whether a graph with-n vertices 
and m edges has a negative cycle and let P(n,  m) be 
the problem of constructing a negative cycle given the 
matrix D' of shortest distances (and thus knowing 
that one exists). 

Lemma 4 The time complexity of P ,  T ( n , m )  satis- 
fies T (n ,  m )  5 ?(2n, m + 3n - 2) + O(n),  where f is 
the time complezity of P^. 

Thejroof  const:ucs for an input G to P a new 
graph G input to P with only constant factor more 
vertices and edges. Thus any subcubic algorithm will 
be transformed into a subcubic algorithm. (Actually 
the complexity in terms of number of vertices and 
number of edges is preserved.) Therefore, since we 
believe that the problem of finding whether a contains 
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a negative cycle or not is a difficult one (no subcubic 
algorithm was known before), we get that the problem 
of explicitly finding. even a single negative cycle given 
all the shortest distances is a difficult problem. We 
solve it below. 

The subcubic algorithm for the unrestricted APSP 
is a modification of the unrestricted APSD of [2]. The 
latter is a recursive algorithm that uses Boolean ma- 
trix multiplications, transitive closure computations 
and the separator trick. Some recursive calls construct 
a new graph and then operate cn it. We now show how 
to compute the array N e g  in O(nw) time. 

First we run the APSD algorithm and replace the 
Boolean matrix multiplications by witnessed multipli- 
cations. The resulting recursive structure has loga- 
rithmic depth and each layer contains at most n edges. 
More precisely, we have log(n) types of edges, the zero 
type is an edge which appears in the input graph, and 
every type t edge V i  A V j  is a path d. = {vk,}r=-, 
such that ko = i ,  k ,  = j ,  m 5 n and its length dij 
satisfies 

'? 

m- 1 

d i j  L dki;,+,* (1) 
t = O  

Call the process of replacing a type t edge with a 
type t - 1 path a refinement of that edge. 

Consider i with d& = -00. The APSD algo- 
rithm finds it by dicovering the existence of a triangle 
( V i ) V k l , V k 2 ) V i )  such that G k l ) d i a i  5 0, dglka < 0 for 
some t 5 logn (the recursion depth). It discovers the 
triangle by two Boolean matrix multiplications and 
computing them with witnesses yields also kl and k2. 
We start with such a triangle and maintain a char- 
acterization of the path from vi to V i .  We keep a 
linked list which specifies the refinement degree for 
every edge. 

Repeat t times refining all the edges to edges which 
are one type smaller. The problem with this process 
is that we can end up with a path of SZ(n'O~")) edges. 
To avoid this, in every refinement we keep the number 
of vertices to be no more than n by making sure that 
no vertex will appear more than once in the current 
path. To do this we also keep for every vertex Vk on 
the linked list a bound dist (k )  on the distance from v i  

to V k  along the path which is being built and a unique 
index num(k) which enables us to determine which 
vertex comes first on the path. 

The refinement step is simple: we use the wit- 
nesses from the witnessed APSD algorithm to  convert 
a type t edge into a path of type t - 1. Note that we 
always use type t - 1 edges, it can be that some of 
these edges have lower type, say f < t - 1; e.g. in 
the triangles mentioned above. In this case we regard 
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them as a type t - 1 edge which consists of a path of 
one edge of type t - 2 etc. We maintain the linked list 
and update the functions dist and num. If while re- 
fining some edge v i  -+ v j  of type t ,  we get a vertex Vk 

which already was on that path, thus forming a cycle, 
there are two cases: 

Negative cycle: We change our target: set i + k and 
start with the cycle between k and k which we 
currently have. We release the subpaths from v i  

to the first occurrence of vk and from the second 
occurrence of Vk to v i  (mark them as not in the 
current path). 

Nonnegative cycle: We bypass the section between 
the two copies of vk: define the successor of Vk 

in the list as the successor of the copy which is 
further in the path, and release the cycle. 

It is easy to verify that while performing this al- 
gorithm we maintain a negative cycle which is refined 
all the time, but never has more than n vertices. So 
finally we will have a type zero negative cycle. 

Theorem 6 The algorithm sketched above finds a 
negative cycle in O(n2 logn) time. 

After one negative cycle is build: vio ,  v i , ,  . . . , v i m - , ,  

we fix N e g  to follow it: N e g ( i t )  + ir+l (mod m ) .  To 
define N e g  on the other vertices of the negative com- 
ponent C, remove all outgoing edges from the cycle 
(all edges U -+ w where U is in the,cycle and w not). 
After the change there is still a path from every vertex 
of C to the cycle. Then run a BFS on the reverse edges 
from vio.  Set Neg(v, , )  = vq if you reach up from vq in 
the BFS. Clearly, Neg  will not change on the cycle, 
and following it will lead from any vertex in C to v i o .  

The time complexity of the algorithm is O(n2) per 
refining step (we refine no more than n edges of 
type t ,  each one of them into O(n) edges of type t - 1 
and each takes 0(1) time), therefore the total time 
is O(nZlogn). We may run this algorithm several 
times, once for each strongly connected component 
with ni vertices. The complexity will be Ci n: log ni,  
where ci ni = n. From the convexity of n2 logn we 
get that the time complexity is O(n2 log n). 

Now, that we have the array N e g ,  we remove all 
the --6o distances. The reduction is as follows: 

1. Identify the negative components and find the 
N e g  pointers for each one of them. All these 
pointers fit into a single array N e g .  

2. Solve the witnessed transitive closure problem for 
each one of the negative components. Denote the 
witness matrix by T. 



3. Construct a new graph G by contracting the neg- 
ative components. I! case of multiple edges we 
keep only one. In G we give edge length zero 
to original edges and -1 to edges incident with 
new vertices. Note that G does not have negative 
cycles. In 4 we compute witnesses for shortest 
paths (as explained in the next ybsubsections). 
Denote the witnesses matrix by W .  

4. Join the last two matrices into W 89 follows: For 
every pair of vertices i and j ,  let i and j be the 
contracted negative components which contains 
i and j if such components txists, or the original 
vertices otherwise. Let k = W;; and let i' + k.' be 
the edge in the original graph which was chosen 
to represent the contracted edge i + k. Set 

A , .  

Tij i = j ,  
k' 
Tiit  i # it. 

;# j and i =  i' 

This completes the computation of witnesses for the 
-ca distances. At this point we can delete all edges 
which are adjacent to any vertex in a negative compo- 
nent, resulting in a graph G with-no negative cycles. 
We so l2  the APSP problem for G and merge the SG 
lution W with that of the -CO distances W -  by taking 

Fjj Zjj finite 
W c  otherwise. 

wij = 

It is easy to verify that defining the witness matrix W 
in this way, we can follow it and get the finite distances 
as W gives them, and get for the -CO distances a 
simple finite path which passes though at  least one 
negative component. 

It remains to show how to compute witnesses for 
graphs with no negative cycles. Because of the pres- 
ence of negative length edges we cannot use the simple 
algorithm that contracts the zero length cycles of Sub- 
section 4.2. 

4.4.2 Removing the zero cycles 

We define viRv, if and only if dTj +di i  = 0 and refer to 
the equivalence classes of R as zero components. We 
then compute witnesses as follows. 

1. Find witnesses inside zero components. 

2. Replace each zero component with a new struc- 
ture called a U-structure, so that the resulting 
graph has no non-trivial zero components and 
compute witnesses for the resulting graph. 

3. Combine the two sets of witnesses. 

To find witnesses inside a zero component we define 
a subgraph GI with edges (vi, v j )  such that vi and v j  

are in the same zero component and dij = d t .  Thus 
each edge in GI is a shortest path, furthermore 

Lemma 5 Each path in GI is a shortest path in G. 

Given a component with m vertices, its correspond- 
ing U-structure has a set of vertices containing two 
vertices 4 and v r  for each original vertex vi and the 
edges are: 

1. An edge from v: to vi  of length -1 for every 
vi and vj such that dzj = -1. 

2 .  An edge from U:' to v r  of length +1 for every 
vi  and vj such that dij = +l. 

3. Zero length edges from vi to v(i and from v? to vy 
for every pair of vertices vi and v j  such that 4, = 
0 and i < j .  

4. For every k, a zero length edge from ~ h ~ ~ ( ~ )  
to ~ k ~ ~ ( ~ )  where "(k) ef max{t : dik = 0) 

and min(k) %f min{l : dik  = 0). Note that we 
may count the same edge several times (there are 
no multiple edges). 

The U-structure replaces the corresponding compo- 
nent by replacing any edge from vi of some component 
to wj of another component by an edge from to w j .  
An example is shown in Figure 5 .  In this example, all 
down going edges in the U-structure have length -1, 
all up going edges have length +1 and all horizontal 
edges have length 0. The thick edges are the edges 
from vLax(k) to Vkin(k). 

Lemma 6 Lei G be a graph with no negative cycles. 
The graph Gz obtained from G by replacing each zero 
component by a U structure satisfies the following 
properties 

1. Its edge lengths are in { - l , O ,  l}, 

2. it contains no zero length cycles, 

9. it has twice the number of vertices as G and 

4.  it contains the shortest distances structure of G. 

Every shortest path in G2 can be translated into 
a shortest path in G by replacing the edges in the U- 
structures by paths in G (which exists from Lemma 6). 
Thus, we have reduced the unrestricted case to the 
case in which all cycles have positive lengths. 
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V" side V' side I 

A component The corresponding U-structure 

Figure 5: An example of a Ustructure 

4.4.3 Positive cycles only 

Here, we find witnesses by unwinding the recursive 
APSD algorithm taking always the first edge. 

Lemma 7 Given a graph G with no directed nonpos- 
itive cycles, we can solve the APSP problem by re- 
placing all the Boolean matrix multiplications in the 
APSD algorithm by witnessed Boolean matrix multi- 
plications. 

Theorem 7 The unrestricted APSP(n, 1) problem 
can be solved in 6(n(3+w)/2)  t ime. 

Proof. Subsubsection 4.4.1 reduced the general 
problem into one without negative cycles. Subsub- 
section 4.4.2 reduced the problem even further to the 
case where there is no nonpositive length cycle. In this 
subsubsection we solved this case. 0 

5 Open Problems 

Of course one would like to  improve the time 
bounds for computing various types of witnesses. In 
particular, can we compute the witnesses for Boolean 
matrix multiplication in time O(nw)? Alternatively, 
one would like to improve the best algorithms for 
APSD(n, M) and APSP(n, M), for directed graphs 
and for undirected graphs, for the nonnegative case 
and for the unrestricted case, by improving the expe  
nent (in the undirected case this is not possible with- 
out improving Boolean matrix multiplication) or by 
improving the dependence on M. 

We are also looking for other problems for which 
one may need the witnesses in addition to Boolean 
matrix multiplication or to transitive closure. It seems 

very plausible that these will find additional applica- 
tions in the future. 

Given the shortest distances, how hard is it to com- 
pute witnesses for the shortest paths? Possibly, this 
can be solved in O(n2)  time, but all our algorithms 
need additional matrix multiplications. 
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