All Pairs Shortest Paths using Bridging Sets
and Rectangular Matrix Multiplication

URI ZWICK

Tel-Aviv University, Tel-Aviv, Israel

Abstract. We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem
for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms.

Thefirstalgorithm solves the APSP problem for weighted directed graphs in which the edge weights
are integers of small absolute value@(n?**) time, wherey satisfies the equation(1, 1, 1) =
1+ 2u andw(1, i, 1) is the exponent of the multiplication of anx n* matrix by ann* x n matrix.
Currently, the best available bounds @(i, ., 1), obtained by Coppersmith, imply that< 0.575.

The running time of our algorithm is therefo@(n>°7%). Our algorithm improves on th@(n®+)/2)
time algorithm, where = (1, 1, 1) < 2.376 is the usual exponent of matrix multiplication, obtained
by Alon et al., whose running time is only known to B¢n?¢88),

The second algorithm solves the APSP probimostexactly for directed graphs witirbitrary
nonnegative real weights. The algorithm rungdf(n®/¢) log(W/¢)) time, wherec > 0 is an error
parameter antlV is the largest edge weight in the graph, after the edge weights are scaled so that the
smallest non-zero edge weight in the graph is 1. It returns estimates of all the distances in the graph
with a stretch of at most 4 €. Corresponding paths can also be found efficiently.

Categories and Subject Descriptors: F.284lysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and ProblemsSemputations on discrete structurés.2.2 Discrete Mathe-
matics]: Graph Theory—graph algorithms

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Matrix multiplication; shortest paths

1. Introduction

The All Pairs Shortest Pathg APSP) problem is one of the most fundamental
algorithmic graph problems. The complexity of the fastest known algorithm for

A preliminary version of this article appeared as1Zk, U. 1998. All pairs shortest paths in weighted
directed graphs—Exact and almost exact algorithm®rbteedings of the 39Annual IEEE Sym-
posium on Foundations of Computer Scie(fealo Alto, Calif.). IEEE Computer Society Press, Los
Alamitos, Calif., pp. 310-319.

This work was supported in part by the Israel Science Foundation founded by the Israel Academy of
Sciences and Humanities.

Author’s address: Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel,
e-mail: zwick@math.tau.ac.il.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this worked owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
afee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax+1 (212) 869-0481, or permissions@acm.org.

© 2002 ACM 0004-5411/02/0500-0289 $5.00

Journal of the ACM, Vol. 49, No. 3, May 2002, pp. 289-317.

290 URI ZWICK

solving the problem for weighted directed graphs with arbitrary real weights is
O(mn+ n?logn), wheren and m, respectively, are the number of vertices and
edges in the graph. This algorithm is composed of a preliminary step, due to
Johnson [1977], in which cycles of negative weight are found and eliminated,
and a nonnegative weight function is found that induces the same shortest paths.
The algorithm then proceeds by running Dijkstra’s single source shortest paths al-
gorithm [Dijkstra 1959], implemented using Fibonacci heaps [Fredman and Tarjan
1987], from each vertex of the graph. For a clear description of the whole algorithm,
see Cormen et al. [2001, Chap. 21, 25, and 26].

For directed graphs with nonnegative edge weights, the running time of the
above algorithm can be reduced @m*n + n?logn), wherem* is the number
of edges that participate in shortest paths [Karger et al. 1993; McGeoch 1995].
For undirected graphs with nonnegative integer edge weights, a running time of
O(mn) can be obtained by running a recent single source shortest paths algorithm
of Thorup [1999; 2000] from each vertex of the graph.

The running time of all the above mentioned algorithms may be as high as
Q(n?). Can the APSP problem be solved in subcubic time? Fredman [1976] showed
that the APSP problem for weighted directed graphs can be salwedniformly
in O(n?®) time. More precisely, for every, there is a program that solves the
APSP problem for graphs with vertices using at mosd(n>°) comparisons, ad-
ditions and subtractions. But, a separate program has to be used for each input
size. Furthermore, the size of the program that works on graphsnwitirtices
may be exponential im. Fredman used this result to obtain a uniform algo-
rithm that runs inO(n3((log logn)/ logn)¥/3) time. Takaoka [1992] slightly im-
proved this bound taD(n3((loglogn)/logn)¥?). These running times are just
barely subcubic.

The APSP problem is closely related to the problem of computing the min/plus
product, ordistance produgtas we shall call it, of two matrices. Kk = (a;) and
B = (byj) are twon x n matrices, then their distance prodct= AxBisann x n
matrix C = () such that; = ming_, {a + by}, for 1<i, j <n. A weighted
graphG = (V, E) onn vertices can be encoded asran n matrix D = (d;;) in
whichd;; is the weight of the edge,(j), if there is such an edge in the graph, and
dij = + oo, otherwise. We also let; = 0, for 1<i <n. Itis easy to see thdd",
thenth power ofD with respect to distance products, is a matrix that contains the
distances between all pairs of vertices in the graph (assuming there are no negative
cycles). The matriXD" can be computed usingdog, n] distance products. Itis, in
fact, possible to show that the distance malixcan be computed in essentially the
same time required for just one distance product (see Aho et al. [1974, Sect. 5.9]).

Two n x n matrices over aing can be multiplied usingd(n®) algebraic oper-
ations, wherev is the exponent of square matrix multiplication. The naive matrix
multiplication algorithm shows that < 3. The best upper bound enis currently
w < 2.376 [Coppersmith and Winograd 1990]. The only lower bound available
on w is the naive lower bound > 2. Unfortunately, the fast matrix multiplica-
tion algorithms cannot be used directly to compute distance products, as the set
of integers, or the set of reals, is not a ring with respect to the operations min
and plus.

Alon et al. [1997] were the first to show that fast matrix multiplications al-
gorithms can be used to obtain improved algorithms for the APSP problem
for graphs with small integer edge weights. They obtained an algorithm whose

All Pairs Shortest Paths 291

running time isO(n®+«/2)L for solving the APSP problem for directed graphs
with edge weights taken from the det1, 0, 1}. Galil and Margalit [1997a, 1997Db]

and Seidel [1995] obtaine@®(n®) time algorithms for solving the APSP problem

for unweightedundirectedgraphs. Seidel’s algorithm is much simpler. The algo-
rithm of Galil and Margalit has the advantage that it can be extended to handle small
integer weights. The running time of their algorithm, when used to solve the APSP
problem for undirected graphs with edge weights taken from th@sgt. .., M},

is O(M©@+1/2n) An improved time bound ob(Mn®) for the same problem was
recently obtained by Shoshan and Zwick [1999].

In this article, we present an improved algorithm for solving the APSP prob-
lem for directed graphs with edge weights of small absolute value. The improved
efficiency is gained by usinigridging setsand by usingectangularmatrix multi-
plications instead of square matrix multiplications, as used by Alon et al. [1997].
We note that similar ideas were used by Ullman and Yannakakis [1991] in their
parallel transitive closure algorithm, and by Henzinger and King [1995] in their
dynamic transitive closure algorithm.

Itis possible to reduce a rectangular matrix multiplication into a number of square
matrix multiplications. For example, the task of computing the product of:am
matrix by anm x n matrix is easily reduced to the task of computing rf)?
products of twan x m matrices. The running time of our algorithm, if we use this
approach, i€9(n2*“-»)) which is O(n?619), if we use the estimate < 2.376.
However, amore efficient |mplementat|on is obtained if we compute the rectangular
matrix multiplications directly usmg the fastest rectangular matrix multiplication
algorithms available. The running time of the algorithm is tl@z(rm““) where
u satisfies the equation(l, 1, 1) = 1+ 2u, wherew(l, u, 1) is the exponent of
the multiplication of am x n* matrix by ann* x n matrix? Currently, the best
available bounds om(1, 1, 1), obtained by Coppersmith [1997] and by Huang and
Pan [1998], imply thaft < 0.575. The running time of our algorithm is therefore
o(n* 575) and possibly better.

If o = 2, as may turn out to be the case, then the running time of both our
algorithm and the algorithm of Alon et al. [1997] would I(n?°). However,
the runnrng time of our algorithm may bié(n2 %) even ifw > 2. To show that the
running time of our algorithm i©(n%®), it is enough to show thai(1, 1/2, 1) =
that is, that the product of anx n%? matrix by am?¥? x n matrix can be performed
in O(nz) time. Coppersmith [1997] showed that the product ohann®2°* by an
n%2% » n matrix can be computed i®(n?) time.

The algorithm of Alon etal. [1997] can also handle integer weights taken from the
set{—M,...,0,..., M}, thatis, mteger weights of absolute value at mdstThe
running time of their algorithm is the® (M (@~D/2n@+e)/2) jf M < n@G-e)/(@+1),
andO(MnG»=3)/(@+1)) jf n@-e)/(@+1) < M, Takaoka [1998] obtained an algorlthm
whose running time i©(M¥3n®+/3). The bound of Takaoka is better than the
bound of Alon et al. for larger values 8. The running time of Takaoka’s algorithm
is subcubic foM < n®—<,

Our algorithm can also handle small integer weights, that is, weights taken
from the set{—M,...,0,..., M}. If rectangular matrix multiplications are

1 Throughout this articleQ(f (n)) stands forO(f (n) log® n), for somec > 0.
2In generalw(r, s, t) is the exponent of the multiplication of a8 x n" matrix by ann™ x n' matrix.

292 URI ZWICK

reduced to square matrix multlpllcatlons then the running time of the algorithm
is O(MY/(4-0)n2+1/(4-0)) This running time is again subcubic fof < n® but,

for every 1< M < n®-¢, the running time of our algorithm is faster than both the
algorithms of Alon et aI. and of Takaoka. The running time is further reduced
if the rectangular matrix multiplications required by the algorithm are computed
usmg the best available algorithm. M = n', wheret <3— o, then the run-
ning time of the algorithm iO(n2+#®), wherex = wu(t) satisfies the equation
w(l, w,1)=142u—t.

The new algorithm for solving the APSP problem for graphs with small integer
weights is extremely simple and natural, despite the somewhat cumbersome bounds
on its running time. We already noted that to compute all the distances in a weighed
graph om vertices represented by the matixt is enough to square the matilix
about log n times with respect to distance products. It turns out that if we are
W|II|ng to repeat this process, say, logn times, then in theth iteration, instead of
squaring the current matrix, it is enough to choose &sef roughlym; = (2/3)'n
columns of the current matrix and multiply them by the correspondingws of
the matrix. In fact, a randomly chosen set of abautcolumns would be a good
choice with a very high probability! We have thus replaced the product ohtwa
matrices in theth iteration by a product of an x m; matrix by anm; x n matrix.

To convert distance products of matrices into normal algebraic products, we use
a technique suggested in Alon et al. [1997] (see also Takaoka [1998]), based on a
previous idea of Yuval [1976]. Suppose that= (a;) andB = (bj;) are twon x n
matrices with elements taken fromthe seM, ..., 0, ..., M}. We convertA and
B into twon x n matricesA’ = (a;) andB’ = (b’)whereaI = (n+1)M-3 and

= (n+21)MPi_ It is not difficUlt to see that the distarice productAdfnd B
can be inferred from the algebraic productAfand B’ (see the next section). We
pay, however, a high price for this solution. Each elemerodnd B’ is a huge
number that abouM logn bits, or aboutM words of logn bits each, are needed
for its representation. An algebraic operation on elements of the makicesl B’
cannotbe viewed therefore as a single operation. Each such operation can be carried
out, however, inO(M logn) time. We would have to take this factor into account
in our complexity estimations.

Our results indicate that it may be possible to solve the APSP problem for di-
rected graphs with small integer weightsiformlyin G(n%5) time. Even if this
were the case, there would still be a gap between the complexities of the directed
and undirected versions of the APSP problem. As mentioned, the APS$IRdBr
rectedgraphs with small integer weights can be solvedin®) time, as shown
by Seidel [1995] and by Galil and Margalit [1997a, 1997b]. (See also Shoshan and
Zwick [1999].)

We next show that the gap between the directed and the undirected versions of
the APSP problem can be closed, for graphs with nonnegative edge weights, if we
are willing to settle fomapproximateshortest paths. We say that a path between two
verticesi and j is of stretch - ¢ if its length is at most % ¢ times the distance
fromi to j. It is fairly easy to see that paths of stretch-& between all pairs
of vertices of arunweighteddirected graph can be computed@(n®/¢) time.

(This fact is mentioned in Galil and Margalit [1997a]). Stretch two paths, or at least
stretch two distances, for example, may be obtained by computing the matfices
for 1<r <Tlog, n], whereA is the adjacency matrix of the graph, and Boolean
products are used this time.

All Pairs Shortest Paths 293

We extend this result and obtain an algorithm for finding stretghelpaths
between all pairs of vertices of a directed graph vétbitrary nonnegativereal
weights. The running time of the algorithm @&((n“/¢)-log(W/€)), whereW is
the largest edge weight in the graph after the edge weights are scaled so that the
smallest nonzero edge weight is 1. Our algorithm uses a siagaptive scaling
technique. Itis observed by Dor et al. [2000] that for any1, computing stretch
distances between all pairs of vertices in an unweighted directed grapreotices
is at least as hard as computing the Boolean product ofnt¥@ox n/3 matrices.

Our result is therefore very close to being optimal.

Algorithms for approximating the distances between all pairs of vertices in a
weightedundirectedyraph were obtained by Cohen and Zwick [2001]. They present
an O(n?) algorithm for finding paths with stretch at most 3, @@n’/3) algorithm
for finding paths of stretch/8, and anO(n*?m%?) algorithm for finding paths
of stretch 2. The algorithms of Cohen and Zwick [2001] use ideas obtained by
Aingworth et al. [1999] and by Dor et al.[2000] who designed algorithms that ap-
proximate distances in unweighted undirected graphs with a smditiveerror.

As can be seen from their running times, these algorithms are all purely combina-
torial. They do not use fast matrix multiplication algorithms. It is also observed in
Dor et al. [2000] that for any £ ¢ < 2, computing stretch distances between all
pairs of vertices in an unweighted undirected grapmmertices is again at least

as hard as computing the Boolean product of tw8 x n/3 matrices. Foe < 1,

our algorithm is therefore close to optimal even for undirected graphs.

The rest of the article is organized as follows: In the next section, we present
an algorithm that uses fast matrix multiplication to speed up the computation of
distance products. In Section 3, we introduce the notiowitfessegor distance
products. Such witnesses are used to reconstruct shortest paths. In Section 4, we
present a simpleandomizedalgorithm for solving the APSP problem in directed
graphs with small integer weights. In Section 5, we explain how the shortest paths
are constructed. In Section 6, we introduce the notidorinfging setsand explain
how the randomized algorithm of the previous section can be converted into a
deterministic algorithm, if the input graph is unweighted. A deterministic algorithm
for weighted graphs is then given in Section 7. In Section 8, we present the new
algorithm for obtaining an almost exact solution to the APSP problem for directed
graphs with arbitrary nonnegative real weights. Finally, we end in Section 9 with
some concluding remarks and open problems.

2. Distance Product of Matrices
We begin with a definition of distance products.

Definition2.1 (Distance Products Let A be ann x m matrix andB be an
m x nmatrix. Thedistance produadf AandB, denotedA « B, inann x n matrixC
such that

m
Cj = rkni?{aak+bk,—} , for 1<i,j=<n.
In this definition, and in the rest of the article, we use the convention that matrices

are denoted by uppercase letters, and that the elements of a matrix are denoted by
the corresponding lowercase letter.

294 URI ZWICK

algorithm dist-prod(A, B, M)

A is an n X m matriz and B is an m X n matriz, where m = n", whose elements
are integers. All entries of A and B of absolute value greater than M are replaced
by oc. O(n""(L’T*l)) is the time required to compute the algebraic product of an

n X n" matriz by an n” X n matriz. The algorithm returns an n X n matriz C
which is the distance product of A and B.

if MnpeLnl) < p2+r
then
al, — {(m+ M= if Ja| < M
I 0 otherwise
M—b;; i |p..
b’..H{(m-i-l) iaf bl <M
“ 0 otherwise
C’ « fast-prod(4’, B)
cij — {QM = log (1) cf;) if ;>0
+oo otherwise
else
Cij + min}® {aix +bij} ,1<i,5<n.

endif

return C

Fic. 1. Computing the distance product of two matrices.

The distance product & andB can be computed naively i@(n’m) time. Alon
et al. [1997] (see also Takaoka [1998]) describe a way of using fast matrix multi-
plication, and fast integer multiplication, to compute distance products of matrices
whose elements are taken fromthe{seM, ..., 0,..., M} U 4 oo} . The running
time of their algorithm, when applied to rectangular matricegQ {@1n®®"1),
wherem = n". Here,O(n®"-1) is the number of algebraic operations required to
compute the standard algebraic product afiann” matrix by am" x n matrix. We
see, therefore, that the running time of this algorithm depends heavil.dfor
large values oM the naive algorithm, whose running time is independentiof
is faster.

Algorithm dist-prod, whose description is given in Figure 1, uses the faster of
these two methods to compute the distance product ofam matrix A and an
m x n matrix B whose elements are integers. Wente= n". Elements inA andB
that are of absolute value greater thdnare treated as if they werg oco. (This
feature is used by the algorithms described in the subsequent sections.) Algorithm
fast-prod, called bydist-prod, computes the algebraic product of two integer
matrices using the fastest rectangular matrix multiplication algorithm available,
and using the Sarihage—Strassen [1971] algorithm for integer multiplication.
(See also Aho et al. [1974].)

LEMMA 2.2. Algorithmdist-prod computes the distance product of amx m"
matrix by an h x n matrix whose finite entries are all of absolute value at most M
in O(min{Mn®@"-1) n2+1}) time.

PROOF. If n?*" < Mn®"D, thendist-prod computes the distance product
of A andB using the naive algorithm that runs@(n?*") time and we are done.

All Pairs Shortest Paths 295

Assume, therefore, thatin®®"Y) <n2+" To see that the algorithm correctly
computes the distance product &f and B in this case, note that, for every
1<i, j <n,we have

m
¢ = Z(nH_ 1)2M—(@i +b)
k=1

where indices for which g, = +oo orbyj = +oo are excluded from the summa-
tion, and therefore

m
Gj = m_in{aik-i-bkj} = 2M — [logm 1) Cij | -

We next turn to the complexity analysis. Mn®(r1 < n2+7 thenfast-prod
performsO(n“(:"-1) arithmetical operations o®(M log n)-bit integers. (To avoid
getting large intermediate results, we perform these multiplications modulo, say,
(m+1)*M+1) The Sclohhage—Strassen integer multiplication algorithm multi-
plies two k-bit integers usingO(k logkloglogk) bit operations. Lettingk =
O(M logn), we get that the complexity of each arithmetic operatid@ (M logn).
Finally, the logarithms used in the computationcgfcan be easily implemented
using binary search. The complexity of the algorithm in this case is therefore
O(Mn®@rD) as required. [J

There is, in fact, a slightly more efficient way of implementiiagt-prod. In-
stead of computing the product éf and B’ using multiprecision integers, we can
compute the product o&' and B’ modulo aboutM different prime numbers with
about logn bits each and then reconstruct the result using the Chinese remainder
theorem. This reduces the running time, however, by only a polylogarithmic factor.

What is known aboub(1, r, 1), the exponent of the multiplication of anx n'
matrix by ann" x n matrix? Note thatv = (1, 1, 1) is the famous exponent
of (square) matrix multiplication. The best bound enis currentlyw < 2.376
[Coppersmith and Winograd 1990]. It is easy to see that a product af>an’
matrix by ann™ x n matrix can be broken into?~") products ofi" x n" matrices,
and can therefore by computed @(n?*"-2)) time. It follows, therefore, that
w(l,r,1)<2+4r(w — 2). Better bounds are known, however. Coppersmith [1997]
showed that the product of anx n®2°* matrix by amn®2% n matrix can be com-
puted usingd(n?) arithmetical operations. Let = suf0<r <1 : o(Lr, 1) =
24 0(1)}. It follows from Coppersmith’s result that > 0.294. Note that if
w = 2+ 0(1), thena = 1. An improved bound fow(1,r, 1), fore <r <1 can be
obtained by combining the boundgl, 1, 1) < 2.376 andw(1, @, 1) = 2+ 0(1).

The following lemma is taken from Huang and Pan [1998]:

LEMMA 2.3. Letw = w(1,1,1)<2376 and leta = sugO<r <1 :
w(1,r,1)=2+0(1)} > 0.294 Then

1r1) < 2+0(1) if 0<r <aq,
oL.r, 1) = 2492 —a)+0(1l) if a<r<Ll
Note that the upper bound @#(1, r, 1) given in Lemma 2.3 is a piecewise linear
function. (See Figure 5 in Section 4.) Another well-known fact (see, e.g., Pan [1985]

or Burgisser et al. [1997]) regarding matrix multiplication, used in later sections, is
the fact that(r, s, t), the exponent of computing the product ofrénx n® matrix

296 URI ZWICK

and ann® x n' matrix, does not change if the order of its arguments is changed.
In particular:

LEMMA 24. w(l,1r)=w(lr,1)=w(,1,1).

In other words, the cost of computing the product ofrar n" matrix by an
n" x n matrix, and the cost of computing the product ofrar n matrix by an
n x N" matrix are asymptotically the same.

3. Witnesses for Distance Products

Next, we introduce the notion ofitnessedor distance products of matrices.
Witnesses for distance products are used to reconstruct shortest paths.

Definition3.1 (Witnesseps Let A be ann x m matrix andB be anm x n ma-
trix. An n x n matrix W is said to be a matrix of witnesses for the distance product
C = Ax Bifforevery 1<i,] <nwe have Ixw;; <mandgc; = A w;; +hNij,j.

Using ideas of Seidel [1995], Galil and Margalit [1993], and Alon and Naor
[1996], itis easy to extend algorithdist-prod so thatitwould also return a matrix of
witnesses. The running time dist-prod would increase by only a polylogarithmic
factor. The details are sketched below.

There is a simple, but expensive, way of computing withesses for the distance
productC = A x B, where A is ann x m matrix, andB is anm x n matrix.

Let A" = (g)) and B’ = (Iy;) be matrices such tha; = ma; +j — 1 and

bl = mbyi, for every I<i < n and I<j<m.lfwe compute the distance product
C,J A’* B’, then|C’/m] is the distance product &x B and C’' modm) + lisa
corresponding matrix of withesses. Furthermore, all the witnesses in this matrix are
the smallest possiblavitnesses. The drawback of this approach is that the entries
of A andB are multiplied bym and this may slow down the operatidist-prod

by a factor ofm, which may be a huge factor.

There is, however, a much more efficient way of finding witnesses. We show, at
first, how to find withesses for elements that hameguewitnesses. For £ k<m
and 1< ¢ < log, m] + 1, we letbit,(k) be thefth bit in the binary representation
of k. (For concreteness, assume thit (k) is the least significant bit in the repre-
sentation ok.) For 1<¢ <Tlog,m] + 1, letl, = {1<k<m | bit,(k) = 1}. We
also need the following definition, which is also used in subsequent sections:

Definition3.2 (Sampling. Let A be ann x m matrix, and letl €{1,2,...,
m}. Then,A[x, 1] is defined to be the matrix composed of the columné@fhose
indices belong td . Similarly, if B is anm x n matrix, thenBJl, %] is defined to
be the matrix composed of the rowsBfwhose indices belong to.

To find witnesses for all elements & = B x C that have a unique wit-
ness, we compute th@(log m) d|stance product€, = AZ[)* l,] = B[l,, %], for
1<¢<Tlog,m]+1. LetC, =) Itis easy to see th = Gj, if and only if
there is a witness fa; Whoseeth Blt is1.Ifcj hasa unlque witness;; , then these
conditions can be used to identify the |nd|V|duaI bits in the binary representation
of wjj, and hencev;; itself. Note that we do not have to know in advance whether
¢ has aunique witness. We just reconstruct a candidate winyeasd then check
whetherc;; = & v, + b ;-

All Pairs Shortest Paths 297

algorithm rand-short-path(D)

The algorithm receives an n X n matriz D containing the weights of the edges of a
directed graph on n vertices. The algorithm returns an n Xn matriz F' containing,
with high probability, all the distances in the graph. It also returns a corresponding
matriz of witnesses.

F+—D ;W0
M — max{ |d7,J‘ : (lij #* -|—OO}
for £« 1 to [logg/yn] do
begin
s — (3/2)¢
B —rand({1,2,...,n},(91nn)/s)
(F',W') « dist-prod(F[*, B|, F[B, *],sM)
for every 1 <4,57 <ndo

o opr ;o .
if fij < fij then fi; « ij s Wij — b“’z/'j endif
end

return (F, W)

Fic. 2. Arandomized algorithm for finding shortest paths.

What do we do with elements that have more than one witness? We use sampling.
For every 1<r < logm, we chooses = clogn random subset& 1, ..., R of
{1,2,...,m} of sizem/2". For every such random s&,, where 1<r < logm
and 1<t <, we try to find unique witnesses for the prodégt:, R.1] » B[R, *].

When such a witness is found, we check whether it is also a withess for the original
distance producf« B. A simple calculation, identical to a calculation that appears
in Seidel [1995], shows that if the constaris taken to be large enough, then with
very high probability, we will find in this way witnesses for all positions.

The above discussion gives a randomized algorithm for computing a matrix of
witnesses for the distance product B. The randomized algorithm us€glog® n)
ordinary distance products of matrices of equal or smaller size. The resulting algo-
rithm can be derandomized using the results of Alon and Naor [1996], incurring
only a polylogarithmic loss of efficiency. We thus obtain:

LEmmA 3.3. An extended version of algorithdist-prod computes the dis-
tance product of an x n" matrix by an A x n matrix whose finite entries are
all of absolute value at most M, and a corresponding matrix of witnesses, in
O(Min{Mn®@rD n2+11) time.

In the following section, we let, W) <« dist-prod(A, B, M) denote an invo-
cation of the extended version dist-prod that returns the product matr& and
a matrix of withnessesV.

4. A Randomized Algorithm for Finding Shortest Paths

A simple randomized algorithnrand-short-path, for finding distances, and a
representation of shortest paths, between all pairs of vertices of a directed graph
onn vertices in which all edge weights are taken from thgsél, ..., 0, ..., M}

is given in Figure 2.

298 URI ZWICK

n * |B|

Fic. 3. Replacing the square produet F by the rectangular produ&[*, B] « F[B, x].

The input torand-short-path is ann x n matrix D that contains the weights (or
lengths) of the edges of the input graph. We assume that the vertex set of the graph
isV ={1,2,...,n}. The elementl; is the weight of the directed edge frano j
in the graph, if there is such an edge,-bo, otherwise.

Algorithm rand-short-path starts by letting= < D. The algorithm then per-
forms [log;,, n] iterations. In thetth iteration it letss « (3/2)°. It then uses a
function calledrand to produce a random subdetof V = {1, 2, ..., n} obtained
by selecting each element &f independently with probabilityp = (91Inn)/s.

If p>1, thenrand returns the seV. The algorithm then constructs the matrices
F[*, B] and F[B, x]. The matrix F[«, B] is the matrix whose columns are the
columns ofF that correspond to the vertices Bf Similarly, F[B, x] is the matrix
whose rows are the rows Bfthat correspond to the vertices®{see Definition 3.2
and Figure 3). It then computes the distance prodtiodf the matricesF[*, B]
andF[B,] by callingdist-prod, putting a cap o M on the absolute values of all
the entries that participate in the product. The call also returns a nvatrf wit-
nesses. Finally, each elementrfis compared to the corresponding elemerte of

If the element of~’ is smaller, then it is copied tB and the corresponding witness
from W' is copied tow. (By bW{j , we denote thev;; -th element of the sefB.)

Let§(i, j) denote the (weighted) distance franto j in the graph, that is, the
smallest weight of a directed path going frono j. The weight of a path is the
sum of the weights of its edges. The following lemma is easily established:

LEMMA 4.1. Atany stage during the operation @fnd-short-path, for every
i, € V,we have:

M fij =40, j).
(i) Ifwij =0, then f; = d;j. Otherwisel <w;; <nand fj > fiw, + fw, ;.
(@ii) 8@, j) =4, K)+48(k, j) and if in the beginning of some iteration we have
fik = 8(i, k), fij = 8(K, j), | ficl, | fj| <sM and ke B, then at the end of
the iteration we have;jf = 4(, j).

All Pairs Shortest Paths 299

at most at most

F, % edges _,‘(_ §; edges _,‘(_ §5 edges ‘,{

i I k J]

FiG. 4. The correctness proof cdnd-short-path.

PROOF. Property (i) clearly holds whehR is initialized toD. In each iteration,
the algorithm chooses a sBtand then lets

fi; < min{ fix + fij | k € B, [fixl, [fxjl <sM}
fij < min{ fij s fi/j }

for everyi, j € V. For everyk, we havefi + fi; >48(i, k) +8(k, j)>4(, j), as
follows from the induction hypothesis and the triangle inequality, and thus the new
value of f;j is again an upper bound @4, j).

Property (i) also follows easily by induction. Initially;; = d;; andw;; = 0, for
everyi, j € V, so the condition is satisfied. WheneVgris assigned a new value,
we have Ixw;; <nandfi; = fiw, + fy, ;. Until the next timef;; is assigned a
value, we are thus guaranteed to hdye> fi w, + fw,; j, as the value offj; does
not change, while the values df,,; and fWiJ .j may only decrease.

Finally, if the conditions of property (iii) hold, then at the end of the iteration
we have

fij = fj = fit+ fiy = 8@, k) +ak, j) = (.).
As fij > 4(i, j), by property (i), we get thaf;; = (i, j), as required. [J

More interesting is the following lemma:

LEMMA 4.2. Lets= (3/2), for somel < ¢ < [logs,, 1. With very high prob-
ability, if there is a shortest path from i to | in the graph that uses at most s edges,
then at the end of theth iteration we have f = 4(i, j).

PrROOF. We prove the lemma by induction 6flt is easy to check that the claim
holds for¢ = 1. We show next that, if the claim holds fér 1, then it also holds
for £. Leti and j be two vertices connected by a shortest path that uses at most
s = (3/2)" edges. Lep be such a shortest path frdno j. If the number of edges
on pis at most 2/3, then, by the induction hypothesis, after the-(1)st iteration
we already have; = §(i, j) (with very high probability). Suppose, therefore, that
the number of edges op is at least 8/3 and at moss. To avoid technicalities,
we “pretend” at first thas/3 is an integer. We later indicate the changes needed to
make the proof rigorous.

Let | andJ be vertices orp such thatl andJ are separated, op, by exactly
s/3 edges, and such thiaand|, andJ and j are separated, op, by at most g3
edges. (See Figure 4.) Such verti¢eand J can always be found as the pagths
composed of at leass23 and at moss edges.

Let A be the set of vertices lying betweérand J (inclusive) onp. Note that
|A| >s/3. Letk € A. Ask lies on a shortest path fromto j, we haves(i, j) =
3(i, k) +8(k, j). Ask lies between and J, there are shortest paths franto k,

300 URI ZWICK

and fromk to j that use at mosts23 edges. By the induction hypothesis, we get
that, at the beginning of théth iteration, we havedix = §(i, k) and fy; = 8(kK, j),
with very high probability. We also haviefix|, | fxj| <sM. It follows, therefore,
from Lemma 4.1(iii), that if there exists € AN B, whereB is the set of vertices
chosen at théth iteration, then at the end of tiéh iteration we have;; = 5(i, j),

as required.

What s the probability thaAN B # ¢? Letp = (9Inn)/s.If p>1,thenB =V
and clearlyA N B # ¢. Suppose, therefore, that= (91nn)/s < 1. Each vertex
then belongs td independently with probability. As |A| > s/3, the probability
that AN B = ¢ is at most

9Inn\%3
(1 — T) <exp(3Inn)=n—3.

As there are less tham’ pairs of vertices in the graph, the probability of failure
during the entire operation of the algorithm is at mostn=2 = 1/n. (We do not
have to multiply the probability by the number of iterations, as each pair of vertices
should only be considered at one of the iterations. If a pgire V violates the
condition of the lemma, then it also does so at the iteration, wherel is the
smallest integer such that there is a shortest path frémj that uses at most
s = (3/2) edges.)

Unfortunately,s/3 is not an integer. To make the proof go through, we prove
by induction a slight strengthening of the lemma. Define the sequsgneel and
s = [3s,_1/2], for £ > 0. Note thats, > (3/2). We show by induction o# that,
with high probability, for every, j € V, if there is a shortest path fronto j that
uses at mos, edges, then at the end of thih iteration we have;; = (i, j). The
proof is almost the same as beforeplis a shortest path fromto j that uses at
mosts, edges, we consider verticésandJ on p such that andJ are separated
by exactly|s,/2| edges, and such thatand |, andJ and j are separated by at
most[s,/2] edges. Repeating the above arguments we obtain a rigorous proof of
the (strengthened) lemmal

Combining Lemmas 4.1 and 4.2 with the fact that each pair of vertices in a graph
of n vertices is connected by a shortest path that uses less thdges, assuming
there are no negative cycles in the graph, we get that after the last itefiatisn,
with very high probability, the distance matrix of the graph. Furthermore, either
8(i, j) = dij, orw;j lies on a shortest path fromto j. This is stated formally in
the following lemma:

LEMMA 4.3. If there are no negative weight cycles in the graph, then after the
last iteration ofrand-short-path, with very high probability, for every,ij € V
we have

() fij =480, j).
(i) If wij = 0, thend(i, j) = dj. Otherwise,1<w;; <n and (i, j) =
8(1, wij) + s(wij,).
ProoF Condition (i) follows, as mentioned, from Lemma 4.2, the fact that
in the last iteratiors > n, and the fact that i(i, j) < + oo, and if there are no

negative weight cycles in the graph, then there is a shortest pathi ftom that
uses at most — 1 edges.

All Pairs Shortest Paths 301

2.5 3 2

2.4 93

2.3
2.6

2.2

2.2

2.1

1.9

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0I.6 0.8 1
w(l,r 1) ol,r,)+ (-r)and 2 +r

Fic. 5. Best available bounds on the functiand, r, 1) andw(1,r, 1)+ (1 — r), and the function
24r.

Suppose now thaffij = §(i, j) <dij. By Lemma 4.1(ii), we get that, af-
ter the last iteration, we have dw;; <n and fj; > fi w; + fw, ;, or equiv-
alently, (i, j) > 6(i, wij) +6(w;ij, j). But, by the triangle inequality, we have
8(i, j) <8(, wij) +8(wij, j). Thuss(i, j) = 8(@i, wij) + 8(wij, j), asrequired. [

It is also easy to see that the input graph contains a negative cycle if and only if
fii <0 for some I<i <n. If there is a path fromn to j that passes though a vertex
contained in a negative cycle, we define the distance frtonj to be—ooc. Using
a standard method, it is easy to identify all such pai®{n®) time. See Galil and
Margalit [1997b] for the details.

The matrixW returned byrand-short-path contains a succinct representation
of shortest paths between all pairs of vertices in the graph. Ways for reconstructing
these shortest paths are described in the next section.

What is the complexity ofand-short-path? The time taken by théh iteration
is dominated by the time needed to compute the distance product ofan
matrix by anm x n matrix, wherem = O((nlogn)/s), with entries of absolute
value at mos$ M usingdist-prod. (Actually, mis a binomial random variable with
E[m] = O((nlogn)/s). This, however, does not affect the analysis given below.)
If we assume thas = n!~" and M = nt, then according to Lemma 2.2, this
time isO(min{nt *@@rD+0-1) n2+r}) Graphs of the best available upper bounds
on the functionso(1,r, 1) andw(1,r, 1)+ (1 — r) are given in Figure 5. (Also
shown there is the function2r.) Note thatw(1, r, 1)+ (1 — r) is decreasing in
while 2+r is increasing im. The running time of an iteration is maximized when
t+w(,r,1)+(1—r)=2+r, orequivalently, whem(1,r,1) =14 2r —t. As
there are onlyO(logn) iterations, we get:

THEOREM 4.4. Algorithmrand-short-path finds, with a very high probability,
all distances in the input graph, and a succinct representation of shortest paths
between all pairs of vertices in the graph. If the input graph has n vertices, and the
weights are all integers with absolute values at mosEMt, where t< 3— w, then
its running time isO(n?*+#M), wherey = u(t) satisfieso(1, u, 1) = 1+ 2 —t.

302 URI ZWICK

algorithm path(W, 1, j)

The algorithm receives a matrix W of witnesses and two wvertices i and j. It
returns a shortest path from i to j in the graph.

if w;; = 0 then

return (4, j)
else

return path(W, ¢, w;;) . path(W, w;;, 7)
endif

FiG. 6. Constructing a shortest path using a matrix of witnesses.

The termyery high probability used in the statement of the Theorem refers to a
probability of at least - 1/n. It is easy to adapt the algorithm so that the success
probability would be at least & n—¢, for any desired constawt If M > n3,
then fast matrix multiplication algorithms are never used by the algorithm and the
running time is therO(nd).

Let us look more closely at the running time of the algorithm wivea= O(1).

This is the case, for example, if all the weights in the graph belong to the set
{—1, 0, 1}. The running time of the algorithm of Alon, Galil and Margalit in this
case isO(n@G+«)/2) which is aboutO(n?®88). The running time of the new algo-
rithm is O(n?**), wherepu satisfiesw(1, 4, 1) = 1+ 2u. Using the naive bound
w(l,r,1)<2+ (0w — 2)r, we get thatu <1/4 — w < 0.616. Using the improved
bound of Lemma 2.3, we get that< (e(w — 1) — 1)/(w + 2 — 4) < 0.575.

COROLLARY 4.5. Algorithmrand-short-path finds, with very high probabil-
ity, all distances, and a succinct representation of shortest paths between all pairs
of vertices in a directed graph on n vertices in which all the weights are taken from
the set{—1, 0, 1} in O(n>°7®) time.

5. Constructing Shortest Paths

A simple recursive algorithmpath, for constructing shortest paths is given in
Figure 6. If there are no negative weight cycles in the graph, anti# the matrix

of witnesses returned by a successful rumawfd-short-path, thenpath(W, i, j)
returns a shortest path fronto j in the graph. Ifw;; = 0O, then the edge (j) is

a shortest path fromto j. Otherwise, a shortest path franto j is obtained by
concatenating a shortest path frorto w;;, found using a recursive call toath,
and a shortest path from; to j, found using a second recursive calpiath. (The
dot in next to last line in the description path is used to denote concatenation.)
If there is no directed path frointo j in the graph, thepath(W, i, j) returns the
“edge” (i, j) whose weight ist-oc.

THEOREM 5.1. If there are no negative weight cycles in the input graph, and
if W is the matrix of witnesses returned by a successful ruarmd-short-path,
thenpath(W, i, j) returns a shortest path from i to j in the graph. The running
time ofpath(W, i, j) is proportional to the number of edges in the path returned.

PrOOF. Forevery, j € V, lett;; be the number of the iteration afnd-short-
path in which f;; was set for the last time. If;; = d;j, lett;; = 0. We need the
following claim:

All Pairs Shortest Paths 303

CLAM 5.2, Ifl< wij <n, thenti,wij , twij,j <tjj.

PROOF. Suppose thafj; was set for the last time at tt¢h iteration. Letf2 be
the elements of the matrix at the beginning of théth iteration, andf be these
elements at the end of tiéh iteration. By our assumption and by Lemma 4.3, we
get that

fij = &G, j) = 8@, wij) +8(wij, j) .

As fi(,)wij > (i, wij) and fv‘jij’j > §(wij, j) (see Lemma 4.1(i)), we get th:ﬁf’wij =
(i, w;j) and fvf,’ij’j = 8(wjj,). Thus, fiw,; and fy, ; are already assigned their
final values at the beginning of tli¢h iteration, and thereforte,Wij by < €= tij,
as required. [

We now prove Theorem 5.1 by induction op If t; = 0, thenw;; = 0, and
path(W, i, j)returns the edge,(j) which is indeed a shortest path froro j. Sup-
pose now thapath(W, i, j) returns a shortest path franto s for everyr ands for
whicht;s < £. Suppose thdf; = ¢. By Claim 5.2, we getthd, , tw;.j < ¢. By the
induction hypothesis, the recursive cai&th(W, i, w;;) andpath(W, wij, j) return
shortest paths fromto w;; and fromw;j to j. As8(i, j) = 8(, wij) +8(wij, j)
(Lemma 4.3), the concatenation of these two shortest paths is indeed a shortest path
fromi to j, as required. [

There is, however, something unsatisfying with the behavigrath. While it
is true that the calbath(W, i, j) always returns a shortest path frorto j in the
graph, the shortest path returned is not necessanilgle that is, it may visit certain
vertices more than once. This may happen, of course, only if there are zero weight
cycles in the graph. Itis, of course, easy to convert a nonsimple shortest path into
a simple shortest path, by removing cycles, but the running time then is no longer
proportional to the number of edges on the shortest path produced.

Another possible objection to the usepath is that it cannot produce shortest
paths inreal time While itis true that a shortest path that uéesiges can be found
in O(¢) time, it may also takez(¢) time just to find the second vertex on such
a path.

To address these two issues, we show next that the matrix of witn@sses
turned byrand-short-path can be easily converted into a matrixsafccessorésee,
e.g., Cormen et al. [2001, Chap. 25], where predecessors, instead of successors,
are considered). A matrix of successors can be easily used to construct trees of
shortest paths.

Definition5.3 (Successons A matrix Sis a matrix of successors for a graph
G = (V, E)iffor everyi, | € V, if there is a path fronh to j in the graph, then
the calls-path(S, i, j), wheres-pathis the procedure given in Figure 7, returns a
simple shortest path frointo j in the graph.

Algorithm wit-to-suc, given in Figure 8, receives a matik of witnesses re-
turned byrand-short-path, and a matrixi’ that gives the iteration number in which
each element d#V was set for the last time, as in the proof of Theorem 5.1. (Itis
very easy, of course, to modifand-short-path so that it would also return this
matrix.) It returns a matris of successors. Algorithrwit-to-suc works correctly

304 URI ZWICK

algorithm s-path(S, i, j)

The algorithm receives a matrix S of successors and two vertices i and j. It returns
a shortest path from i to j in the graph.

if s;; = j then

return (4, j)
else

return (i, s55) . s-path(S, s;;, j)
endif

FiG. 7. Constructing a shortest path using a matrix of successors.

algorithm wit-to-suc(W,T)

The algorithm receives a matrix W of witnesses and a corresponding matriz 1" of
iteration numbers. It returns a matriz S of successors.

S+—0

for £ «— 0 to max(7") do Ty «— { (4,7) | ti = £}

for every (i,j) € Tp do s;5 < j

for { — 1 to max(T") do
for every (i,j) € Tp do
begin
k — wgj;
while s;; = 0 do s;5 « Sj1 5 @ < Sy5
end

return S

FiG. 8. Constructing a matrix of successors.

even if there are zero weight cycles in the graph, but not if there are negative weight
cycles in the graphs as then distances and shortest paths are not well defined.

THEOREM 5.4. If there are no negative weight cycles in the graph, if W is the
matrix of withesses returned by a successful ruraofl-short-path, and if T is
the corresponding matrix of iteration numbers, then algorithitito-suc returns
a matrix of successors. The running time of algorithitito-suc is O(n?).

PrROOF. Algorithm wit-to-suc begins by initializing all the elements of the
n x n matrix Sto 0. It then constructs, for each iteration numbgthe setT, of
pairs , j) for whichtj; = ¢. Itis easy to construct all these setsn?) by bucket
sorting. (In the description ofvit-to-suc, max(T) denotes the maximal element
in T. Note that max() = O(logn).) Next, for every(, j) such that;; = 0, it sets
Sj < j. Itthen performs max() iterations, one of each iteration and-short-
path in which values are changed.

We prove, by induction on the order in which the elements of the m&tere
assigned nonzero values, thajf 0, thens-path(S; i, j) returns a simple shortest
path fromi to j in the graph. This clearly holds aftait-to-suc setss; < j for
every {, j) € To, as the edgei(j) is then a simple shortest path framo j in
the graph.

All Pairs Shortest Paths 305

Suppose thatwit-to-suc is now about to perform thehile loop for a pair
(i, j) for whichtj = £. If s; # 0O, then no new entries are assigned nonzero
values. Suppose, therefore, tisgt= 0. Letk = w;;. By Claim 5.2, we get that
tix <€ andty; < £. Thus,sk andsy; are already assigned nonzero values and by
the induction hypothesis, the cafigath(S, i, k) ands-path(S, k, j) return simple
shortest paths in the graph franto k, and fromk to j. Letv be the first vertex on
the paths-path(S; i, k) for whichs,; # 0. The vertex is well defined asy; # 0.
Ass,j # 0, we get, by the induction hypothesis, thgtath(S, v, j) traces a simple
shortest path frona to j. The concatenation of the portion®path(S, i, k) fromi
tov, and ofs-path(S, v, j) is clearly a shortest path froimto j. It is also simple
as both portions are simple, and as for evergn the first portion, except, we
haves,; = 0, while for everyu on the second portion we hasg # 0. After the
whileloop correspondingtaj), s-path(S, i, j) returns this simple shortest path.
Furthermore, ifs; is changed by thishile loop, thenu lies on the first portion
of this simple shortest path, asepath(S, u, j) is the corresponding suffix of this
simple shortest path, which is also a simple shortest path.

Finally, the complexity of the algorithm ©(n?) as each iteration of thehile
loop reduces the number of zero elementS by one. [

6. A Deterministic Algorithm for Unweighted Graphs

Inthis section, we describe a deterministic version of algoritmal-short-path of
Section 4. The version described here works onlyforeightedlirected graphs. A
slightly more complicated deterministic algorithm that works for weighted directed
graphs is described in the next section. We start with the following useful definition:

Definition6.1 (i, j) andn(i, j)). As before, lets(i, j) denote the distance
fromi to j in the graph, that is, the minimum weight of a path froto j in the
graph, where the weight of a path is the sum of the weights of its edges(il-¢}
denote the minimumumber of edgesn a shortest path fromto j.

If the graph is unweighted, thes(i, j) = n(, j), for everyi,j € V. In a
weighted graphy(i, j) is not necessarily the distance frono j in the unweighted
version of the graph.

Algorithm rand-short-path implicitly used the notion obridging setswhich
we now formalize:

Definition6.2 Bridging set3. LetG = (V, E) be a weighted directed graph
and lets> 1. A set of verticesB is said to be ars-bridging setf for every two
verticesi, j € V such thaty(i, j) > s, that is, if all shortest paths fromto |
use at leass edges, there exists € B, such thai(i, j) = §(i, k) + (K, j). The
set B is said to be astrong s-bridging setf for every two verticesi, j € V
such thaty(i, j) > s, there existk € B, such tha#(i, j) = &(@i, k) +d(k, j) and
n(i, J) =n(i, k) +n(k, j).

The difference between bridging sets and strong bridging sets is depicted in
Figure 9. All the paths shown there, schematically, are shortest paths fimm
although they do not all use the same number of edgdésidfa strongs-bridging
set, and ifyp(i, j) = t andt > s, that is, if the minimum number of edges on a
shortest path fronn to j ist, andt > s, then there is a vertek € B that lies on

306 URI ZWICK

i : J

Fic. 9. Bridging and strong bridging sets.

a shortest path fromto j that uses exactly edges. The top drawing in Figure 9
illustrates the fact there may be several shortest pathsiftom that use exactly
edges. A vertek belonging toB is guaranteed to lie on at least one of them. If
B is ans-bridging set, but not necessarily a strasigridging set, then a vertdx
belonging toB is guaranteed to lie on a shortest path frioto j. But, this shortest
path may use much more tharedges. This is illustrated in the bottom drawing
of Figure 9.

It is not difficult to see that i is an integer then we can replace the condition
n(i, j) > sinthe definition of bridging, and strongly bridging, sets by the condition
n(i, j) = s. Indeed, suppose the appropriate condition holds for engvye V
such thaty(u, v) = s. Suppose thaj(i, j) =t > s. Consider a shortest path
fromi to j that uses edges. Letv be thesth vertex onp, starting the count from 0.
Then, clearlyy(i, w) = s. Thus, a vertek € B is guaranteed to lie on a shortest
path fromi to w. This vertex lies also on a shortest path froto j, or on such a
shortest path with a minimum number of edges, as required.

Reviewing the proof of Lemma 4.2, we see that algorittand-short-path
produces correct results as long as theBeised in thelth iteration is astrong
(s/3)-bridging set.

LEMMA 6.3. If in each iteration ofrand-short-path the set B is a strong
(s/3)-bridging set, then all distances returned tand-short-path are correct.

PROOF The proofis almostidentical to the proof of Lemma4.2. We show again,
by induction or¢, thatif(i, j) < (3/2)", then after théth iteration of the algorithm
we havefi; = §(i, j). The basis of the induction is easily established. Suppose,
therefore, thatthe claim holds f6+ 1. We show that it also holds férLeti andj be
two vertices such thats23 < n(i, j) <, wheres = (2/3)‘. AsinLemma 4.2, lep
be a shortest path frointo j that useg(i, j) edges, let andJ be two vertices omp
suchthat andJ are separated, qn bys/3 edges, and such thiandl , andJ andj,
are separated, gn by at moss/3 edges (see Figure 4). /&5 the set used in thé&h
iteration, is assumed to be a strosg3)-bridging set, and agl, J) > s/3, a vertex
k € B is guaranteed to lie on a shortest path froro J that uses;(l, J) edges.
This shortest path frorhto J is not necessarily the portion pfgoing froml to J.
Nonetheless, we stillhawéi, j) = 8(i, K) +8(k, j)andn(i, j) = n(i, K) + n(k, j).
As n(i,K)<n(i, J) <2s/3 andn(k, j) <n(l, j) <2s/3, we get, by the induction
hypothesis, thafiyx = §(i, k) and fx; = é(k, j). After the distance product of the
(th iteration, we therefore haviy = 4(i, j), as required. [J

All Pairs Shortest Paths 307

algorithm sub-path(W,1,j,s)

The algorithm receives a matriz W of witnesses, two wertices i and j, and a
parameter s. It returns a set U of s wvertices that lie on a shortest path from i
to § in the graph, or all the intermediate vertices on such a path, if there are less
than s of them.

if wi; = 0 or s = 0 then

return ¢
else

U < sub-path(W,i,w;;,s — 1)

return U U {w;;} U sub-path(W,wg;,j,s — |U| — 1)
endif

Fic. 10. A deterministic algorithm for constructing afbridging set.

In the proof of Lemma 6.3, we made heavy use of the assumptiorBtima
strongbridging set. IfB were not a strong bridging set, we could not have deduced
thatn(i, k), n(k, j) <2s/3 and the argument used in the proof would break down.
Also implicit in the proof of Lemma 4.2 is the following result whose proof we do
not repeat:

LEMMA 6.4. Let G = (V, E) be a weighted directed graph on n vertices and
let s> 1. If B is a random set obtained by runningnd({1, 2, ..., n}, (3Inn)/s),
that is, if each vertex of V is added to B independently with probalf8ityn)/s,
then with very high probability B is strongs-bridging set.

We next describe a deterministic algorithm, calfedi-bridge, for finding s-
bridging sets. (Unfortunately, the sets returnedfing-bridge are not necessar-
ily strong s-bridging sets.) A description of algorithfind-bridge is given in
Figure 10. It receives amx n matrix W of witnesses. This matriw/ should enable
the construction of shortest paths between all pairs of vertices V for which
n(i, j) <s. In other words, ify(i, j) <s, thenpath(W, i, j) produces a shortest
path fromi to j. We assume here, for simplicity, that the graph does not contain
cycles of nonpositive weight so the shortest path produceshbdyW, i, j), when
n(i, j) <s, is simple. We show later how to remove this simplifying assumption.
We donotassume that the shortest path producepdiia(W, i, j) uses a minimum
number of edges, that is, it may use more théin j) edges.

Algorithm find-bridge uses a procedure callsdib-path that receives the ma-
trix W, two verticed, j € V and an integes. The operation a$ub-pathis similar
to the operation opath. It tries to construct a path fromto | using the witnesses
contained in the matri¥V. It counts, however, the number of intermediate vertices
found so far on the path and stops the construction vglietermediate vertices are
encountered. A simple recursive implementatiosus-pathis given in Figure 11.
The following lemma is easily verified.

LEMMA 6.5. Ifa calltopath(W, i, j) constructs a simple path fromi to j that
passes through t intermediate vertices, tkab-path(W, i, j, s) returns the set of
intermediate vertices on this path, ikts, or a subset of s intermediate vertices on
this path, if t > s. The running time cub-path(W, i, j, s) is O(s).

For everyi, j € V, letU;; be the set obtained by adding the verticesnd |
to the set obtained by callingub-path(W, i, j, s). All the elements olU;; are

308 URI ZWICK

algorithm sub-path(W, i, j,s)

The algorithm receives a matrizc W of witnesses, two wvertices i and j, and a
parameter s. It returns a set U of s vertices that lie on a shortest path from i
to j in the graph, or all the intermediate vertices on such a path, if there are less
than s of them.

if wi; =0 or s = 0 then

return ¢
else

U + sub-path(W,i,w;j,s — 1)

return U U {w;;} U sub-path(W,w;,j,s — |U| — 1)
endif

Fic. 11. Finding up tas vertices on a shortest path franto j.

vertices on a shortest path frano j. If 5(i, j) = s, then by our assumption o,
path(W, i, j) returns a shortest path froimto j. This shortest path must use at
leasts edges and contain, therefore, at least 1 intermediate vertices. It follows
that|U;;| > s+ 1. Thus, if a seB hitsall the setdJ;; for which |U;;| > s, that is,
if BN Uj; # ¢ wheneverlUj;| > s, thenB is s-bridging. Algorithmfind-bridge
collects all the set8;; for which|Uj; | > sinto a collection of sets called. It then
calls algorithmhitting-set to find a set that hits all the sets in this collection.
Algorithm hitting-set uses the greedy heuristic to find a &that hits all the
sets in the collectiog. As shown by Lo@sz [1975] and Chatal [1979], the size
of the hitting set returned biitting-set is at most (IPA) + 1 times the size of
the optimalfractional hitting set, whereA is the maximal number of sets that a
single element can hit. As each set in the collecticwontains at least elements,
there is a fractional hitting set of sizg's. This fractional hitting set is obtained
by giving each one of the vertices ofV a weight of ¥/s. As there are at most’
sets to hit, we get thak < n?. As a consequence we get tffiad-bridge returns a
bridging set of size at mosi(2 Inn 4 1)/s. hitting-set can be easily implemented
torunintime which s linear in the sum of the sizes of the sets in the collection. The
running time offind-bridge is therefore easily seen to l§&(n’s). We obtained,
therefore, the following result:

LEMMA 6.6. If the matrix W can be used to construct shortest paths between
all pairs of verticesj j € V for which(i, j) <s, then algorithniind-bridge finds
an s-bridging set of size at mosfainn + 1)/s. The running time dind-bridge
is O(n?s).

Unfortunately, the sets returned figd-bridge are not necessarily strong bridg-

ing sets. But, if the input graph isweightedthen ars-bridging set is also a strong
s-bridging set. Thus, if we replace the callrand in rand-short-path by

if s<n%2then

B <« find-bridge (W, |s/3])
endif

we obtain a deterministic algorithm for solving the APSP problenufaweighted
directed graphs. We call this algorithumwght-short-path.

We compute new bridging sets only wher n/? as computing bridging sets
for larger values 0§ may consume too much time. (Recall that the running time of
find-bridge is O(n?s).) The algorithm remains correct as sibridging set is also

All Pairs Shortest Paths 309

algorithm short-path(D)

The algorithm receives an n X n matric D containing the weights of the edges of a
directed graph on n vertices. The algorithm returns an n X n matriz F' containing
all the distances in the graph, and a corresponding matric W of witnesses.

F—D;W«—0
M — max{ |ds;| : dij # +oo}
for £« 1 to [logyn] do
begin
5 2¢
if s < nl/2 then
B « find-bridge-upd(F, W, s/2)
endif
dist-prod-upd(F, W, B,V,V, sM)
dist-prod-upd(F, W, V,B,V, 2sM)
end
return (F,W)

Fic. 12. A deterministic algorithm for finding shortest paths.

ans'-bridging set for eveng > s. The use of a bridging set of siz&(n/?logn)

in the iterations for whicls > n'/?2 does not change the overall running time of the
algorithm, as in all these iterations the required distance product can be computed
using the naive algorithm i@ (n%®) time. We thus get:

THEOREM 6.7. Algorithm unwght-short-path solves the APSP problem for
unweighted directed graphs deterministically@{n?**) time, whereu < 0.575
satisfiesw(1, u, 1) = 1+ 2u.

7. A Deterministic Algorithm for Weighted Graphs

In this section, we present a deterministic version of algoritémal-short-path for
weighted directed graphs. The algorithm, cakbbadrt-path, is given in Figure 12.
For simplicity, we assume at first that the input graph does not contain negative
weight cycles, nor zero weight cycles.

Algorithm short-path uses a simple procedure, calldidt-prod-upd, that per-
forms a distance product, by callimist-prod of Section 2, and updates the dis-
tances and witnesses found so far. Algorittist-prod-upd is given in Figure 13.

It receives then x n matricesk andW that hold the distances and witnesses found
so far. It also receives three subsétsB, C C V, whereV = {1, 2, ..., n}is the
set of all vertices. (In the calls made biiort-path, two of the setsA, B andC
would beV.) dist-prod-upd computes the distance produ€fA, B] » F[B, C],
putting a cap of. on the values of the entries Bfthat participate in the product. It
then updates the matricésandW accordingly. (ByF[A, B], we obviously mean
the submatrix o composed of the elements whose row index belongs, tand
whose column index belongs . Also, we letg; denote théth elements ofA.)
Thus, the first call taist-prod-upd in short-path computes the distance product
F[B, x]xF, while the second one computes the distance prdefsctB] « F[B, %],

310 URI ZWICK

algorithm dist-prod-upd(F, W, A, B,C, L)

The algorithm receives three subsets A,B and C of V. = {1,2,...,n} and a
bound L. It computes the rectangular distance product F[A, B] x F[B, C], treating
entries with absolute value greater than L as oo, and it updates the distance ma-
triz F' and the witness matric W accordingly.

(F",W') « dist-prod(F[A, B], F[B,C], L)

for every 1 < i< |A|and 1 <j <|C| do

if fZ/J < f(lT,,Cj then fa,,,cJ — le] y Wag,c; < by endif
ij

FiG. 13. A simple procedure for updating distances and witnesses.

algorithm find-bridge-upd(F, W, s)

The algorithm receives a distance matriz F, a witness matriz W, and a parame-
ter s. It returns an s-bridging set B. It updates some of the entries of F' and W
in the process.

C— ¢

for every 1 <4,5 <ndo
U « sub-path-upd(F,W,i,j,4,j,s — 1) U {4,5}
if |U| > s then C «+— CU{U} endif

end
B « hitting-set(C)

return B

Fic. 14. Adeterministic algorithm for constructing sibridging set while updating some distances.

as inrand-short-path. By Lemma 2.4, we get that the cost of these two distance
products is essentially the same.

Algorithm short-path constructs bridging sets by calling algorittiimd-bridge-
upd given in Figure 14. Algorithmfind-bridge-upd is very similar to algo-
rithm find-bridge of Section 6. The difference is théihd-bridge-upd calls al-
gorithm sub-path-upd, given in Figure 15, instead of algorithsub-path called
by find-bridge.

A call to sub-path(W, i, j, S) returns a set of up te intermediate vertices on
a path fromi to j. However, ifk e sub-path(W, i, j, s), it is not guaranteed
that fix, fx; < + oo, let alonefi + fij < fij. Algorithm sub-path-upd fixes this
problem. The following lemma is easily verified.

LEMMA 7.1. If the matrices F and W satisfies the conditiogs>fs(i, j), for
everyijeV,and fj > fi,wij + fwij,j wheneved <w;; <n, and ifpath(W, i, j)
traces a path from i to j, then a call sub-path-upd(F, W, i, j,i, j, s) returns a
set of s intermediate vertices on this path, or the set of all intermediate vertices if
there are less than s of them. If k is one of the vertices returned by the call, then
after the call we havef+ f; < fi;. The matrices F and W continue to satisfy
the specified conditions. Furthermore, if before the call we have- (i, j), then
after the call to we have;f = §(i, k), fx; = (k. j) ands(i, j) = 8(i, k) +8(k, j).

Before proving the correctness of algorittaimort-path, we prove a useful ad-
ditional property of bridging sets.

All Pairs Shortest Paths 311

algorithm sub-path-upd(F,W,a,b,4,j,s)

The algorithm receives a matriz F of distances, a matric W of witnesses, four
vertices a, b, and j, and a parameter s. It returns a set U of s vertices that lie on
a shortest path from i to j in the graph, or all the intermediate vertices on such
a path, if there are less than s of them. It updates some entries of F' and W in
the process.

if wi; =0 or s = 0 then
return ¢
else
if fai + fi,wu < fa,wij then fa,w”- — fai + fi,wij 3 wa,wij «— ¢ endif
i fuwijg + Fib < Fuwyb then fu b fug;g + Fib 5 fuwgyb < J endif
U + sub-path-upd(F, W, a, b, i, w;j,s — 1)
return U U {w;;} U sub-path-upd(F, W, a, b, wsj,j,s — |U| — 1)
endif

Fic. 15. Finding up ta vertices on a shortest path franto j while updating distances.

LEMMA 7.2. LetB be ans-bridging set of a grapts = (V, E) with no nonpos-
itive weight cycles. Then, if,] € V andn(i, j) > s, then there is a vertelk € B
such that(i, j) = 8(i, k) + 8(k, j) andn(i, k) <s.

PrOOF. By the definition of bridging sets, we get that there exists B such
thats(i, j) = (i, ki) + 8(ka, j). If n(i, k) <s,we are done. Assume, therefore, that
n(i, ki) > s. Letk] be next to last vertex on a shortest path froto k;. Clearly,
ki # ke, 8(, j) = 68(i, ky) +8(ky, j)andn(i, k) > s. Thus, there exists, € B such
thats(i, ky) = 8(i, kz) + 8(ko, k;), and therefore alséi, j) = (i, ko) +8(kz, j).
Thereis, therefore, a shortest path friotm j that passes throud, then throughk,
andthenthrougky. Asthere are no nonpositive weight cyclesinthe graph, ashortest
path must be simple and therefdee£ k;. In general, suppose that we have found
so farr distinct verticek;, k- _1, ..., k; € Bsuchthatthere is a shortest path from
to j that visits all these vertices. if(i, k:) <s, then we are done. Otherwise, we
can find another vertel , 1 € B, distinct from all the previous vertices, such that
there is a shortest path franto j that passes thoudd , 1, k-, ki1, ..., k1. Asthe
graph is finite, this process must eventually end with a vertex fBsatisfying
our requirements. [J

THEOREM 7.3. Algorithmshort-path finds all distances, and a succinct repre-
sentation of shortest paths between all pairs of vertices in a graph with no nonpos-
itive weight cycles. If the input graph has n vertices and the edge weights are taken
from the se{—M, ..., 0, ..., M}, where M= n' and t< 3 — w, then its running
time isO(n?*#W), wherep = u(t) satisfieso(1, u, 1) = 1+ 2 —t.

PROOF. We prove, by induction, that, after thh iteration ofshort-path,
we have:

(i) fij =4(, j), foreveryi, j € V.
(i) If wi; =0, thenf;; = d;;. Otherwise, & w;; <nand fj; > fi,Wij + fWij,j'
(i) If n@, j)<2¢ then fij =6(, J).

The proofs of properties (i) and (ii) are analogous to the proofs of properties (i)
and (ii) of Lemma 4.1. We concentrate, therefore, on the proof of property (iii). Itis

312 URI ZWICK

at most
’<; 5 edges %(7 5 edges %
1 1 i
€ ©
k

FiG. 16. The correctness proof sfiort-path.

easy to check that property (iii) holds before the first iteration. We show now that if
it holds at the end of the/ (— 1)st iteration, then it also holds after thi iteration.

Leti,j e V be such that(i, j) <2° If n(i, j) <271, then the condition
fij = 4(@, j) holds already after the¢(— 1)st iteration. Assume, therefore,
that Z=1 < (i, j) <2°. Let p be a shortest path fromto j that usesy(i, j)
edges. Letl be the vertex onp for which n(i, 1) = 21, (See Figure 16.)
Note thatn(l, j) < 2¢1. By the induction hypothesis, after thé £ 1)st itera-
tion, we havef;, = §(i, 1) and f;; = (I, j). As B is an 2~ 1-bridging set, we
get, by Lemma 7.2, that there existse B such thats(i, 1) = (i, k) +8(k, I)
andn(i, k) < 2¢-1. Furthermore, ak € sub-path-upd(W, i, I,i,1,s/2) U {i, 1},
we get, by Lemma 7.1, thafix = §6(i, k) and fy;, = d(k,). (The fact that
fic = &(i, k) follows also from the induction hypothesis, a8, k) <271 As
n(i, 1), n(i, k) <271, we get that|s(i, I)], |8(i, k)| <2¢-IM. Thus, |8k, |)] =
168G, 1) —8(i, k)| < |8(i, 1)] +|8(i, k)| < 2°M. To sum up, we have

fik =683,k), fi =46k, 1), fj=68(,1])
|fik] <2°IM, [fig|<2'M, | fij|<27IM

Ask € B andl, j € V, after the first distance product of tli¢h iteration, we
get that

fiy < fiu + fij =8k, 1)+ 51,) =d(k, j),

and thusfy; = §(k, j) and| fyj| < 2+1IM. Asi, j € V andk € B, after the second
distance product, we get that

fij < fik + fig = 8(1, k) +8(k, j) = 8(i, i)
and thusf; = 4(i, j), as required. [J

Finally, we describe the changes that should be madaaa-path if we want
it to detect negative weight cycles, and continue to work in the presence of zero
weight cycles. Detecting negative weight cycles is easy. We simply check, after
each iteration, whethef;; < 0, for somei € V. Making short-path work in the
presence of zero weight cycles requires more substantial changes.

Before describing the changes required, let us review the problems caused by
zero weight cycles. First, as mentioned in Section 5, the shortest paths returned
by path(W, i, j) are not necessarily simple. Thus, callssigb-path(W, i, |, S)
and sub-path-upd(W, i, j,i, j, s) may return multisets with less thandistinct
elements. As a consequence, the bridging set returnduhd®oridge (W, s) and

All Pairs Shortest Paths 313

algorithm scale(A4, M, R)

The algorithm receives a matriv A whose finite elements are in the range
{0,1,...,M}. It returns a matriz A’, a scaled version of A, with elements in
the range {0,1,..., R}.

;[[TRai;/M] if 0<a;; <M

al . .
w +o0 otherwise

Return A’.

Fic. 17. A simple scaling algorithm.

by find-bridge-upd(F, W, s) are not necessarily of siz@(nlogn/s). Second,
Lemma 7.2, which plays a crucial role in the correctness proof of algorithm
short-path, no longer holds in the presence of zero weight cycles.

To fix these problems, we use an approach that is similar to the one used in
Section 5. After each iteration short-path, we call algorithmwit-to-suc convert
the matrix of witnessedV into a matrix S of successors. As the complexity of
wit-to-suc is O(n?), the extra cost involved is negligible. Even thouyhdoes not
describe yet shortest paths between all pairs of vertices of the graph, it is not difficult
to verify thatif forsome, j € V the matriXW describes a shortest path fromo j in
the graph, theis would describe gimpleshortest path fromto j. UsingSinstead
of W, itisthen easytofind, i@(s) time, thefirst sintermediate vertices on a shortest
path fromi to j. The bridging set returned bind-bridge-upd would then satisfy
the condition of Lemma 7.2 and the correctness of the algorithm would follow.

8. Almost Shortest Paths

In this section we show that estimations with a relative error of at mastall

the distances in a weighted directed grapmorertices withnonnegativenteger
weights bounded by can be computed deterministically @((n®/¢) - log M)

time. If the weights of the graphs are nonintegral, we can scale them so that the
minimal non-zero weight would be 1, multiply them byel round them up and
then run algorithm with the integral weights obtained. The running time of the
algorithm would then b@((n‘“/e) log(W/¢)), as claimed in the abstract and in
the introduction. .

For unweighted directed graphs, it is easy to obtain such estimateitye)
time. Let A be the adjacency matrix of the graph andelet 0. By computing the
Boolean matriced <)) and AT+ for every O< ¢ < log, , . n, we can easily
obtain estimates with a relative error of at mesthe time required to compute all
these matrices i®(n®”/¢). We next show that almost the same time bound can be
obtained when the graph is weighted. The algorithm is again quite simple.

The main idea used to obtain almost shortest patlsgading A very simple
scaling algorithm, calledcale is given in Figure 17. The algorithm receives an
n x n matrix A containingnonnegativeelements. It returns amx n matrix A’. The
elements ofA that lie in the interval [OM] are scaled, and rounded up, into the
R+ 1 different values 01, . .., R. We refer toR as theresolutionof the scaling.

We next describe a simple algorithm for computapproximatedistance prod-
ucts. The algorithm, calleabprox-dist-prod, is given in Figure 18. It receives two
matricesA andB whose elements are nonnegative integers. Itadaptive scaling
to compute a very accurate approximation of the distance productof B.

314 URI ZWICK

algorithm approx-dist-prod(A4, B, M, R)

The algorithm receives two n X n matrices A and B, a bound M, and a resolution
parameter R. Elements of A and B that are of absolute value greater than M are
replaced by co. It returns an approzimate distance product C' of A and B.

C «— 400
for r «— |logy R]| to [logy M| do
begin
A’ «+ scale(A,2",R)
B’ «— scale(B, 2", R)
C'" — dist-prod(A’, B, R)
C+—min{C, (2"/R)-C" }
end

return C

Fic. 18. Approximate distance products.

LEMMA 8.1. LetC be the distance product of the matrices obtained from the
matricesA andB by replacing the elements that are larger thaby + co. Let M
and R be powers of two. LeC be the matrix obtained by callingpprox-dist-
prod(A, B, M, R). Then, for every, j, we havec; <c; <(1+ (4/R))Gj.

PrROOF. The inequalities;; < ¢;; follow from the fact that elements are always
rounded upwards b;scale We next show thati; < (1+ (4/R))cij. Letk be a
witness forcij, that is,cj = aik + byj. Assume, without loss of generality, that
ajk < byj. Suppose that52 < by <2s where 1<s< log, M (the casest;)kJ =0
andby; = 1 are easily dealt with separately)sl& log, R, then in the first iteration
of approx-dist-prod, whenr = log, R, we getcj; = Gjj. Assume, therefore that
log, R<s< log, M. In the iteration ofapprox-dist-prod in whichr = s, we
get that

o 'ai/k or 2. |/(j o
R = ik + R’ R =K + R
Thus, after the call tolist-prod we have
or. a'l/k b/ or+1 4
Gj < < b <1+ =)aj,
j = R + R ik + kj R _(+ R)]

as required. [J

If AandB are twon x n matrices, then the complexity approx-dist-prod is
O(R-n®-logM). As we will usually haveR <« M, algorithmapprox-dist-prod
will usually be much faster thadtist-prod, whose compIeX|ty i©O(M-n®).

Algorithm approx-short-path, given in Figure 19, receives as input arx n
matrix D representing the non-negative edge weights of a directed graph on
vertices, and an error bourd It computes estimates, with a stretch of at most
1+ ¢, of all distances in the graph. Algorithapprox-short-path starts by letting
F <« D. Itthen simply squareB, using distance productdpg, n] times. Rather
than compute these distance products exactly, it appsox-dist-prod to obtain
very accurate approximations of them.

All Pairs Shortest Paths 315

algorithm approx-short-path(D,e)

The algorithm receives an m X n matrix D containing the weights of the edges of a
directed graph on n vertices. It also receives an error parameter €. It returns an
n X n matrizc F of (1 + €)-approzimate distances and a corresponding matriz W
of witnesses.

F—D

M — max{ d;; : dij # +oo}

R — 4[logy n]/In(1 + €)

R «— 2(log2 R]

for £« 1 to [loggn] do

begin
F' — approx-dist-prod(F, F, Mn, R)
Fe—min{ F, F'}

end

return F'

Fic. 19. Approximate shortest paths.

Algorithm approx-short-path uses a resolutioR that is the smallest power of
two greater than or equal tglbg, n1/In(1+¢€). Thus,R = O((logn)/¢). Using
Lemma 8.1, it is easy to show by induction that the stretch of the elemerfts of
after the/th iteration is at most (3 %)‘3. After [log, n] iterations, the stretch of
the elements oF is at most

4 [log, N In(1 [log, n]
1+ — < 1+7() <l+e.
R log, n]

As R = O((logn)/e¢), the complexity of each approximate distance product
computed byapprox-short-path is O((n®/€)-log M). As only [log, n] such prod-
ucts are computed, this is also the complexity of the whole algorithm. We have thus
established:

THEOREM 8.2. Algorithm approx-short-path runs in O((n®/¢)-log M) time
and produces a matrix of estimated distances with a relative error of at énost

As described, algorithmapprox-short-path finds approximate distances. It is
easy to modify it so that it would also return a matvikof witnesses using which
approximate shortest paths could also be found.

9. Concluding Remarks

The results of Seidel [1995] and Galil and Margalit [1997a, 1997b] show that the
complexity of the APSP problem for unweighteddirectedgraphs isO(n®). The
exact complexity of the directed version of the problem is not known yet. In view of
the results contained in this article, there seem to be two plausible conjectures. The
first is ©O(n2%). The second i (n?). Galil and Margalit [1997a] conjecture that
the problem for directed graphsharderthan the problem for undirected graphs.
Proving, or disproving, this conjecture is a major open problem.

Another interesting open problem is finding the maximal valu#dior which
the APSP problem with integer weights of absolute value at fostn be solved

316 URI ZWICK

in subcubic time. Our algorithm runs in subcubic time kér< n®~“, as does the
algorithm of Takaoka [1998]. Can the APSP problem be solved in subcubic time,
for example, whemM = n?

Finally, we note that the shortest paths returned by the algorithms presented in
this article do not necessarily use a minimum number of edges. Producing shortest
paths that do use a minimum number of edges seems to be a slightly harder problem.
For more details, see Zwick [1999].

ACKNOWLEDGMENT. | would like to thank Victor Pan for sending me a preprint
of Huang and Pan [1998] and for answering several questions regarding
matrix multiplication.

REFERENCES

AHO, A. V., HOPCROFTJ. E.AND ULLMAN, J. D. 1974. The Design and Analysis of Computer Algorithms
Addison-Wesley, Reading, Mass.

AINGWORTH, D., CHEKURI, C., INDYK, P.,AND MOTWANI, R. 1999. Fast estimation of diameter and
shortest paths (without matrix multiplicatior§IAM J. Comput. 281167-1181.

ALON, N., GALIL, Z., AND MARGALIT, O. 1997. On the exponent of the all pairs shortest path problem.
J. Comput. Syst. Sci. 5855-262.

ALON, N., AND NAOR, M. 1996. Derandomization, witnesses for Boolean matrix multiplication and
construction of perfect hash functioddgorithmica 16 434—449.

BURGISSER P., @QAUSEN, M., AND SHOKROLLAHI, M. A. 1997. Algebraic Complexity Theongpringer-
Verlag, New York.

CHVATAL, V. 1979. A greedy heuristic for the set-covering problémath. Oper. Res. £233-235.

COHEN, E.,AND ZwicK, U. 2001. All-pairs small-stretch pathk.Algorithms 38335-353.

CopPERSMITH D. 1997. Rectangular matrix multiplication revisitdd Complex. 1342-49.

CoPPERSMITH D., AND WINOGRAD, S. 1990. Matrix multiplication via arithmetic progressiofisSymb.
Comput. 9251-280.

CORMEN, T. H., LEISERSON C. E., RVEST, R. L., AND STEIN, C. 2001. Introduction to Algorithms2nd
ed. The MIT Press, Cambridge, Mass.

DIKSTRA, E. W. 1959. A note on two problems in connexion with graphism. Math. 1269-271.

DOR, D., HALPERIN, S.,AND ZwicK, U. 2000. All pairs almost shortest pattf8IAM J. Comput. 29
1740-1759.

FREDMAN, M. L. 1976. New bounds on the complexity of the shortest path prob&AiM J. Comput.

5, 49-60.

FREDMAN, M. L., AND TARJAN, R. E. 1987. Fibonacci heaps and their uses in improved network opti-
mization algorithmsJ. ACM 34 596-615.

GALIL, Z., AND MARGALIT, O. 1993. Witnesses for Boolean matrix multiplicatidnComplex. 9201—
221.

GALIL, Z., AND MARGALIT, O. 1997. All pairs shortest distances for graphs with small integer length
edgesinf. Comput. 134103-139.

GALIL, Z.,AND MARGALIT, O. 1997b. All pairs shortest paths for graphs with small integer length edges.
J. Comput. Syst. Sci. 5243-254.

HENZINGER M. R.,AND KING, V. 1995. Fully dynamic biconnectivity and transitive closurePlnceed-
ings of the 36th Annual IEEE Symposium on Foundations of Computer S¢iheaukee, Wis). IEEE
Computer Society Press, Los Alamitos, Calif., pp. 664-672.

HUANG, X., AND PaN, V. Y. 1998. Fast rectangular matrix multiplications and applicatidn€omplex.

14, 257-299.

JoHNsON D. B. 1977. Efficient algorithms for shortest paths in sparse grapW&CM 24 1-13.

KARGER D. R., KOLLER, D.,AND PHILLIPS, S.J. 1993. Finding the hidden path: Time bounds for all-pairs
shortest pathsSIAM J. Comput. 221199-1217.

LovAsz, L. 1975. On the ratio of optimal integral and fractional cov&isc. Math. 13 383—390.

McGEOCH, C. C. 1995. All-pairs shortest paths and the essential subghdgrithmica 13 426—-461.

PaN, V. 1985. How to Multiply Matrices Faster_ecture Notes in Computer Science, Vol. 179. Springer-
Verlag, New York.

All Pairs Shortest Paths 317

SCHONHAGE, A., AND STRASSEN V. 1971. Schnelle multiplikation grosser zahl€&omputing 7281—
292.

SEIDEL, R. 1995. On the all-pairs-shortest-path problem in unweighted undirected gda@@@mput.
Syst. Sci. 51400-403.

SHOSHAN, A., AND ZwiIcK, U. 1999. All pairs shortest paths in undirected graphs with integer weights.
In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Sblenc¥ork,

New York). IEEE Computer Society Press, Los Alamitos, Calif., pp. 605-614.

TAKAOKA, T. 1992. A new upper bound on the complexity of the all pairs shortest path prolsiem.
Proc. Lett. 43195-199.

TAKAOKA, T. 1998. Subcubic cost algorithms for the all pairs shortest path proyarithmica 20
309-318.

THORUP, M. 1999. Undirected single-source shortest paths with positive integer weights in linear time.
J. ACM 46 362-394.

THORUP, M. 2000. Floats, integers, and single source shortest phtAtgorithms 35189-201.

ULLMAN, J. D., AND YANNAKAKIS, M. 1991. High-probability parallel transitive-closure algorithms.
SIAM J. Comput. 20100-125.

YUvAL,G. 1976. Analgorithm for finding all shortest paths usiif? infinite-precision multiplications.

Inf. Proc. Lett. 4 155-156.

Zwick,U. 1998. Allpairs shortest paths in weighted directed graphs—Exact and almost exact algorithms.
In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Sélatawalto,
Calif.). IEEE Computer Society Press, Los Alamitos, Calif., pp. 310-319.

ZwicK, U. 1999. All pairs lightest shortest paths.Pnoceedings of the 31th Annual ACM Symposium
on Theory of ComputinfAtlanta, Ga.). ACM, New York, pp. 61-69.

RECEIVED AUGUST2000;REVISED MARCH 2002;ACCEPTED MARCH2002

Journal of the ACM, Vol. 49, No. 3, May 2002.

