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Abstract. We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem
for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms.

The first algorithm solves the APSP problem for weighted directed graphs in which the edge weights
are integers of small absolute value iñO(n2+µ) time, whereµ satisfies the equationω(1, µ,1) =
1+ 2µ andω(1, µ,1) is the exponent of the multiplication of ann× nµ matrix by annµ× n matrix.
Currently, the best available bounds onω(1, µ,1), obtained by Coppersmith, imply thatµ<0.575.
The running time of our algorithm is thereforeO(n2.575). Our algorithm improves on thẽO(n(3+ω)/2)
time algorithm, whereω = ω(1, 1, 1)< 2.376 is the usual exponent of matrix multiplication, obtained
by Alon et al., whose running time is only known to beO(n2.688).

The second algorithm solves the APSP problemalmostexactly for directed graphs witharbitrary
nonnegative real weights. The algorithm runs inÕ((nω/ε) log(W/ε)) time, whereε > 0 is an error
parameter andW is the largest edge weight in the graph, after the edge weights are scaled so that the
smallest non-zero edge weight in the graph is 1. It returns estimates of all the distances in the graph
with a stretch of at most 1+ ε. Corresponding paths can also be found efficiently.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Computations on discrete structures; G.2.2 [Discrete Mathe-
matics]: Graph Theory—graph algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Matrix multiplication; shortest paths

1. Introduction

The All Pairs Shortest Paths(APSP) problem is one of the most fundamental
algorithmic graph problems. The complexity of the fastest known algorithm for
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solving the problem for weighted directed graphs with arbitrary real weights is
O(mn+ n2 logn), wheren and m, respectively, are the number of vertices and
edges in the graph. This algorithm is composed of a preliminary step, due to
Johnson [1977], in which cycles of negative weight are found and eliminated,
and a nonnegative weight function is found that induces the same shortest paths.
The algorithm then proceeds by running Dijkstra’s single source shortest paths al-
gorithm [Dijkstra 1959], implemented using Fibonacci heaps [Fredman and Tarjan
1987], from each vertex of the graph. For a clear description of the whole algorithm,
see Cormen et al. [2001, Chap. 21, 25, and 26].

For directed graphs with nonnegative edge weights, the running time of the
above algorithm can be reduced toO(m∗n+ n2 logn), wherem∗ is the number
of edges that participate in shortest paths [Karger et al. 1993; McGeoch 1995].
For undirected graphs with nonnegative integer edge weights, a running time of
O(mn) can be obtained by running a recent single source shortest paths algorithm
of Thorup [1999; 2000] from each vertex of the graph.

The running time of all the above mentioned algorithms may be as high as
Ä(n3). Can the APSP problem be solved in subcubic time? Fredman [1976] showed
that the APSP problem for weighted directed graphs can be solvednonuniformly
in O(n2.5) time. More precisely, for everyn, there is a program that solves the
APSP problem for graphs withn vertices using at mostO(n2.5) comparisons, ad-
ditions and subtractions. But, a separate program has to be used for each input
size. Furthermore, the size of the program that works on graphs withn vertices
may be exponential inn. Fredman used this result to obtain a uniform algo-
rithm that runs inO(n3((log logn)/ logn)1/3) time. Takaoka [1992] slightly im-
proved this bound toO(n3((log logn)/ logn)1/2). These running times are just
barely subcubic.

The APSP problem is closely related to the problem of computing the min/plus
product, ordistance product, as we shall call it, of two matrices. IfA = (ai j ) and
B = (bi j ) are twon× n matrices, then their distance productC = A?B is ann× n
matrix C = (ci j ) such thatci j = minn

k=1 {aik + bkj }, for 1≤ i, j ≤ n. A weighted
graphG = (V, E) on n vertices can be encoded as ann× n matrix D = (di j ) in
whichdi j is the weight of the edge (i, j ), if there is such an edge in the graph, and
di j = +∞, otherwise. We also letdii = 0, for 1≤ i ≤ n. It is easy to see thatDn,
thenth power ofD with respect to distance products, is a matrix that contains the
distances between all pairs of vertices in the graph (assuming there are no negative
cycles). The matrixDn can be computed usingdlog2 ne distance products. It is, in
fact, possible to show that the distance matrixDn can be computed in essentially the
same time required for just one distance product (see Aho et al. [1974, Sect. 5.9]).

Two n× n matrices over aring can be multiplied usingO(nω) algebraic oper-
ations, whereω is the exponent of square matrix multiplication. The naive matrix
multiplication algorithm shows thatω≤ 3. The best upper bound onω is currently
ω<2.376 [Coppersmith and Winograd 1990]. The only lower bound available
on ω is the naive lower boundω≥ 2. Unfortunately, the fast matrix multiplica-
tion algorithms cannot be used directly to compute distance products, as the set
of integers, or the set of reals, is not a ring with respect to the operations min
and plus.

Alon et al. [1997] were the first to show that fast matrix multiplications al-
gorithms can be used to obtain improved algorithms for the APSP problem
for graphs with small integer edge weights. They obtained an algorithm whose
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running time isÕ(n(3+ω)/2)1 for solving the APSP problem for directed graphs
with edge weights taken from the set{−1, 0, 1}. Galil and Margalit [1997a, 1997b]
and Seidel [1995] obtained̃O(nω) time algorithms for solving the APSP problem
for unweightedundirectedgraphs. Seidel’s algorithm is much simpler. The algo-
rithm of Galil and Margalit has the advantage that it can be extended to handle small
integer weights. The running time of their algorithm, when used to solve the APSP
problem for undirected graphs with edge weights taken from the set{0, 1, . . . ,M},
is Õ(M (ω+ 1)/2nω). An improved time bound of̃O(Mnω) for the same problem was
recently obtained by Shoshan and Zwick [1999].

In this article, we present an improved algorithm for solving the APSP prob-
lem for directed graphs with edge weights of small absolute value. The improved
efficiency is gained by usingbridging setsand by usingrectangularmatrix multi-
plications instead of square matrix multiplications, as used by Alon et al. [1997].
We note that similar ideas were used by Ullman and Yannakakis [1991] in their
parallel transitive closure algorithm, and by Henzinger and King [1995] in their
dynamic transitive closure algorithm.

It is possible to reduce a rectangular matrix multiplication into a number of square
matrix multiplications. For example, the task of computing the product of ann×m
matrix by anm× n matrix is easily reduced to the task of computing (n/m)2

products of twom×m matrices. The running time of our algorithm, if we use this
approach, isÕ(n2+ 1/(4−ω)), which is O(n2.616), if we use the estimateω<2.376.
However, a more efficient implementation is obtained if we compute the rectangular
matrix multiplications directly using the fastest rectangular matrix multiplication
algorithms available. The running time of the algorithm is thenÕ(n2+µ), where
µ satisfies the equationω(1, µ,1) = 1+ 2µ, whereω(1, µ,1) is the exponent of
the multiplication of ann× nµ matrix by annµ× n matrix.2 Currently, the best
available bounds onω(1, µ,1), obtained by Coppersmith [1997] and by Huang and
Pan [1998], imply thatµ<0.575. The running time of our algorithm is therefore
O(n2.575), and possibly better.

If ω = 2, as may turn out to be the case, then the running time of both our
algorithm and the algorithm of Alon et al. [1997] would bẽO(n2.5). However,
the running time of our algorithm may bẽO(n2.5) even ifω > 2. To show that the
running time of our algorithm is̃O(n2.5), it is enough to show thatω(1, 1/2, 1)= 2,
that is, that the product of ann× n1/2 matrix by ann1/2× n matrix can be performed
in Õ(n2) time. Coppersmith [1997] showed that the product of ann× n0.294 by an
n0.294× n matrix can be computed iñO(n2) time.

The algorithm of Alon et al. [1997] can also handle integer weights taken from the
set{−M, . . . ,0, . . . ,M}, that is, integer weights of absolute value at mostM . The
running time of their algorithm is theñO(M (ω−1)/2n(3+ω)/2), if M ≤ n(3−ω)/(ω+ 1),
andÕ(Mn(5ω−3)/(ω+ 1)), if n(3−ω)/(ω+ 1)≤M . Takaoka [1998] obtained an algorithm
whose running time is̃O(M1/3n(6+ω)/3). The bound of Takaoka is better than the
bound of Alon et al. for larger values ofM . The running time of Takaoka’s algorithm
is subcubic forM < n3−ω.

Our algorithm can also handle small integer weights, that is, weights taken
from the set {−M, . . . ,0, . . . ,M}. If rectangular matrix multiplications are

1 Throughout this article,̃O( f (n)) stands forO( f (n) logc n), for somec> 0.
2 In general,ω(r, s, t) is the exponent of the multiplication of anns× nr matrix by annr × nt matrix.
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reduced to square matrix multiplications, then the running time of the algorithm
is Õ(M1/(4−ω)n2+ 1/(4−ω)). This running time is again subcubic forM < n3−ω but,
for every 1≤M < n3−ω, the running time of our algorithm is faster than both the
algorithms of Alon et al. and of Takaoka. The running time is further reduced
if the rectangular matrix multiplications required by the algorithm are computed
using the best available algorithm. IfM = nt , where t < 3−ω, then the run-
ning time of the algorithm isÕ(n2+µ(t)), whereµ = µ(t) satisfies the equation
ω(1, µ,1)= 1+ 2µ− t .

The new algorithm for solving the APSP problem for graphs with small integer
weights is extremely simple and natural, despite the somewhat cumbersome bounds
on its running time. We already noted that to compute all the distances in a weighed
graph onn vertices represented by the matrixD it is enough to square the matrixD
about log2 n times with respect to distance products. It turns out that if we are
willing to repeat this process, say, log3/2 n times, then in thei th iteration, instead of
squaring the current matrix, it is enough to choose a setBi of roughlymi = (2/3)i n
columns of the current matrix and multiply them by the correspondingmi rows of
the matrix. In fact, a randomly chosen set of aboutmi columns would be a good
choice with a very high probability! We have thus replaced the product of twon× n
matrices in thei th iteration by a product of ann×mi matrix by anmi × n matrix.

To convert distance products of matrices into normal algebraic products, we use
a technique suggested in Alon et al. [1997] (see also Takaoka [1998]), based on a
previous idea of Yuval [1976]. Suppose thatA = (ai j ) andB = (bi j ) are twon× n
matrices with elements taken from the set{−M, . . . ,0, . . . ,M}. We convertA and
B into twon× n matricesA′ = (a′i j ) andB′ = (b′i j ) wherea′i j = (n+ 1)M−ai j and
b′i j = (n+ 1)M−bi j . It is not difficult to see that the distance product ofA and B
can be inferred from the algebraic product ofA′ andB′ (see the next section). We
pay, however, a high price for this solution. Each element ofA′ and B′ is a huge
number that aboutM logn bits, or aboutM words of logn bits each, are needed
for its representation. An algebraic operation on elements of the matricesA′ andB′
cannotbe viewed therefore as a single operation. Each such operation can be carried
out, however, inÕ(M logn) time. We would have to take this factor into account
in our complexity estimations.

Our results indicate that it may be possible to solve the APSP problem for di-
rected graphs with small integer weightsuniformly in Õ(n2.5) time. Even if this
were the case, there would still be a gap between the complexities of the directed
and undirected versions of the APSP problem. As mentioned, the APSP forundi-
rectedgraphs with small integer weights can be solved inÕ(nω) time, as shown
by Seidel [1995] and by Galil and Margalit [1997a, 1997b]. (See also Shoshan and
Zwick [1999].)

We next show that the gap between the directed and the undirected versions of
the APSP problem can be closed, for graphs with nonnegative edge weights, if we
are willing to settle forapproximateshortest paths. We say that a path between two
verticesi and j is of stretch 1+ ε if its length is at most 1+ ε times the distance
from i to j . It is fairly easy to see that paths of stretch 1+ ε between all pairs
of vertices of anunweighteddirected graph can be computed iñO(nω/ε) time.
(This fact is mentioned in Galil and Margalit [1997a]). Stretch two paths, or at least
stretch two distances, for example, may be obtained by computing the matricesA2r

,
for 1≤ r ≤dlog2 ne, whereA is the adjacency matrix of the graph, and Boolean
products are used this time.
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We extend this result and obtain an algorithm for finding stretch 1+ ε paths
between all pairs of vertices of a directed graph witharbitrary nonnegativereal
weights. The running time of the algorithm is̃O((nω/ε) · log(W/ε)), whereW is
the largest edge weight in the graph after the edge weights are scaled so that the
smallest nonzero edge weight is 1. Our algorithm uses a simpleadaptive scaling
technique. It is observed by Dor et al. [2000] that for anyc≥ 1, computing stretchc
distances between all pairs of vertices in an unweighted directed graph onn vertices
is at least as hard as computing the Boolean product of twon/3× n/3 matrices.
Our result is therefore very close to being optimal.

Algorithms for approximating the distances between all pairs of vertices in a
weightedundirectedgraph were obtained by Cohen and Zwick [2001]. They present
an Õ(n2) algorithm for finding paths with stretch at most 3, anÕ(n7/3) algorithm
for finding paths of stretch 7/3, and anÕ(n3/2m1/2) algorithm for finding paths
of stretch 2. The algorithms of Cohen and Zwick [2001] use ideas obtained by
Aingworth et al. [1999] and by Dor et al.[2000] who designed algorithms that ap-
proximate distances in unweighted undirected graphs with a smalladditiveerror.
As can be seen from their running times, these algorithms are all purely combina-
torial. They do not use fast matrix multiplication algorithms. It is also observed in
Dor et al. [2000] that for any 1≤ c< 2, computing stretchc distances between all
pairs of vertices in an unweighted undirected graph onn vertices is again at least
as hard as computing the Boolean product of twon/3× n/3 matrices. Forε <1,
our algorithm is therefore close to optimal even for undirected graphs.

The rest of the article is organized as follows: In the next section, we present
an algorithm that uses fast matrix multiplication to speed up the computation of
distance products. In Section 3, we introduce the notion ofwitnessesfor distance
products. Such witnesses are used to reconstruct shortest paths. In Section 4, we
present a simplerandomizedalgorithm for solving the APSP problem in directed
graphs with small integer weights. In Section 5, we explain how the shortest paths
are constructed. In Section 6, we introduce the notion ofbridging setsand explain
how the randomized algorithm of the previous section can be converted into a
deterministic algorithm, if the input graph is unweighted. A deterministic algorithm
for weighted graphs is then given in Section 7. In Section 8, we present the new
algorithm for obtaining an almost exact solution to the APSP problem for directed
graphs with arbitrary nonnegative real weights. Finally, we end in Section 9 with
some concluding remarks and open problems.

2. Distance Product of Matrices

We begin with a definition of distance products.

Definition2.1 (Distance Products). Let A be ann×m matrix andB be an
m× n matrix. Thedistance productof AandB, denotedA? B, in ann× n matrixC
such that

ci j =
m

min
k=1
{aik + bkj } , for 1≤ i, j ≤ n .

In this definition, and in the rest of the article, we use the convention that matrices
are denoted by uppercase letters, and that the elements of a matrix are denoted by
the corresponding lowercase letter.
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FIG. 1. Computing the distance product of two matrices.

The distance product ofA andB can be computed naively inO(n2m) time. Alon
et al. [1997] (see also Takaoka [1998]) describe a way of using fast matrix multi-
plication, and fast integer multiplication, to compute distance products of matrices
whose elements are taken from the set{−M, . . . ,0, . . . ,M} ∪ +∞} . The running
time of their algorithm, when applied to rectangular matrices, isÕ(Mnω(1,r,1)),
wherem= nr . Here,O(nω(1,r,1)) is the number of algebraic operations required to
compute the standard algebraic product of ann× nr matrix by annr × n matrix. We
see, therefore, that the running time of this algorithm depends heavily onM . For
large values ofM the naive algorithm, whose running time is independent ofM ,
is faster.

Algorithm dist-prod, whose description is given in Figure 1, uses the faster of
these two methods to compute the distance product of ann×m matrix A and an
m× n matrix B whose elements are integers. We letm= nr . Elements inA andB
that are of absolute value greater thanM are treated as if they were+∞. (This
feature is used by the algorithms described in the subsequent sections.) Algorithm
fast-prod, called bydist-prod, computes the algebraic product of two integer
matrices using the fastest rectangular matrix multiplication algorithm available,
and using the Sch¨onhage–Strassen [1971] algorithm for integer multiplication.
(See also Aho et al. [1974].)

LEMMA 2.2. Algorithmdist-prod computes the distance product of an n× nr

matrix by an nr × n matrix whose finite entries are all of absolute value at most M
in Õ(min{Mnω(1,r,1), n2+ r }) time.

PROOF. If n2+ r <Mnω(1,r,1), thendist-prod computes the distance product
of A andB using the naive algorithm that runs inO(n2+ r ) time and we are done.
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Assume, therefore, thatMnω(1,r,1)≤ n2+ r . To see that the algorithm correctly
computes the distance product ofA and B in this case, note that, for every
1≤ i, j ≤ n, we have

c′i j =
m∑

k=1

(m+ 1)2M−(aik + bkj ) ,

where indicesk for whichaik = +∞ or bkj = +∞ are excluded from the summa-
tion, and therefore

ci j =
m

min
k=1
{aik + bkj } = 2M − blog(m+ 1) c′i j c .

We next turn to the complexity analysis. IfMnω(1,r,1)≤ n2+ r , then fast-prod
performsÕ(nω(1,r,1)) arithmetical operations onO(M logn)-bit integers. (To avoid
getting large intermediate results, we perform these multiplications modulo, say,
(m+ 1)4M + 1.) The Sch¨onhage–Strassen integer multiplication algorithm multi-
plies two k-bit integers usingO(k logk log logk) bit operations. Lettingk =
O(M logn), we get that the complexity of each arithmetic operation isÕ(M logn).
Finally, the logarithms used in the computation ofci j can be easily implemented
using binary search. The complexity of the algorithm in this case is therefore
Õ(Mnω(1,r,1)), as required.

There is, in fact, a slightly more efficient way of implementingfast-prod. In-
stead of computing the product ofA′ andB′ using multiprecision integers, we can
compute the product ofA′ andB′ modulo aboutM different prime numbers with
about logn bits each and then reconstruct the result using the Chinese remainder
theorem. This reduces the running time, however, by only a polylogarithmic factor.

What is known aboutω(1, r, 1), the exponent of the multiplication of ann× nr

matrix by annr × n matrix? Note thatω = ω(1, 1, 1) is the famous exponent
of (square) matrix multiplication. The best bound onω is currentlyω<2.376
[Coppersmith and Winograd 1990]. It is easy to see that a product of ann× nr

matrix by annr × n matrix can be broken inton2(1−r ) products ofnr × nr matrices,
and can therefore by computed inO(n2+ r (ω−2)) time. It follows, therefore, that
ω(1, r, 1)≤ 2+ r (ω− 2). Better bounds are known, however. Coppersmith [1997]
showed that the product of ann× n0.294 matrix by ann0.294× n matrix can be com-
puted usingÕ(n2) arithmetical operations. Letα = sup{ 0≤ r ≤ 1 : ω(1, r, 1) =
2+ o(1)}. It follows from Coppersmith’s result thatα≥ 0.294. Note that, if
ω = 2+ o(1), thenα = 1. An improved bound forω(1, r, 1), for α≤ r ≤ 1 can be
obtained by combining the boundsω(1, 1, 1)< 2.376 andω(1, α,1) = 2+ o(1).
The following lemma is taken from Huang and Pan [1998]:

LEMMA 2.3. Let ω = ω(1, 1, 1)< 2.376 and let α = sup{ 0≤ r ≤ 1 :
ω(1, r, 1)= 2+ o(1)} > 0.294. Then

ω(1, r, 1)≤
{

2+ o(1) if 0≤ r ≤ α,
2+ ω−2

1−α (r − α)+ o(1) if α ≤ r ≤ 1.

Note that the upper bound onω(1, r, 1) given in Lemma 2.3 is a piecewise linear
function. (See Figure 5 in Section 4.) Another well-known fact (see, e.g., Pan [1985]
or Burgisser et al. [1997]) regarding matrix multiplication, used in later sections, is
the fact thatω(r, s, t), the exponent of computing the product of annr × ns matrix
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and anns× nt matrix, does not change if the order of its arguments is changed.
In particular:

LEMMA 2.4. ω(1, 1, r ) = ω(1, r, 1)= ω(r, 1, 1).

In other words, the cost of computing the product of ann× nr matrix by an
nr × n matrix, and the cost of computing the product of ann× n matrix by an
n× nr matrix are asymptotically the same.

3. Witnesses for Distance Products

Next, we introduce the notion ofwitnessesfor distance products of matrices.
Witnesses for distance products are used to reconstruct shortest paths.

Definition3.1 (Witnesses). Let A be ann×m matrix andB be anm× n ma-
trix. An n× n matrix W is said to be a matrix of witnesses for the distance product
C = A ? B if for every 1≤ i, j ≤ n we have 1≤wi j ≤m andci j = ai,wi j + bwi j , j .

Using ideas of Seidel [1995], Galil and Margalit [1993], and Alon and Naor
[1996], it is easy to extend algorithmdist-prod so that it would also return a matrix of
witnesses. The running time ofdist-prod would increase by only a polylogarithmic
factor. The details are sketched below.

There is a simple, but expensive, way of computing witnesses for the distance
productC = A ? B, where A is an n×m matrix, andB is an m× n matrix.
Let A′ = (a′i j ) and B′ = (b′i j ) be matrices such thata′i j = mai j + j − 1 and
b′j i = mbji , for every 1≤ i ≤ n and 1≤ j ≤m. If we compute the distance product
C′ = A′ ?B′, thenbC′/mc is the distance product ofA?B and (C′ modm)+ 1 is a
corresponding matrix of witnesses. Furthermore, all the witnesses in this matrix are
thesmallest possiblewitnesses. The drawback of this approach is that the entries
of A andB are multiplied bym and this may slow down the operationdist-prod
by a factor ofm, which may be a huge factor.

There is, however, a much more efficient way of finding witnesses. We show, at
first, how to find witnesses for elements that haveuniquewitnesses. For 1≤ k≤m
and 1≤ `≤dlog2 me+1, we letbit`(k) be the`th bit in the binary representation
of k. (For concreteness, assume thatbit1(k) is the least significant bit in the repre-
sentation ofk.) For 1≤ `≤dlog2 me+1, let I` = {1≤ k≤m | bit`(k) = 1}. We
also need the following definition, which is also used in subsequent sections:

Definition3.2 (Sampling). Let A be ann×m matrix, and letI ⊆{1, 2, . . . ,
m}. Then,A[∗, I ] is defined to be the matrix composed of the columns ofA whose
indices belong toI . Similarly, if B is anm× n matrix, thenB[ I , ∗] is defined to
be the matrix composed of the rows ofB whose indices belong toI .

To find witnesses for all elements ofA = B ? C that have a unique wit-
ness, we compute theO(logm) distance productsC` = A[∗, I`] ? B[ I`, ∗], for
1≤ `≤dlog2 me+1. LetC` = (c(`)

i j ). It is easy to see thatc(`)
i j = ci j , if and only if

there is a witness forci j whosè th bit is 1. Ifci j has a unique witnesswi j , then these
conditions can be used to identify the individual bits in the binary representation
of wi j , and hencewi j itself. Note that we do not have to know in advance whether
ci j has a unique witness. We just reconstruct a candidate witnesswi j and then check
whetherci j = ai,wi j + bwi j , j .
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FIG. 2. A randomized algorithm for finding shortest paths.

What do we do with elements that have more than one witness? We use sampling.
For every 1≤ r ≤ logm, we chooses = c logn random subsetsRr 1, . . . , Rrs of
{1, 2, . . . ,m} of sizem/2r . For every such random setRrt , where 1≤ r ≤ logm
and 1≤ t ≤ s, we try to find unique witnesses for the productA[∗, Rrt ] ? B[Rrt , ∗].
When such a witness is found, we check whether it is also a witness for the original
distance productA? B. A simple calculation, identical to a calculation that appears
in Seidel [1995], shows that if the constantc is taken to be large enough, then with
very high probability, we will find in this way witnesses for all positions.

The above discussion gives a randomized algorithm for computing a matrix of
witnesses for the distance productA?B. The randomized algorithm usesO(log3 n)
ordinary distance products of matrices of equal or smaller size. The resulting algo-
rithm can be derandomized using the results of Alon and Naor [1996], incurring
only a polylogarithmic loss of efficiency. We thus obtain:

LEMMA 3.3. An extended version of algorithmdist-prod computes the dis-
tance product of an n× nr matrix by an nr × n matrix whose finite entries are
all of absolute value at most M, and a corresponding matrix of witnesses, in
Õ(min{Mnω(1,r,1), n2+ r }) time.

In the following section, we let (C,W)← dist-prod(A, B,M) denote an invo-
cation of the extended version ofdist-prod that returns the product matrixC and
a matrix of witnessesW.

4. A Randomized Algorithm for Finding Shortest Paths

A simple randomized algorithm,rand-short-path, for finding distances, and a
representation of shortest paths, between all pairs of vertices of a directed graph
onn vertices in which all edge weights are taken from the set{−M, . . . ,0, . . . ,M}
is given in Figure 2.
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FIG. 3. Replacing the square productF ? F by the rectangular productF [∗, B] ? F [B, ∗].

The input torand-short-path is ann× n matrix D that contains the weights (or
lengths) of the edges of the input graph. We assume that the vertex set of the graph
is V = {1, 2, . . . ,n}. The elementdi j is the weight of the directed edge fromi to j
in the graph, if there is such an edge, or+∞, otherwise.

Algorithm rand-short-path starts by lettingF ← D. The algorithm then per-
forms dlog3/2 ne iterations. In thè th iteration it letss ← (3/2)`. It then uses a
function calledrand to produce a random subsetB of V = {1, 2, . . . ,n} obtained
by selecting each element ofV independently with probabilityp = (9 lnn)/s.
If p≥ 1, thenrand returns the setV . The algorithm then constructs the matrices
F [∗, B] and F [B, ∗]. The matrix F [∗, B] is the matrix whose columns are the
columns ofF that correspond to the vertices ofB. Similarly, F [B, ∗] is the matrix
whose rows are the rows ofF that correspond to the vertices ofB (see Definition 3.2
and Figure 3). It then computes the distance productF ′ of the matricesF [∗, B]
andF [B, ∗] by callingdist-prod, putting a cap ofsM on the absolute values of all
the entries that participate in the product. The call also returns a matrixW′ of wit-
nesses. Finally, each element ofF ′ is compared to the corresponding element ofF .
If the element ofF ′ is smaller, then it is copied toF and the corresponding witness
from W′ is copied toW. (By bw′i j , we denote thew′i j -th element of the setB.)

Let δ(i, j ) denote the (weighted) distance fromi to j in the graph, that is, the
smallest weight of a directed path going fromi to j . The weight of a path is the
sum of the weights of its edges. The following lemma is easily established:

LEMMA 4.1. At any stage during the operation ofrand-short-path, for every
i, j ∈ V , we have:

(i) fi j ≥ δ(i, j ).
(ii) If wi j = 0, then fi j = di j . Otherwise,1≤wi j ≤ n and fi j ≥ fi,wi j + fwi j , j .

(iii) If δ(i, j ) = δ(i, k)+ δ(k, j ) and if in the beginning of some iteration we have
fik = δ(i, k), fk j = δ(k, j ), | fik |, | fk j | ≤ sM and k∈ B, then at the end of
the iteration we have fi j = δ(i, j ).
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FIG. 4. The correctness proof ofrand-short-path.

PROOF. Property (i) clearly holds whenF is initialized toD. In each iteration,
the algorithm chooses a setB and then lets

f ′i j ← min{ fik + fk j | k ∈ B , | fik |, | fk j | ≤ sM }
fi j ← min{ fi j , f ′i j }

for every i, j ∈ V . For everyk, we have fik + fk j ≥ δ(i, k)+ δ(k, j )≥ δ(i, j ), as
follows from the induction hypothesis and the triangle inequality, and thus the new
value of fi j is again an upper bound onδ(i, j ).

Property (ii) also follows easily by induction. Initially,fi j = di j andwi j = 0, for
everyi, j ∈ V , so the condition is satisfied. Wheneverfi j is assigned a new value,
we have 1≤wi j ≤ n and fi j = fi,wi j + fwi j , j . Until the next timefi j is assigned a
value, we are thus guaranteed to havefi j ≥ fi,wi j + fwi j , j , as the value offi j does
not change, while the values offi,wi j and fwi j , j may only decrease.

Finally, if the conditions of property (iii) hold, then at the end of the iteration
we have

fi j ≤ f ′i j ≤ fik + fk j = δ(i, k)+ δ(k, j ) = δ(i, j ) .

As fi j ≥ δ(i, j ), by property (i), we get thatfi j = δ(i, j ), as required.

More interesting is the following lemma:

LEMMA 4.2. Let s= (3/2)`, for some1≤ `≤dlog3/2 ne. With very high prob-
ability, if there is a shortest path from i to j in the graph that uses at most s edges,
then at the end of thèth iteration we have fi j = δ(i, j ).

PROOF. We prove the lemma by induction of`. It is easy to check that the claim
holds for` = 1. We show next that, if the claim holds for`− 1, then it also holds
for `. Let i and j be two vertices connected by a shortest path that uses at most
s= (3/2)` edges. Letp be such a shortest path fromi to j . If the number of edges
on p is at most 2s/3, then, by the induction hypothesis, after the (`− 1)st iteration
we already havefi j = δ(i, j ) (with very high probability). Suppose, therefore, that
the number of edges onp is at least 2s/3 and at mosts. To avoid technicalities,
we “pretend” at first thats/3 is an integer. We later indicate the changes needed to
make the proof rigorous.

Let I and J be vertices onp such thatI and J are separated, onp, by exactly
s/3 edges, and such thati and I , andJ and j are separated, onp, by at most s/3
edges. (See Figure 4.) Such verticesI andJ can always be found as the pathp is
composed of at least 2s/3 and at mosts edges.

Let A be the set of vertices lying betweenI and J (inclusive) onp. Note that
|A| ≥ s/3. Let k ∈ A. As k lies on a shortest path fromi to j , we haveδ(i, j ) =
δ(i, k)+ δ(k, j ). As k lies betweenI and J, there are shortest paths fromi to k,



300 URI ZWICK

and fromk to j that use at most 2s/3 edges. By the induction hypothesis, we get
that, at the beginning of thèth iteration, we havefik = δ(i, k) and fk j = δ(k, j ),
with very high probability. We also have| fik |, | fk j | ≤ sM. It follows, therefore,
from Lemma 4.1(iii), that if there existsk ∈ A∩ B, whereB is the set of vertices
chosen at thèth iteration, then at the end of the`th iteration we havefi j = δ(i, j ),
as required.

What is the probability thatA∩B 6= φ? Letp = (9 lnn)/s. If p≥ 1, thenB = V
and clearlyA ∩ B 6= φ. Suppose, therefore, thatp = (9 lnn)/s< 1. Each vertex
then belongs toB independently with probabilityp. As |A| ≥ s/3, the probability
that A∩ B = φ is at most(

1− 9 lnn

s

)s/3

≤ exp(−3 lnn) = n−3 .

As there are less thann2 pairs of vertices in the graph, the probability of failure
during the entire operation of the algorithm is at mostn2 · n−3 = 1/n. (We do not
have to multiply the probability by the number of iterations, as each pair of vertices
should only be considered at one of the iterations. If a pairi, j ∈ V violates the
condition of the lemma, then it also does so at the`th iteration, wherè is the
smallest integer such that there is a shortest path fromi to j that uses at most
s= (3/2)` edges.)

Unfortunately,s/3 is not an integer. To make the proof go through, we prove
by induction a slight strengthening of the lemma. Define the sequences0 = 1 and
s̀ = d3s̀ −1/2e, for ` > 0. Note thats̀ ≥ (3/2)`. We show by induction oǹ that,
with high probability, for everyi, j ∈ V , if there is a shortest path fromi to j that
uses at mosts̀ edges, then at the end of the`th iteration we havefi j = δ(i, j ). The
proof is almost the same as before. Ifp is a shortest path fromi to j that uses at
mosts̀ edges, we consider verticesI and J on p such thatI and J are separated
by exactlybs̀ /2c edges, and such thati and I , and J and j are separated by at
mostds̀ /2e edges. Repeating the above arguments we obtain a rigorous proof of
the (strengthened) lemma.

Combining Lemmas 4.1 and 4.2 with the fact that each pair of vertices in a graph
of n vertices is connected by a shortest path that uses less thann edges, assuming
there are no negative cycles in the graph, we get that after the last iteration,F is,
with very high probability, the distance matrix of the graph. Furthermore, either
δ(i, j ) = di j , or wi j lies on a shortest path fromi to j . This is stated formally in
the following lemma:

LEMMA 4.3. If there are no negative weight cycles in the graph, then after the
last iteration ofrand-short-path, with very high probability, for every i, j ∈ V
we have

(i) fi j = δ(i, j ).
(ii) If wi j = 0, then δ(i, j ) = di j . Otherwise,1≤wi j ≤ n and δ(i, j ) =

δ(i,wi j )+ δ(wi j , j ).

PROOF. Condition (i) follows, as mentioned, from Lemma 4.2, the fact that
in the last iterations≥ n, and the fact that ifδ(i, j )< +∞, and if there are no
negative weight cycles in the graph, then there is a shortest path fromi to j that
uses at mostn− 1 edges.
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FIG. 5. Best available bounds on the functionsω(1, r, 1) andω(1, r, 1)+ (1− r ), and the function
2+ r .

Suppose now thatfi j = δ(i, j )< di j . By Lemma 4.1(ii), we get that, af-
ter the last iteration, we have 1≤wi j ≤ n and fi j ≥ fi,wi j + fwi j , j , or equiv-
alently, δ(i, j )≥ δ(i,wi j )+ δ(wi j , j ). But, by the triangle inequality, we have
δ(i, j )≤ δ(i,wi j )+ δ(wi j , j ). Thus,δ(i, j ) = δ(i,wi j )+ δ(wi j , j ), as required.

It is also easy to see that the input graph contains a negative cycle if and only if
fi i < 0 for some 1≤ i ≤ n. If there is a path fromi to j that passes though a vertex
contained in a negative cycle, we define the distance fromi to j to be−∞. Using
a standard method, it is easy to identify all such pairs inÕ(nω) time. See Galil and
Margalit [1997b] for the details.

The matrixW returned byrand-short-path contains a succinct representation
of shortest paths between all pairs of vertices in the graph. Ways for reconstructing
these shortest paths are described in the next section.

What is the complexity ofrand-short-path? The time taken by thèth iteration
is dominated by the time needed to compute the distance product of ann×m
matrix by anm× n matrix, wherem = O((n logn)/s), with entries of absolute
value at mostsM usingdist-prod. (Actually,m is a binomial random variable with
E[m] = O((n logn)/s). This, however, does not affect the analysis given below.)
If we assume thats = n1−r and M = nt , then according to Lemma 2.2, this
time isÕ(min{nt +ω(1,r,1)+ (1−r ), n2+ r }). Graphs of the best available upper bounds
on the functionsω(1, r, 1) andω(1, r, 1)+ (1 − r ) are given in Figure 5. (Also
shown there is the function 2+ r .) Note thatω(1, r, 1)+ (1− r ) is decreasing inr
while 2+ r is increasing inr . The running time of an iteration is maximized when
t +ω(1, r, 1)+ (1− r ) = 2+ r , or equivalently, whenω(1, r, 1)= 1+ 2r − t . As
there are onlyO(logn) iterations, we get:

THEOREM 4.4. Algorithmrand-short-path finds, with a very high probability,
all distances in the input graph, and a succinct representation of shortest paths
between all pairs of vertices in the graph. If the input graph has n vertices, and the
weights are all integers with absolute values at most M= nt , where t≤ 3−ω, then
its running time isÕ(n2+µ(t)), whereµ = µ(t) satisfiesω(1, µ,1)= 1+ 2µ− t .
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FIG. 6. Constructing a shortest path using a matrix of witnesses.

The term,very high probability, used in the statement of the Theorem refers to a
probability of at least 1− 1/n. It is easy to adapt the algorithm so that the success
probability would be at least 1− n−c, for any desired constantc. If M > n3−ω,
then fast matrix multiplication algorithms are never used by the algorithm and the
running time is thenÕ(n3).

Let us look more closely at the running time of the algorithm whenM = O(1).
This is the case, for example, if all the weights in the graph belong to the set
{−1, 0, 1}. The running time of the algorithm of Alon, Galil and Margalit in this
case isÕ(n(3+ω)/2), which is aboutO(n2.688). The running time of the new algo-
rithm is Õ(n2+µ), whereµ satisfiesω(1, µ,1) = 1+ 2µ. Using the naive bound
ω(1, r, 1)≤ 2+ (ω − 2)r , we get thatµ≤ 1/4− ω<0.616. Using the improved
bound of Lemma 2.3, we get thatµ≤ (α(ω − 1)− 1)/(ω+ 2α − 4)< 0.575.

COROLLARY 4.5. Algorithmrand-short-path finds, with very high probabil-
ity, all distances, and a succinct representation of shortest paths between all pairs
of vertices in a directed graph on n vertices in which all the weights are taken from
the set{−1, 0, 1} in O(n2.575) time.

5. Constructing Shortest Paths

A simple recursive algorithm,path, for constructing shortest paths is given in
Figure 6. If there are no negative weight cycles in the graph, and ifW is the matrix
of witnesses returned by a successful run ofrand-short-path, thenpath(W, i, j )
returns a shortest path fromi to j in the graph. Ifwi j = 0, then the edge (i, j ) is
a shortest path fromi to j . Otherwise, a shortest path fromi to j is obtained by
concatenating a shortest path fromi to wi j , found using a recursive call topath,
and a shortest path fromwi j to j , found using a second recursive call topath. (The
dot in next to last line in the description ofpath is used to denote concatenation.)
If there is no directed path fromi to j in the graph, thenpath(W, i, j ) returns the
“edge” (i, j ) whose weight is+∞.

THEOREM 5.1. If there are no negative weight cycles in the input graph, and
if W is the matrix of witnesses returned by a successful run ofrand-short-path,
thenpath(W, i, j ) returns a shortest path from i to j in the graph. The running
time ofpath(W, i, j ) is proportional to the number of edges in the path returned.

PROOF. For everyi, j ∈ V , let ti j be the number of the iteration ofrand-short-
path in which fi j was set for the last time. Iffi j = di j , let ti j = 0. We need the
following claim:
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CLAIM 5.2. If 1≤wi j ≤ n, thenti,wi j , twi j , j < ti j .

PROOF. Suppose thatfi j was set for the last time at the`th iteration. Letf 0
rs be

the elements of the matrixF at the beginning of thèth iteration, andf 1
rs be these

elements at the end of thèth iteration. By our assumption and by Lemma 4.3, we
get that

fi j = f 1
i j = f 0

i,wi j
+ f 0

wi j , j
,

fi j = δ(i, j ) = δ(i,wi j )+ δ(wi j , j ) .

As f 0
i,wi j
≥ δ(i,wi j ) and f 0

wi j , j
≥ δ(wi j , j ) (see Lemma 4.1(i)), we get thatf 0

i,wi j
=

δ(i,wi j ) and f 0
wi j , j
= δ(wi j , j ). Thus, fi,wi j and fwi j , j are already assigned their

final values at the beginning of the`th iteration, and thereforeti,wi j , twi j , j <` = ti j ,
as required.

We now prove Theorem 5.1 by induction onti j . If ti j = 0, thenwi j = 0, and
path(W, i, j ) returns the edge (i, j ) which is indeed a shortest path fromi to j . Sup-
pose now thatpath(W, i, j ) returns a shortest path fromr to s for everyr ands for
whichtrs<`. Suppose thatti j = `. By Claim 5.2, we get thatti,wi j , twi j , j <`. By the
induction hypothesis, the recursive callspath(W, i,wi j ) andpath(W,wi j , j ) return
shortest paths fromi to wi j and fromwi j to j . As δ(i, j ) = δ(i,wi j )+ δ(wi j , j )
(Lemma 4.3), the concatenation of these two shortest paths is indeed a shortest path
from i to j , as required.

There is, however, something unsatisfying with the behavior ofpath. While it
is true that the callpath(W, i, j ) always returns a shortest path fromi to j in the
graph, the shortest path returned is not necessarilysimple, that is, it may visit certain
vertices more than once. This may happen, of course, only if there are zero weight
cycles in the graph. It is, of course, easy to convert a nonsimple shortest path into
a simple shortest path, by removing cycles, but the running time then is no longer
proportional to the number of edges on the shortest path produced.

Another possible objection to the use ofpath is that it cannot produce shortest
paths inreal time. While it is true that a shortest path that uses` edges can be found
in O(`) time, it may also takeÄ(`) time just to find the second vertex on such
a path.

To address these two issues, we show next that the matrix of witnessesW re-
turned byrand-short-path can be easily converted into a matrix ofsuccessors(see,
e.g., Cormen et al. [2001, Chap. 25], where predecessors, instead of successors,
are considered). A matrix of successors can be easily used to construct trees of
shortest paths.

Definition5.3 (Successors). A matrix S is a matrix of successors for a graph
G = (V, E) if for every i, j ∈ V , if there is a path fromi to j in the graph, then
the calls-path(S, i, j ), wheres-path is the procedure given in Figure 7, returns a
simple shortest path fromi to j in the graph.

Algorithm wit-to-suc, given in Figure 8, receives a matrixW of witnesses re-
turned byrand-short-path, and a matrixT that gives the iteration number in which
each element ofW was set for the last time, as in the proof of Theorem 5.1. (It is
very easy, of course, to modifyrand-short-path so that it would also return this
matrix.) It returns a matrixSof successors. Algorithmwit-to-suc works correctly
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FIG. 7. Constructing a shortest path using a matrix of successors.

FIG. 8. Constructing a matrix of successors.

even if there are zero weight cycles in the graph, but not if there are negative weight
cycles in the graphs as then distances and shortest paths are not well defined.

THEOREM 5.4. If there are no negative weight cycles in the graph, if W is the
matrix of witnesses returned by a successful run ofrand-short-path, and if T is
the corresponding matrix of iteration numbers, then algorithmwit-to-suc returns
a matrix of successors. The running time of algorithmwit-to-suc is O(n2).

PROOF. Algorithm wit-to-suc begins by initializing all the elements of the
n× n matrix S to 0. It then constructs, for each iteration number`, the setT̀ of
pairs (i, j ) for which ti j = `. It is easy to construct all these sets inO(n2) by bucket
sorting. (In the description ofwit-to-suc, max(T) denotes the maximal element
in T . Note that max(T) = O(logn).) Next, for every (i, j ) such thatti j = 0, it sets
si j ← j . It then performs max(T) iterations, one of each iteration ofrand-short-
path in which values are changed.

We prove, by induction on the order in which the elements of the matrixS are
assigned nonzero values, that ifsi j 6= 0, thens-path(S, i, j ) returns a simple shortest
path fromi to j in the graph. This clearly holds afterwit-to-suc setssi j ← j for
every (i, j ) ∈ T0, as the edge (i, j ) is then a simple shortest path fromi to j in
the graph.
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Suppose thatwit-to-suc is now about to perform thewhile loop for a pair
(i, j ) for which ti j = `. If si j 6= 0, then no new entries are assigned nonzero
values. Suppose, therefore, thatsi j = 0. Let k = wi j . By Claim 5.2, we get that
tik <` and tk j <`. Thus,sik andskj are already assigned nonzero values and by
the induction hypothesis, the callss-path(S, i, k) ands-path(S, k, j ) return simple
shortest paths in the graph fromi to k, and fromk to j . Let v be the first vertex on
the paths-path(S, i, k) for which sv j 6= 0. The vertexv is well defined asskj 6= 0.
Assv j 6= 0, we get, by the induction hypothesis, thats-path(S, v, j ) traces a simple
shortest path fromv to j . The concatenation of the portion ofs-path(S, i, k) from i
to v, and ofs-path(S, v, j ) is clearly a shortest path fromi to j . It is also simple
as both portions are simple, and as for everyu on the first portion, exceptv, we
havesu j = 0, while for everyu on the second portion we havesu j 6= 0. After the
while loop corresponding to (i, j ), s-path(S, i, j ) returns this simple shortest path.
Furthermore, ifsu j is changed by thiswhile loop, thenu lies on the first portion
of this simple shortest path, ands-path(S, u, j ) is the corresponding suffix of this
simple shortest path, which is also a simple shortest path.

Finally, the complexity of the algorithm isO(n2) as each iteration of thewhile
loop reduces the number of zero elements ofSby one.

6. A Deterministic Algorithm for Unweighted Graphs

In this section, we describe a deterministic version of algorithmrand-short-path of
Section 4. The version described here works only forunweighteddirected graphs. A
slightly more complicated deterministic algorithm that works for weighted directed
graphs is described in the next section. We start with the following useful definition:

Definition6.1 (δ(i, j ) andη(i, j )). As before, letδ(i, j ) denote the distance
from i to j in the graph, that is, the minimum weight of a path fromi to j in the
graph, where the weight of a path is the sum of the weights of its edges. Letη(i, j )
denote the minimumnumber of edgeson a shortest path fromi to j .

If the graph is unweighted, thenδ(i, j ) = η(i, j ), for every i, j ∈ V . In a
weighted graph,η(i, j ) is not necessarily the distance fromi to j in the unweighted
version of the graph.

Algorithm rand-short-path implicitly used the notion ofbridging sets, which
we now formalize:

Definition6.2 (Bridging sets). Let G = (V, E) be a weighted directed graph
and lets≥ 1. A set of verticesB is said to be ans-bridging setif for every two
verticesi, j ∈ V such thatη(i, j )≥ s, that is, if all shortest paths fromi to j
use at leasts edges, there existsk ∈ B, such thatδ(i, j ) = δ(i, k)+ δ(k, j ). The
set B is said to be astrong s-bridging setif for every two verticesi, j ∈ V
such thatη(i, j )≥ s, there existsk ∈ B, such thatδ(i, j ) = δ(i, k)+ δ(k, j ) and
η(i, j ) = η(i, k)+ η(k, j ).

The difference between bridging sets and strong bridging sets is depicted in
Figure 9. All the paths shown there, schematically, are shortest paths fromi to j
although they do not all use the same number of edges. IfB is a strongs-bridging
set, and ifη(i, j ) = t and t ≥ s, that is, if the minimum number of edges on a
shortest path fromi to j is t , andt ≥ s, then there is a vertexk ∈ B that lies on
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FIG. 9. Bridging and strong bridging sets.

a shortest path fromi to j that uses exactlyt edges. The top drawing in Figure 9
illustrates the fact there may be several shortest paths fromi to j that use exactlyt
edges. A vertexk belonging toB is guaranteed to lie on at least one of them. If
B is ans-bridging set, but not necessarily a strongs-bridging set, then a vertexk
belonging toB is guaranteed to lie on a shortest path fromi to j . But, this shortest
path may use much more thant edges. This is illustrated in the bottom drawing
of Figure 9.

It is not difficult to see that ifs is an integer then we can replace the condition
η(i, j )≥ s in the definition of bridging, and strongly bridging, sets by the condition
η(i, j ) = s. Indeed, suppose the appropriate condition holds for everyu, v ∈ V
such thatη(u, v) = s. Suppose thatη(i, j ) = t > s. Consider a shortest pathp
from i to j that usest edges. Letw be thesth vertex onp, starting the count from 0.
Then, clearlyη(i,w) = s. Thus, a vertexk ∈ B is guaranteed to lie on a shortest
path fromi to w. This vertex lies also on a shortest path fromi to j , or on such a
shortest path with a minimum number of edges, as required.

Reviewing the proof of Lemma 4.2, we see that algorithmrand-short-path
produces correct results as long as the setB used in thè th iteration is astrong
(s/3)-bridging set.

LEMMA 6.3. If in each iteration ofrand-short-path the set B is a strong
(s/3)-bridging set, then all distances returned byrand-short-path are correct.

PROOF. The proof is almost identical to the proof of Lemma 4.2. We show again,
by induction oǹ , that ifη(i, j )≤ (3/2)`, then after thèth iteration of the algorithm
we have fi j = δ(i, j ). The basis of the induction is easily established. Suppose,
therefore, that the claim holds for`−1. We show that it also holds for`. Leti and j be
two vertices such that 2s/3≤ η(i, j )≤ s, wheres= (2/3)`. As in Lemma 4.2, letp
be a shortest path fromi to j that usesη(i, j ) edges, letI andJ be two vertices onp
such thatI andJ are separated, onp, bys/3 edges, and such thati andI , andJ and j ,
are separated, onp, by at mosts/3 edges (see Figure 4). AsB, the set used in thèth
iteration, is assumed to be a strong (s/3)-bridging set, and asη(I , J)≥ s/3, a vertex
k ∈ B is guaranteed to lie on a shortest path fromI to J that usesη(I , J) edges.
This shortest path fromI to J is not necessarily the portion ofp going fromI to J.
Nonetheless, we still haveδ(i, j ) = δ(i, k)+ δ(k, j ) andη(i, j ) = η(i, k)+ η(k, j ).
As η(i, k)≤ η(i, J)≤ 2s/3 andη(k, j )≤ η(I , j )≤ 2s/3, we get, by the induction
hypothesis, thatfik = δ(i, k) and fk j = δ(k, j ). After the distance product of the
`th iteration, we therefore havefi j = δ(i, j ), as required.
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FIG. 10. A deterministic algorithm for constructing ans-bridging set.

In the proof of Lemma 6.3, we made heavy use of the assumption thatB is a
strongbridging set. IfB were not a strong bridging set, we could not have deduced
thatη(i, k), η(k, j )≤ 2s/3 and the argument used in the proof would break down.
Also implicit in the proof of Lemma 4.2 is the following result whose proof we do
not repeat:

LEMMA 6.4. Let G= (V, E) be a weighted directed graph on n vertices and
let s≥ 1. If B is a random set obtained by runningrand({1, 2, . . . ,n}, (3 lnn)/s),
that is, if each vertex of V is added to B independently with probability(3 ln n)/s,
then with very high probability B is astrongs-bridging set.

We next describe a deterministic algorithm, calledfind-bridge, for finding s-
bridging sets. (Unfortunately, the sets returned byfind-bridge are not necessar-
ily strong s-bridging sets.) A description of algorithmfind-bridge is given in
Figure 10. It receives ann× n matrixW of witnesses. This matrixW should enable
the construction of shortest paths between all pairs of verticesi, j ∈V for which
η(i, j )≤ s. In other words, ifη(i, j )≤ s, thenpath(W, i, j ) produces a shortest
path fromi to j . We assume here, for simplicity, that the graph does not contain
cycles of nonpositive weight so the shortest path produced bypath(W, i, j ), when
η(i, j )≤ s, is simple. We show later how to remove this simplifying assumption.
We donotassume that the shortest path produced bypath(W, i, j ) uses a minimum
number of edges, that is, it may use more thanη(i, j ) edges.

Algorithm find-bridge uses a procedure calledsub-path that receives the ma-
trix W, two verticesi, j ∈ V and an integers. The operation ofsub-path is similar
to the operation ofpath. It tries to construct a path fromi to j using the witnesses
contained in the matrixW. It counts, however, the number of intermediate vertices
found so far on the path and stops the construction whens intermediate vertices are
encountered. A simple recursive implementation ofsub-path is given in Figure 11.
The following lemma is easily verified.

LEMMA 6.5. If a call to path(W, i, j ) constructs a simple path from i to j that
passes through t intermediate vertices, thensub-path(W, i, j, s) returns the set of
intermediate vertices on this path, if t≤ s, or a subset of s intermediate vertices on
this path, if t> s. The running time ofsub-path(W, i, j, s) is O(s).

For everyi, j ∈ V , let Ui j be the set obtained by adding the verticesi and j
to the set obtained by callingsub-path(W, i, j, s). All the elements ofUi j are
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FIG. 11. Finding up tos vertices on a shortest path fromi to j .

vertices on a shortest path fromi to j . If η(i, j ) = s, then by our assumption onW,
path(W, i, j ) returns a shortest path fromi to j . This shortest path must use at
leasts edges and contain, therefore, at leasts− 1 intermediate vertices. It follows
that |Ui j | ≥ s+ 1. Thus, if a setB hitsall the setsUi j for which |Ui j | ≥ s, that is,
if B ∩ Ui j 6= φ whenever|Ui j | ≥ s, thenB is s-bridging. Algorithmfind-bridge
collects all the setsUi j for which |Ui j | ≥ s into a collection of sets calledC. It then
calls algorithmhitting-set to find a set that hits all the sets in this collection.

Algorithm hitting-set uses the greedy heuristic to find a setB that hits all the
sets in the collectionC. As shown by Lov´asz [1975] and Chv´atal [1979], the size
of the hitting set returned byhitting-set is at most (ln1)+ 1 times the size of
the optimalfractional hitting set, where1 is the maximal number of sets that a
single element can hit. As each set in the collectionC contains at leasts elements,
there is a fractional hitting set of sizen/s. This fractional hitting set is obtained
by giving each one of then vertices ofV a weight of 1/s. As there are at mostn2

sets to hit, we get that1≤ n2. As a consequence we get thatfind-bridge returns a
bridging set of size at mostn(2 lnn+ 1)/s. hitting-set can be easily implemented
to run in time which is linear in the sum of the sizes of the sets in the collection. The
running time offind-bridge is therefore easily seen to beO(n2s). We obtained,
therefore, the following result:

LEMMA 6.6. If the matrix W can be used to construct shortest paths between
all pairs of vertices i, j ∈ V for whichη(i, j )≤ s, then algorithmfind-bridge finds
an s-bridging set of size at most n(2 ln n+ 1)/s. The running time offind-bridge
is O(n2s).

Unfortunately, the sets returned byfind-bridge are not necessarily strong bridg-
ing sets. But, if the input graph isunweighted, then ans-bridging set is also a strong
s-bridging set. Thus, if we replace the call torand in rand-short-path by

if s≤ n1/2 then
B← find-bridge(W, bs/3c)

endif

we obtain a deterministic algorithm for solving the APSP problem forunweighted
directed graphs. We call this algorithmunwght-short-path.

We compute new bridging sets only whens≤ n1/2 as computing bridging sets
for larger values ofs may consume too much time. (Recall that the running time of
find-bridge is O(n2s).) The algorithm remains correct as ans-bridging set is also
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FIG. 12. A deterministic algorithm for finding shortest paths.

ans′-bridging set for everys′ ≥ s. The use of a bridging set of size2(n1/2 logn)
in the iterations for whichs≥ n1/2 does not change the overall running time of the
algorithm, as in all these iterations the required distance product can be computed
using the naive algorithm iñO(n2.5) time. We thus get:

THEOREM 6.7. Algorithm unwght-short-path solves the APSP problem for
unweighted directed graphs deterministically iñO(n2+µ) time, whereµ<0.575
satisfiesω(1, µ,1)= 1+ 2µ.

7. A Deterministic Algorithm for Weighted Graphs

In this section, we present a deterministic version of algorithmrand-short-path for
weighted directed graphs. The algorithm, calledshort-path, is given in Figure 12.
For simplicity, we assume at first that the input graph does not contain negative
weight cycles, nor zero weight cycles.

Algorithm short-path uses a simple procedure, calleddist-prod-upd, that per-
forms a distance product, by callingdist-prod of Section 2, and updates the dis-
tances and witnesses found so far. Algorithmdist-prod-upd is given in Figure 13.
It receives then× n matricesF andW that hold the distances and witnesses found
so far. It also receives three subsetsA, B,C ⊆ V , whereV = {1, 2, . . . ,n} is the
set of all vertices. (In the calls made byshort-path, two of the setsA, B andC
would beV .) dist-prod-upd computes the distance productF [ A, B] ? F [B,C],
putting a cap ofL on the values of the entries ofF that participate in the product. It
then updates the matricesF andW accordingly. (ByF [ A, B], we obviously mean
the submatrix ofF composed of the elements whose row index belongs toA, and
whose column index belongs toB. Also, we letai denote thei th elements ofA.)
Thus, the first call todist-prod-upd in short-path computes the distance product
F [B, ∗]?F , while the second one computes the distance productF [∗, B]?F [B, ∗],
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FIG. 13. A simple procedure for updating distances and witnesses.

FIG. 14. A deterministic algorithm for constructing ans-bridging set while updating some distances.

as inrand-short-path. By Lemma 2.4, we get that the cost of these two distance
products is essentially the same.

Algorithmshort-path constructs bridging sets by calling algorithmfind-bridge-
upd given in Figure 14. Algorithmfind-bridge-upd is very similar to algo-
rithm find-bridge of Section 6. The difference is thatfind-bridge-upd calls al-
gorithmsub-path-upd, given in Figure 15, instead of algorithmsub-path called
by find-bridge.

A call to sub-path(W, i, j, s) returns a set of up tos intermediate vertices on
a path fromi to j . However, if k ∈ sub-path(W, i, j, s), it is not guaranteed
that fik, fk j < +∞, let alone fik + fk j ≤ fi j . Algorithm sub-path-upd fixes this
problem. The following lemma is easily verified.

LEMMA 7.1. If the matrices F and W satisfies the conditions fi j ≥ δ(i, j ), for
every i, j ∈ V , and fi j ≥ fi,wi j + fwi j , j whenever1≤wi j ≤ n, and ifpath(W, i, j )
traces a path from i to j , then a call tosub-path-upd(F,W, i, j, i, j, s) returns a
set of s intermediate vertices on this path, or the set of all intermediate vertices if
there are less than s of them. If k is one of the vertices returned by the call, then
after the call we have fik + fk j ≤ fi j . The matrices F and W continue to satisfy
the specified conditions. Furthermore, if before the call we have fi j = δ(i, j ), then
after the call to we have fik = δ(i, k), fk j = δ(k, j ) andδ(i, j ) = δ(i, k)+ δ(k, j ).

Before proving the correctness of algorithmshort-path, we prove a useful ad-
ditional property of bridging sets.
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FIG. 15. Finding up tos vertices on a shortest path fromi to j while updating distances.

LEMMA 7.2. LetB be ans-bridging set of a graphG = (V, E) with no nonpos-
itive weight cycles. Then, ifi, j ∈ V andη(i, j )≥ s, then there is a vertexk ∈ B
such thatδ(i, j ) = δ(i, k)+ δ(k, j ) andη(i, k)≤ s.

PROOF. By the definition of bridging sets, we get that there existsk1 ∈ B such
thatδ(i, j ) = δ(i, k1)+ δ(k1, j ). If η(i, k1)≤ s, we are done. Assume, therefore, that
η(i, k1) > s. Let k′1 be next to last vertex on a shortest path fromi to k1. Clearly,
k′1 6= k1, δ(i, j ) = δ(i, k′1)+ δ(k′1, j ) andη(i, k′1)≥ s. Thus, there existsk2 ∈ B such
that δ(i, k′1) = δ(i, k2)+ δ(k2, k′1), and therefore alsoδ(i, j ) = δ(i, k2)+ δ(k2, j ).
There is, therefore, a shortest path fromi to j that passes throughk2, then throughk′1,
and then throughk1. As there are no nonpositive weight cycles in the graph, a shortest
path must be simple and thereforek2 6= k1. In general, suppose that we have found
so farr distinct verticeskr , kr−1, . . . , k1 ∈ B such that there is a shortest path fromi
to j that visits all these vertices. Ifη(i, kr )≤ s, then we are done. Otherwise, we
can find another vertexkr + 1 ∈ B, distinct from all the previous vertices, such that
there is a shortest path fromi to j that passes thoughkr + 1, kr , kr−1, . . . , k1. As the
graph is finite, this process must eventually end with a vertex fromB satisfying
our requirements.

THEOREM 7.3. Algorithmshort-path finds all distances, and a succinct repre-
sentation of shortest paths between all pairs of vertices in a graph with no nonpos-
itive weight cycles. If the input graph has n vertices and the edge weights are taken
from the set{−M, . . . ,0, . . . ,M}, where M= nt and t≤ 3− ω, then its running
time isÕ(n2+µ(t)), whereµ = µ(t) satisfiesω(1, µ,1)= 1+ 2µ− t .

PROOF. We prove, by induction, that, after thèth iteration ofshort-path,
we have:

(i) fi j ≥ δ(i, j ), for everyi, j ∈ V .
(ii) If wi j = 0, then fi j = di j . Otherwise, 1≤wi j ≤ n and fi j ≥ fi,wi j + fwi j , j .

(iii) If η(i, j )≤ 2`, then fi j = δ(i, j ).

The proofs of properties (i) and (ii) are analogous to the proofs of properties (i)
and (ii) of Lemma 4.1. We concentrate, therefore, on the proof of property (iii). It is
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FIG. 16. The correctness proof ofshort-path.

easy to check that property (iii) holds before the first iteration. We show now that if
it holds at the end of the (`− 1)st iteration, then it also holds after the`th iteration.

Let i, j ∈ V be such thatη(i, j )≤ 2`. If η(i, j )≤ 2`−1, then the condition
fi j = δ(i, j ) holds already after the (` − 1)st iteration. Assume, therefore,
that 2`−1<η(i, j )≤ 2`. Let p be a shortest path fromi to j that usesη(i, j )
edges. LetI be the vertex onp for which η(i, I ) = 2`−1. (See Figure 16.)
Note thatη(I , j )≤ 2`−1. By the induction hypothesis, after the (` − 1)st itera-
tion, we havefi I = δ(i, I ) and f I j = δ(I , j ). As B is an 2`−1-bridging set, we
get, by Lemma 7.2, that there existsk ∈ B such thatδ(i, I ) = δ(i, k)+ δ(k, I )
andη(i, k)≤ 2`−1. Furthermore, ask ∈ sub-path-upd(W, i, I , i, I , s/2) ∪ {i, I },
we get, by Lemma 7.1, thatfik = δ(i, k) and fk I = δ(k, I ). (The fact that
fik = δ(i, k) follows also from the induction hypothesis, asη(i, k)≤ 2`−1.) As
η(i, I ), η(i, k)≤ 2`−1, we get that|δ(i, I )|, |δ(i, k)| ≤2`−1M . Thus, |δ(k, I )| =
|δ(i, I )− δ(i, k)| ≤ |δ(i, I )| + |δ(i, k)| ≤2`M . To sum up, we have

fik = δ(i, k), fk I = δ(k, I ), f I j = δ(I , j )
| fik | ≤2`−1M, | fk I | ≤2`M, | f I j | ≤2`−1M

As k ∈ B and I , j ∈ V , after the first distance product of the`th iteration, we
get that

fk j ≤ fk I + f I j = δ(k, I )+ δ(I , j ) = δ(k, j ) ,

and thusfk j = δ(k, j ) and| fk j |< 2`+ 1M . As i, j ∈ V andk ∈ B, after the second
distance product, we get that

fi j ≤ fik + fk j = δ(i, k)+ δ(k, j ) = δ(i, j ) ,

and thusfi j = δ(i, j ), as required.

Finally, we describe the changes that should be made toshort-path if we want
it to detect negative weight cycles, and continue to work in the presence of zero
weight cycles. Detecting negative weight cycles is easy. We simply check, after
each iteration, whetherfi i < 0, for somei ∈ V . Making short-path work in the
presence of zero weight cycles requires more substantial changes.

Before describing the changes required, let us review the problems caused by
zero weight cycles. First, as mentioned in Section 5, the shortest paths returned
by path(W, i, j ) are not necessarily simple. Thus, calls tosub-path(W, i, j, s)
andsub-path-upd(W, i, j, i, j, s) may return multisets with less thans distinct
elements. As a consequence, the bridging set returned byfind-bridge(W, s) and
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FIG. 17. A simple scaling algorithm.

by find-bridge-upd(F,W, s) are not necessarily of sizeO(n logn/s). Second,
Lemma 7.2, which plays a crucial role in the correctness proof of algorithm
short-path, no longer holds in the presence of zero weight cycles.

To fix these problems, we use an approach that is similar to the one used in
Section 5. After each iteration ofshort-path, we call algorithmwit-to-suc convert
the matrix of witnessesW into a matrixS of successors. As the complexity of
wit-to-suc is O(n2), the extra cost involved is negligible. Even thoughW does not
describe yet shortest paths between all pairs of vertices of the graph, it is not difficult
to verify that if for somei, j ∈ V the matrixW describes a shortest path fromi to j in
the graph, thenSwould describe asimpleshortest path fromi to j . UsingS instead
of W, it is then easy to find, inO(s) time, thefirst sintermediate vertices on a shortest
path fromi to j . The bridging set returned byfind-bridge-upd would then satisfy
the condition of Lemma 7.2 and the correctness of the algorithm would follow.

8. Almost Shortest Paths

In this section we show that estimations with a relative error of at mostε of all
the distances in a weighted directed graph onn vertices withnonnegativeinteger
weights bounded byM can be computed deterministically iñO((nω/ε) · log M)
time. If the weights of the graphs are nonintegral, we can scale them so that the
minimal non-zero weight would be 1, multiply them by 1/ε, round them up and
then run algorithm with the integral weights obtained. The running time of the
algorithm would then bẽO((nω/ε) · log(W/ε)), as claimed in the abstract and in
the introduction.

For unweighted directed graphs, it is easy to obtain such estimates inÕ(nω/ε)
time. Let A be the adjacency matrix of the graph and letε > 0. By computing the
Boolean matricesAb(1+ ε)

`c andAd(1+ ε)
`e, for every 0≤ `≤ log1+ ε n, we can easily

obtain estimates with a relative error of at mostε. The time required to compute all
these matrices is̃O(nω/ε). We next show that almost the same time bound can be
obtained when the graph is weighted. The algorithm is again quite simple.

The main idea used to obtain almost shortest paths isscaling. A very simple
scaling algorithm, calledscale, is given in Figure 17. The algorithm receives an
n× n matrix A containingnonnegativeelements. It returns ann× n matrix A′. The
elements ofA that lie in the interval [0,M ] are scaled, and rounded up, into the
R+ 1 different values 0, 1, . . . , R. We refer toR as theresolutionof the scaling.

We next describe a simple algorithm for computingapproximatedistance prod-
ucts. The algorithm, calledapprox-dist-prod, is given in Figure 18. It receives two
matricesA andB whose elements are nonnegative integers. It usesadaptive scaling
to compute a very accurate approximation of the distance product ofA andB.
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FIG. 18. Approximate distance products.

LEMMA 8.1. LetC̄ be the distance product of the matrices obtained from the
matricesA andB by replacing the elements that are larger thanM by +∞. Let M
and R be powers of two. LetC be the matrix obtained by callingapprox-dist-
prod(A, B,M, R). Then, for everyi, j , we havēci j ≤ ci j ≤ (1+ (4/R))c̄i j .

PROOF. The inequalities̄ci j ≤ ci j follow from the fact that elements are always
rounded upwards byscale. We next show thatci j ≤ (1+ (4/R))c̄i j . Let k be a
witness forc̄i j , that is,c̄i j = aik + bkj . Assume, without loss of generality, that
aik ≤ bkj . Suppose that 2s−1< bkj ≤ 2s, where 1≤ s≤ log2 M (the casesbkj = 0
andbkj = 1 are easily dealt with separately). Ifs≤ log2 R, then in the first iteration
of approx-dist-prod, whenr = log2 R, we getci j = c̄i j . Assume, therefore, that
log2 R≤ s≤ log2 M . In the iteration ofapprox-dist-prod in which r = s, we
get that

2r ·a′ik
R
≤aik + 2r

R
,

2r ·b′k j

R
≤ bkj + 2r

R
.

Thus, after the call todist-prod, we have

ci j ≤ 2r ·a′ik
R
+ 2r ·b′jk

R
≤aik + bkj + 2r + 1

R
≤ (1+ 4

R
)c̄i j ,

as required.

If A andB are twon× n matrices, then the complexity ofapprox-dist-prod is
Õ(R·nω · log M). As we will usually haveR¿ M , algorithmapprox-dist-prod
will usually be much faster thandist-prod, whose complexity isÕ(M ·nω).

Algorithm approx-short-path, given in Figure 19, receives as input ann× n
matrix D representing the non-negative edge weights of a directed graph onn
vertices, and an error boundε. It computes estimates, with a stretch of at most
1+ ε, of all distances in the graph. Algorithmapprox-short-path starts by letting
F ← D. It then simply squaresF , using distance products,dlog2 ne times. Rather
than compute these distance products exactly, it usesapprox-dist-prod to obtain
very accurate approximations of them.
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FIG. 19. Approximate shortest paths.

Algorithm approx-short-path uses a resolutionR that is the smallest power of
two greater than or equal to 4dlog2 ne/ ln(1+ ε). Thus,R = O((logn)/ε). Using
Lemma 8.1, it is easy to show by induction that the stretch of the elements ofF
after the`th iteration is at most (1+ 4

R)`. After dlog2 ne iterations, the stretch of
the elements ofF is at most(

1+ 4

R

)dlog2 ne
≤
(

1+ ln(1+ ε)
dlog2 ne

)dlog2 ne
≤ 1+ ε .

As R = O((logn)/ε), the complexity of each approximate distance product
computed byapprox-short-path is Õ((nω/ε)·log M). As onlydlog2 ne such prod-
ucts are computed, this is also the complexity of the whole algorithm. We have thus
established:

THEOREM 8.2. Algorithm approx-short-path runs in Õ((nω/ε) · log M) time
and produces a matrix of estimated distances with a relative error of at mostε.

As described, algorithmapprox-short-path finds approximate distances. It is
easy to modify it so that it would also return a matrixW of witnesses using which
approximate shortest paths could also be found.

9. Concluding Remarks

The results of Seidel [1995] and Galil and Margalit [1997a, 1997b] show that the
complexity of the APSP problem for unweightedundirectedgraphs isÕ(nω). The
exact complexity of the directed version of the problem is not known yet. In view of
the results contained in this article, there seem to be two plausible conjectures. The
first is Õ(n2.5). The second isÕ(nω). Galil and Margalit [1997a] conjecture that
the problem for directed graphs isharder than the problem for undirected graphs.
Proving, or disproving, this conjecture is a major open problem.

Another interesting open problem is finding the maximal value ofM for which
the APSP problem with integer weights of absolute value at mostM can be solved
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in subcubic time. Our algorithm runs in subcubic time forM < n3−ω, as does the
algorithm of Takaoka [1998]. Can the APSP problem be solved in subcubic time,
for example, whenM = n?

Finally, we note that the shortest paths returned by the algorithms presented in
this article do not necessarily use a minimum number of edges. Producing shortest
paths that do use a minimum number of edges seems to be a slightly harder problem.
For more details, see Zwick [1999].
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