
A Quick Method for Finding Shortest Pairs
of Disjoint Paths

J. W. Suurballe
Bell Laboratories, West Long Branch, New Jersey

R. E. Tarjan
Bell Laboratories, Murray Hill, New Jersey

Let G be a directed graph containing n vertices, one of which is a distinguished source
s, and m edges, each with a non-negative cost. We consider the problem of finding,
for each possible sink vertex u , a pair of edge-disjoint paths from s to u of minimum
total edge cost. Suurballe has given an O(n2 1ogn)-time algorithm for this problem.
We give an implementation of Suurballe’s algorithm that runs in O(m log(, +,+)n) time
and O(m) space. Our algorithm builds an implicit representation of the n pairs of
paths; given this representation, the time necessary to explicitly construct the pair of
paths for any given sink is O(1) per edge on the paths.

I . INTRODUCTION

Let G = (V, E) be a directed graph containing n vertices u E V , one of which is a dis-
tinguished source vertex s, and m edges (u , w) E E, each with a non-negative length
c(u, w). We extend the length function to (directed) paths by defining the length c (p)
of a path p to be the total length of its edges. A path from a vertex u to a vertex w is
shortest if there is no path from u to w of shorter length. The distance from a vertex
u to a vertex w, denoted by d(u, w), is the length of the shortest path from u to w,
defined only if a shortest path exists.

In this paper we consider the following shortest pairs problem: find, for each possible
sink u , a pair of edge-disjoint paths from s to u of minimum total length. (Thus we
seek n pairs of paths.) In discussing this problem we shall assume that every vertex
in G is reachable from s (thus m 2 n - l), and for convenience in stating time bounds
that n > 2; this entails no loss of generality. Note that the reachability of a vertex u
from s is not enough to imply the existence of two edge-disjoint paths from s to u ;
there exist two such paths if and only if there is no edge contained in all paths from
s to u. We shall also assume that G is antisymmetric [if (u , w) is an edge then (w, u) is
not an edge]. Removing this restriction is easy (see Section IV).

For a single sink u, finding a shortest pair of disjoint paths from s to u is a special
case of minimum-cost network flow and is solvable in o(m log(l+m,n)n) time using
two iterations of an efficient implementation [S] , [101 of Dijkstra’s single-source

NETWORKS, Vol. 14 (1984) 325-336
0 1984 John Wiley & Sons, Inc. CCC 0028-3045/84/020325-12$04 .OO

326 SUURBALLE AND TARJAN

shortest-path algorithm [2] , [7] . This gives a bound of O(nm log(, + m / n) n) for all n
sinks. Suurballe [8] discovered an ingenious way to combine the Dijkstra calculations
for the various sinks, thus obtaining an O(nz 1ogn)-time* algorithm for the n-sink
problem. (Suurballe considered vertex-disjoint rather than edge-disjoint paths, but his
version of the problem is linear-time reducible to ours; see Section IV.) In this paper
we propose an efficient implementation of Suurballe’s algorithm (adapted to find
edge-disjoint paths). Our version runs in q m log~,+m/n)n) time and O(m) space, the
same bounds as for Dijkstra’s algorithm. The algorithm builds an implicit representa-
tion of the shortest pairs of paths; the time necessary to construct the pair for any
given sink from this representation is O(1) per edge on the paths.

In Section I1 we provide a description and proof of the algorithm. Suurballe’s proof
uses the dual simplex method for linear programming; our proof is combinatorial, re-
lying on properties of Dijkstra’s algorithm. In Section 111 we discuss efficient imple-
mentation of the algorithm. In Section IV we conclude with some remarks about al-
lowing multiple edges, the relationship between the edge-disjoint and vertex-disjoint
versions of the problem, and what happens when we allow edges to have negative
lengths.

II. AN ALGORITHM FOR THE SHORTEST PAIRS PROBLEM

Suurballe’s algorithm requires two preliminary steps (see Figure 1):

Step 1. Find a shortest-path tree T rooted at s. Such a tree contains, for every vertex
u , a shortest path from s to u. Compute d(s, u), the distance from s to u, for every ver-
tex u. We call the edges in T tree edges and the remaining edges nontree edges.
Step 2. Transform the length of every edge (u , w) by defining cf(u, w) = c(u, w) -
d(s, w) + d(s, u).

Step 1 requires o(m log(l + m,n>n) time using Dijkstra’s single-source shortest-path
algorithm [2], [5] , [101 . Step 2, which takes O(m) time, is a well-known transforma-
tion based on the duality principle of linear programming and has the following
property (which is true even if G contains negative-length edges but no negative cycles):

(1) For every edge (u , w), cf(u, w) 2 0, with equality if (u , w) is a tree edge.

If p is any path from a vertex u to a vertex w, then c’ (p) = c (p) - d(s, w) + d(s, u).
Thus two paths with the same start and finish vertices have their lengths transformed
by the same amount, and the ordering of such paths by length is unaffected by the
transformation. This means that we can solve the shortest pairs problem for the trans-
formed lengths and obtain a solution for the original lengths. [We can compute the
original length of a path from its transformed length in 0(1) time.] Henceforth in
discussing the shortest pairs problem we shall assume that the lengths c(u, w) have
property (1). This implies in particular that d(s, u) = 0 for every vertex u.

For any vertex u, let G, be the graph formed from G by reversing all the edges along

*All logarithms in this paper are base two unless otherwise stated.

SHORTEST PAIRS OF DISJOINT PATHS 327

FIG. 1. Preliminary steps of Suurballe’s algorithm. (a) Shortest-path tree of a directed
graph. Tree edges are solid, nontree edges are dashed. Distances from source s are in
parentheses. (b) Graph after edge length transformation.

the path in T from s to u (see Fig. 2). (Without the antisymmetry restriction, G, may
have multiple edges.) The following theorem is immediate from the minimum-cost
augmenting path algorithm for minimumcost network flow [6] :

Theorem 1. For any vertex u, the total length of a shortest pair of edge-disjoint paths
from s to u is d,(s, u) , where d, denotes the distance function in G,. Such a pair of
paths can be obtained from the path from s to u in T and a shortest path from s to
u in G, by taking the union of the edges in the two paths, discarding every edge in
one path whose reversal appears in the other, and grouping the remaining edges into
two paths (see Fig. 2).

Theorem 1 implies that we can find a shortest pair of paths for a single sink u in O(m
log(* + m,n)n) time by using one (more) application of Dijkstra’s algorithm, and thus pairs
for all sinks in q n m log(l+m,n)n) time. We obtain a faster algorithm by realizing that
the graphs G, for different vertices u are related; we can in effect run Dijkstra’s algo-
rithm in parallel on all of them, obtaining d,(s, u) for all vertices u in a single Dijkstra-
like calculation.

328 SUURBALLE AND TARJAN

f 4

FIG. 2. Graph Cf for the graph G in Fig. l(b). A shortest path from s to f i n Gf is
(s, d), (d, a) , (a, c), (c, f). A shortest pair of paths from s to f i n G is (s , a) , (a, c) ,
(c , f), and (s, d) , (d , f).

In order to understand the method, we must first understand Dijkstra’s algorithm.
Let G be a graph with source s and arbitrary non-negative edge length function c.
Dijkstra’s algorithm is a labeling process that maintains, for each vertex u, a tentative
distance d(u) such that d(u) 2 d(s, u). The algorithm also maintains a partition of the
vertices into unlabeled vertices and labeled vertices; if u is a labeled vertex d(u) =
d(s, u) . For every vertex v such that u # s and d(u) is finite, the algorithm main-
tains a tentative predecessor p(v) such that there is a path from s to u of length d(u)
whose last edge is (p(u) , u) . Initially d(s) = 0, d(u) = m if u # s, all vertices are un-
labeled, and p(u) is undefined for every vertex u. The algorithm consists of repeating
the following step until there is no unlabeled vertex u with d(u) finite:

Labeling Step. Choose an unlabeled vertex u such that d(u) is minimum. Make u
labeled. For each edge (u, w) , if d(u) t c(u, w) < d(w), define d(w) to be d(u) t c(u, w)
and p(w) to be u.

When the algorithm terminates, d(u) = d(s, u) for every vertex u reachable from s,
and the set of edges { (p (u) , u) l u # s and d(u) is finite} defines a shortest-path tree
rooted at s. [If u is not reachable from s, d(u) = 00 and p(u) is undefined on termina-
tion.] The algorithm labels vertices in nondecreasing order by distance from s. If the
collection of unlabeled vertices u with d(u) finite is maintained as a heap [101 imple-
mented as a d-heap [4] , [101 with d = O(l t rn/n), then the running time of Dijkstra’s
algorithm, which is dominated by the heap operations, is O(rn log(l + m,n)n) [101 .

Let us return to the shortest pairs problem. Recall that we assume c has property
(1). We shall describe a variant of Dijkstra’s algorithm that computes d,(s, u) for every
vertex u. The algorithm maintains the same variables d(u) and p(u) as Dijkstra’s algo-
rithm, though their meaning is slightly different, as we discuss below. The algorithm
maintains a new variable 4(u) for every vertex u, whose meaning we also discuss below.
As in Dijkstra’s algorithm, every vertex is either unlabeled or labeled. Initially d(s) =
0 and d(u) = m for u # s, all vertices are unlabeled, and p(u) and q(u) are undefined for
every vertex u.

SHORTEST PAIRS OF DISJOINT PATHS 329

The algorithm needs one more concept beyond those in Dijkstra’s algorithm. Re-
moving the labeled vertices from the shortest-path tree T divides T into subtrees that
span the set of unlabeled vertices. The algorithm maintains these unlabeled subfrees.
Initially there is only one unlabeled subtree, equal to T.

The algorithm consists of repeating the following step until there is no unlabeled
vertex u with d(u) f h t e (see Fig. 3):

Labeling Step. Choose an unlabeled vertex u such that d(u) is minimum. Let S be
the unlabeled subtree containing u. Make u labeled. This splits S into new unlabeled
subtrees; there is one new subtree for the parent of u, if it exists and is unlabeled,
and one new subtree for each unlabeled child of u. For each nontree edge (u, w)
such that u and w are in S and either u = u or u and w are in different unlabeled sub-
trees after u is labeled, if d(u) t c(u, w) < d(w), define d(w) to be d(u) t c(u, w), p(w)
to be u , and q(w) to be u.

We say an edge (u , w) is processed when vertex u is labeled if u and w are in the same
unlabeled subtree before u is labeled and either u = u or u and w are in different un-
labeled subtrees after u is labeled: thus labeling u entails testing the inequality d(u) t
c(u, w) < d(w). For any vertex u, if p(u) is defined then 4(u) is the vertex whose label-
ing caused [p(u) , u) to be processed. Each edge is processed at most once; some edges
may never be processed.

Theorem 2. When the shortest pairs algorithm terminates, d(u) = dU(s, u) for every
vertex u. Thus d(u) is the total length of a shortest pair of edge-disjoint paths from s
to u [d(u) = if there is no such pair]. If u # s and d(u) is finite then in C, there is
a path from s to u of length d(u) whose last edge is (p(u) , u) .

Proof: Let u be any vertex. We shall run Dijkstra’s algorithm on G , in a way that
simulates the behavior of the shortest pairs algorithm running in parallel on G. We can

f(e,c,d) g@.-.-)

FIG. 3 . Values of d , p , and q computed for graph in Fig. l(b) by shortest pairs algo-
rithm. Execution proceeds as follows: s labeled, (8 , d) , ((I, e) , (f, g) processed; d
labeled, (c , f) processed; e labeled, (g, b) processed; f labeled; b labeled. Successive
values of d(f) are m, 8 , 2 .

330 SUURBALLE AND TARJAN

do this so as to maintain the following invariant, where d, and p , denote the tentative
distance and parent functions Dijkstra’s algorithm computes on G,.

(2) A vertex x is unlabeled in G, if and only if in G it is in the same unlabeled sub-
tree as u. If x is unlabeled in G,, d,(x) = d(x), and pu(x) = p(x) (if either is defined).
If x is labeled in G,, d,(x) = d (y) , where y is the vertex whose labeling in G removed
x from the unlabeled subtree containing u; if x = y , p,(x) = p (y) .

The invariant certainly holds initially. Suppose the invariant holds before the short-
est pairs algorithm labels some vertex y in G. There are two cases:

Case 1 (y is labeled in G,,). By the invariant, y and u are in different unlabeled sub-
trees just before y is labeled in G. Labelingy affects none of the variables for the ver-
tices in the unlabeled subtree containing u and thus does not affect the invariant.
To simulate the labeling of y and G, Dijkstra’s algorithm running on G , does nothing.

Case 2 (y is unlabeled in G,). By the invariant, y and u are in the same unlabeled
subtree just before y is labeled in G. Let S be the set of vertices in this subtree, and
let S‘ be the set of vertices in the labeled subtree containing u just after y is labeled (if
y = u , S’ is empty). By the invariant, d,(y) must be minimum among unlabeled ver-
tices in G,. To simulate the labeling of y in G, Dijkstra’s algorithm running on C,
first labels y and then labels the remaining vertices in S - S‘ in an appropriate order;
every such vertex is reachable from y in G, by a path of length zero consisting of a
sequence of zero or more reversals of tree edges followed by zero or more tree edges.
It is easy to see that this simulation preserves the invariant.

Thus the invariant always holds, and the theorem follows immediately.
We conclude this section by describing how, given the values of d, p , and q com-

puted by the shortest pairs algorithm, we can explicitly construct a pair of paths for
a given vertex u [with d(u) finite]. The algorithm constructs each path by traversing
it backward. The algorithm consists of initialization and two backward traversals, one
to construct each path. We begin with all vertices unmarked. To carry out the initiali-
zation, we define x to be u and repeat the following step until x = s.

Initialization Step. Mark x. Replace x by 4(x).

The initialization step must terminate at s, since for any vertex x, 4(x) is labeled
before x, and s is labeled first. [The set of edges { (q(x) , x)lx f s and d(x) is finite}
defines a tree rooted at s.] To construct one of the paths, we define x to be u, the
path to be empty, and repeat the following step until x = s:

Traversal Step. If x is marked, unmark x, add (p (x) , x) to the front of the path,
and replace x by p(x) . Otherwise add (y , x) to the front of the path and replace x
by y , where y is the parent of x in T.

As an example, consider the graph of Figure 3 with u = f. The marked vertices are
f and d. The first path generated is (s, a), (a, c), (c,f). The second path generated is
(s, 4, (4 f 3 .

SHORTEST PAIRS OF DISJOINT PATHS 331

If two paths are constructed in this way, they will be edge-disjoint and have total
edge length d(u); together they contain (p(u) , u) for every vertex u marked in the ini-
tialization and in addition zero or more tree edges. This follows immediately from
Theorems 1 and 2. The construction of the two paths unmarks all the marked vertices;
thus an arbitrary sequence of pairs of paths can be constructed with no additional
initialization. The time to construct one or more pairs of paths is O(1) time per edge
on the paths plus O(n) time to initially unmark all the vertices; the qn) unmarking
time is dominated by the time required for the calculation of d, p , and q . If we con-
struct all n pairs of paths, the total time is @n2) (this estimate may be pessimistic).

Ill. IMPLEMENTATION OF THE SHORTEST PAIRS ALGORITHM

We can implement the shortest pairs algorithm in the same way as Dijkstra’s algo-
rithm, using a d-heap with d = O (l t m/n) to store the unlabeled vertices. The only
added complication is that we need a mechanism to determine which edges to process
when a vertex is labeled. Not counting the time to generate edges for processing, the
shortest pairs algorithm runs in qrn log(, + m,n) n) time. (Recall that each edge is pro-
cessed at most once.)

To generate edges for processing, we use a three-part data structure. The first part
consists of a preorder and a postorder numbering of the vertices of T. We denote the
preorder number of a vertex u by pre(u) and the postorder number by post(u). Com-
puting these numberings takes O(n) time [9] and allows us to test the ancestor-descen-
dant relationship in O(1) time: a vertex u is an ancestor of a vertex w if pre(u) < pre(w)
and post(u) 2 post(w) [9] .

The second part of our data structure represents the partition of the unlabeled
vertices into unlabeled subtrees. With each unlabeled vertex u, we store a doubly
linked list children(u) of its unlabeled children. We also store with u its parent p(u) ,
if it is defined and unlabeled; if u has no parent (it is the root of T) or its parent is
labeled, we define p(u) to be a special value null. With this representation we can start
at any unlabeled vertex and visit all vertices in its unlabeled subtree in O(1) time per
vertex visited. Doubly linking the lists of children allows us to delete a child in O(1)
time.

Initially there is one unlabeled subtree containing all the vertices; its initialization
takes O(n) time. When labeling a vertex u, we update the unlabeled subtrees by de-
fining p(w) = null for each vertex in children(u) and deleting u from children(p(u))
if p(u) # null. Since each vertex is labeled at most once and occurs as a child at most
once, the total time to update the unlabeled subtrees is qn).

The third part of our data structure is a doubly linked list incident(u), for each ver-
tex u, of the unprocessed nontree edges incident to u. [These are the unprocessed non-
tree edges of the form (u , w) or (w, u) .] Within each such list, we sort the edges in non-
decreasing order on the preorder number of the end other than u ; for each possible
other end, there are at most two edges in the list. Initializing all the incidence lists
requires O(m) time if we use radix sorting [I] .

When labeling a vertex u, we update the unlabeled subtrees and then generate edges
for processing, as follows. First we scan incident(u). For each edge (u, w) encoun-
tered, we delete (u, w) from incident(u) and incident(w), and if u = u we process
(u, w). This requires O(lincident(u)l) time, or O(m) time when summed over all ver-

332 SUURBALLE AND TARJAN

tex labelings. Next, we traverse the new unlabeled subtrees formed by labeling u. The
traversal is slightly different for the subtree containingp(v) than for the subtrees con-
taining the children of u. If p(u) # null we traverse the subtree containing p(u) by
visiting each vertex x in the subtree. When visiting x we scan incidenr(x). For each
edge (u, w) encountered, we test whether the end other than x is a descendant of u.
If so we delete (u, w) from incident(u) and incident(w) and process it. If not, we skip
it. [In this case we call (u, w) wasted.]

We traverse the subtree containing a given child y of u by visiting each vertex x in
the subtree. When visiting x , we begin a scan of incident(x) in the forward direction.
For each edge (u, w) encountered, we test whether the end other than x is a descendant
of y. If not, we delete (u, w) from incident@) and incident(w) and process it. If so,
we skip it. [We call (u, w) wasted.] In this case we abort the forward scan and begin
a backward scan of incident(x). We deal with edges encountered during the backward
scan in exactly the same way as during the forward scan, except that when we en-
counter a wasted edge we abort the backward scan and go on to the next vertex in the
subtree. The ordering of the edges in incident(x) ensures that the edges that must be
processed occur in two contiguous groups, at the front and at the rear of incident(x),
and the forward and backward scan encounter them all. (This is because the descen-
dants o fy are numbered consecutively in preorder [9] .)

We carry out the traversals of the various unlabeled subtrees concurrently, by taking
a step in each subtree, then another step in each subtree not yet completely traversed,
and so on, until completely traversing all but one of the subtrees. A step consists of
continuing the traversal in the current subtree until encountering a wasted edge or
completing the visit to a vertex. We do not need to complete the traversal of the last
subtree since every edge that needs processing has its ends in two different subtrees
and occurs in an incidence list in each. When all but the last traversal is complete,
every remaining unprocessed nontree edge has both its ends in the same unlabeled
subtree.

It is easy to verify the correctness of this method. The only tricky point in the im-
plementation is to make sure that the traversals of the various subtrees do not inter-
fere with each other. To prevent such interference, when deleting an edge (u, w) from
a list incident(z), we must check whether there is a scan of incident(z) suspended at
edge (u, w). If so, before deleting (u, w) we must move the pointer to (u, w) main-
tained by the scan either forward or backward one edge in incident(z), depending on
whether the scan is proceeding forward or backward. Even with this additional
requirement, deleting an edge from an incidence list requires only 0(1) time.

The task remaining is to analyze the time required for subtree traversals. A subtree
traversal step takes O(1) time plus O(1) time per edge processed. Thus the total time
for subtree traversals is O(m) plus time proportional to the number of steps.

To count steps, let us consider the labeling of a vertex u. Let S be the unlabeled
subtree containing u just before u is laveled, let So be the unlabeled subtree (if any)
containing p(u) just after u is labeled, and let Sl, S2, . . . , Sk be the subtrees contain-
ing the unlabeled children of u just after u is labeled, in nonincreasing order on the
number of vertices in Si. We shall count the steps that take place while traversing each
of these subtrees. We can ignore one of the subtrees of our own choice, since the con-
currency of the traversals implies that the number of steps taken within any single sub-

SHORTEST PAIRS OF DISJOINT PATHS 333

tree is at most one more than the number taken within some other subtree; thus if
we ignore one subtree but add one to our count, we are off by at most a factor of 2.
The extra count of one per vertex labeling sums to at most n for all vertex labelings.

Consider first the count of steps within S2, . . . , Sk. Each vertex x in such a subtree
accounts for at most two steps [one to abort the forward scan and one to abort the
backward scan of incident(x)] . labeling u causes the size of the unlabeled subtree con-
taining x to decrease by a factor of at least 2. Thus over all vertex labelings a single
vertex x can account for at most 2 logn steps in such subtrees, for a total count over
all vertices and vertex labelings of at most 2n logn.

We must still count the steps within So and S1. We consider two cases:

Case 1 (SO small). If a ISo I < (SI, where a is a positive constant to be chosen later,
we ignore steps within S1. Each vertex x in So accounts for at most m(x) t 1 steps,
where m(x) is the number of edges incident to x. Labeling u causes the size of the un-
labeled subtree containing x to decrease by a factor of at least a. Thus over all vertex
labelings a single x can account for at most [m(x) t 11 log, n steps in such subtrees
for a total count over all vertices and vertex labelings of at most (2m t n) log, n since
ZxE m(x) = 2m.

Case 2 (So large). If a ISo I 2 IS I, we ignore steps within So. Each vertex x in S1 ac-
counts for at most two steps, and labeling u causes the size of the unlabeled subtree
containing x to decrease by a factor of at least a/(a - 1). Over all vertices and vertex
labelings the total count of steps in such subtrees is thus at most 2n log,/(,-l)n.

Combining our estimates we find that the total count of steps is at most

n t 4n logn t (4m t 2 n) logan + 4n log,/(,-l)n.

The last term in this sum is

Let us choose

Then loga = max { 1, log (m/n) - log log (1 t m/n)} = CL(1og (1 t m/n)) , and the total
count of steps is

o(n logn + m b (l + m/fl)n) = o(m log(, + m/n) n).

Combining our estimates for the running times of all parts of the algorithm, we ob-
tain the following theorem:

Theorem 3. The shortest pairs algorithm runs in U(m log(l+m/fl)n) time, the same
bound as for Dijkstra’s algorithm. The space required is O(m).

334 SUURBALLE AND TARJAN

IV. REMARKS

We can easily adapt our algorithm to work on arbitrary multidigraphs; that is, di-
rected graphs with multiple edges, without the antisymmetry restriction. We need
only redefine the tentative predecessor p(u) of a vertex u to be an edge entering u
rather than a vertex preceding u.

Another easy adaption allows our algorithm to find shortest vertex-disjoint pairs of
paths. Given an input graph G , we construct a graph G' by splitting each vertex u of G
into two vertices u1 and u2 joined by an edge (u l , u 2) of length zero. An edge (u , w)
of G becomes an edge (u 2 , wl) of G, (see Fig. 4). We then solve the shortest pairs
problem for graph G ' with source s 2 . For any vertex u in G, a shortest pair of vertex-
disjoint paths from s to u in G corresponds to a shortest pair of edge-disjoint paths
from s2 to u1 in G', and vice versa. G' has 2n vertices and n t m edges and is con-
structible in O(m) time. Thus we can solve the shortest pairs problem for vertex-
disjoint paths in O(m log(l+,ln)n) time and O(m) space.

S

c2

(b)
F1,G. 4. Vertex-splitting transformation: (a) original graph G , (b) transformed graph
G .

SHORTEST PAIRS OF DISJOINT PATHS 335

t

FIG. 5. Transformation of the two-paths problem to the shortest pair existence prob-
lem. All edges in G have zero cost.

A third question is what happens when G contains one or more edges of negative
length. If G contains no negative cycles, we can solve the shortest pairs problem in
O(nm) time by finding shortest paths in C using the Ford-Bellman algorithm [6] ,
[lo] instead of Dijkstra’s algorithm. If G is allowed to contain negative cycles, the
problem of determining whether G contains a shortest pair of paths from a given
source s to a given sink t is NP-complete. We can prove this by reducing the following
two-paths problem, which is NP-complete [3], to the shortest pair existence problem:

Two-Paths Problem

Instance. A directed graph G = (V, E) and four distinct vertices, s , s2 , r l , t 2 .

Question. Are there two vertex-disjoint paths, one from s 1 to t l , the other from s2 to
t z ?

Given an instance of the two-paths problem, we construct an instance of the short-
est pair existence problem consisting of a graph G’ whose vertices are those of G with
an extra source s and an extra sink t , and whose edges are those of G, with length zero;
(s, sl), (s, s2), (r l , t) , (t 2 , t) , also with length zero; and (tl , sl), with length minus one
(see Fig. 5). It is easy to show that G contains two vertex-disjoint paths, one from
s1 to t 1 and one from s2 to t 2 , if and only if G‘ does not contain a shortest pair of
vertex-disjoint paths from s to t (because there are arbitrarily short pairs of paths). We
can reduce the vertex-disjoint to the edge-disjoint problem by the vertex-splitting
transformation discussed above.

Finally, we may ask what happens if we seek shortest sets of k edge-disjoint paths
for k an arbitrary positive integer. (we have considered the special case of k = 2.)
For any k 2 1, the minimum-cost augmentingpath algorithm for minimum-cost net-
work flow [6] will find a shortest set of k edge-disjoint paths from a given source s to

336 SUURBALLE AND TARJAN

a given sink u in k iterations of Dijkstra’s algorithm, or O(km log(l+m/nln) time. For
all n possible sinks, this method takes O(knm log(, + m/n)n) time. We leave as an open
problem the extension of our improvement of this result for k = 2 to the case k > 2.

References

[11 A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Com-
puter Algorithms. Addison-Wesley, Reading, MA (1 974).

[2] E. W. Djkstra, A note on two problems in connexion with graphs. Numer.
Math. 1 (1 959) 269-27 1.

[3] S. Fortune, J. Hopcroft, and J. Wylie, The directed subgraph homeomorphism
problem. Theoretical Computer Sci. 10 (1980) 111-121.

[4] D. B. Johnson, Priority queues withupdate and finding minimum spanning trees.
Information Processing Lett. 4 (1 975) 53-57.

[51 D. B. Johnson, Efficient algorithms for shortest paths in sparse networks. Assoc.
Comput. Mach. 24 (1977) 1-13.

[6] E. L. Lawler, Combinatorial Optimization: Networks and Matroids. Holt, Rine-
hart & Winston, New York (1976).

171 J. W. Suurballe, Disjoint paths in a network. Networks 4 (1974) 125-145.
[81 J. W. Suurballe, The single-source, all-terminals problem for disjoint paths. Un-

published technical memorandum, Bell Laboratories (1 982).
[91 R. Tarjan, Finding dominators in directed graphs. SIAM J. Comput. 3 (1974)

62-89.
[101 R. E. Tarjan, Data structures and network algorithms. SOC. Znd. Appl. Math.

(1 983).

