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Abstract

We present a randomized linear-time algorithm

for finding a minimum spanning tree in a con-

nect ed graph with edge weights. The algorithm

is a modification of one proposed by Karger and

uses random sampling in combination with a re-

cently discovered linear-time algorithm for ver-

ifying a minimum spanning tree. Our compu-

tational model is a unit-cost random-access ma-

chine with the restriction that the only opera-

tions allowed on edge weights are binary com-

parisons.
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1 Introduction

We consider the problem of finding a minimum

spanning tree in a connected graph with real-

valued edge weights. This problem has a long

and rich history; the first fully realized algorithm

was devised by Bortivka in the 1920’s [3]. An

informative survey paper by Graham and Hell

[11] describes the history of the problem up to

1985. In the last two decades faster and faster

algorithms were found, the fast est being an algo-

rithm of Gabow, Galil, and Spencer [!)] (see also

[10]), with a running time of O(nz log /3(m, n))

on a graph of n vertices and m edges. Here

@(m, n)= min{i [ logi;) n < m/n}.

This and earlier algorithms used as a compu-

tational model the sequential unit-cost random-

access machine with the restriction that the only

operations allowed on the edge weig”hts are bi-

nary comparisons. Fredman and Willmd [8] con-

sidered a more powerful model that allows bit

manipulation of the binary representations of the

edge weights. In this model they were able to de-

vise a linear-time algorithm. Still, the question

of whether a linear-time algorithm exists for the

restricted random-access model remained open.

A problem related to finding minimum span-

ning trees is that of verifying that a given span-

ning tree is minimum. Tarjan [20] gave a verifi-

cation algorithm running in O(m a(m, n)) time,

where a is a functional inverse of Ackerman’s

function. Later, Kom16s [17] showed that a min-

imum spanning tree can be verified i:n O(m) bi-

nary comparisons of edge weights, but with non-

linear overhead to decide which comparisons to

make. Dixon, Rauch and Tarjan [7] recently
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combined these algorithms wit h a table lookup

technique to obtain an O (m)-time verification al-

gorithm. King [16] has recently obtained a sub-

st antially simpler verification algorithm, based

on the algorithm of Kom16s.

In this paper we describe a randomized algo-

rit hm for finding a minimum spanning tree. It

has an expected running time of O(m) in the

restricted random-access model. The algorithm

is a modification of one proposed by Karger

[13], who obtained an expected time bound of

O(m + n log n). Our algorithm uses the random-

sampling technique of Karger in combination

with the verification algorithm to discard edges

that cannot be in the minimum spanning tree.

Our algorithm uses no algorithmic ideas that

are not part of Karger’s algorithm. The key to

our improvement of Karger’s result is a random-

sampling lemma that improves his corresponding

lemma by a logarithmic factor. In the next sec-

tion we present this lemma and its proof, which

uses a technique different from Karger’s. In Sec-

tions 3 and 4 we describe and analyze our algo-

rithm. Section 5 cent ains some final remarks.

Throughout the paper, we assume for simplic-

it y that all edge weights are distinct. This im-

plies that the minimum spanning tree is unique.

Ties in edge weights can be broken by numbering

the edges and choosing the edge of smaller num-

ber whenever a tie occurs. We also assume that

the input graph has no isolated vertices (vertices

wit bout incident edges). Our algorithm actually

solves the slightly more general problem of find-

ing a minimum spanning forest in a possibly dis-

connected graph. We assume familiarity with

standard results on minimum spanning trees, as

presented, for example, in [21].

2 A Sampling Lemma

In order to present the sampling result, we need

a little terminology. Let G be a graph with

weighted edges. We denote by W(X, y) the weight

of edge {x, y}. If F is a forest in G, we de-

note by F(x, y) the path (if any) connecting

x and y in F, and by WF(Z, g) the maximum

weight of an edge on F(z, y), with the conven-

tion that WF(%, y) = co if z and y are not con-

nected in F. We say an edge {x, y} is F-heavy if

W(Z! !/) > WF(Z, y) and F-1ight otherwise. Note

that the edges in F are all F-light. For any

forest F, no F-heavy edge can be in the min-

imum spanning forest of G. This is a conse-

quence of the “red rule” for minimum spanning

tree construction ([21], p.71). Given a forest F

in G, the F-heavy edges of G can be computed

in time linear in the number of edges of G, us-

ing an adaptation of the verification algorithm

of Dixon, Rauch, and Tarjan (page 1188 in [7]

describes the changes needed in the algorithm)

or that of King.

Lemma 1 Let H be a subgraph obtained from G

by including each edge independently with proba-

bility p, and let F be the minimum spanning for-

est of H. Then, for any k, the number of F-light

edges of G exceeds k with probability at most

(1)

id)

where n is the number of vertices of G.

Proof. Let el, e2, . . . . en be the edges of G, ar-

ranged in increasing order by weight. Consider

the following computation, a variant of Kruskal’s

minimum spanning tree algorithm [18]. Begin

with an empty forest F. Process the edges ej

in increasing order on j. To process an edge ej,

first flip a coin that has probability p of com-

ing up heads. Include the edge ej in H if and

only if the coin comes heads. Then test whether

both endpoints of ej are in the same connected

component of F. If so, ej is F-heavy; discard

it regardless of the coin toss. If not, add ej to

F if ej belongs to E. The forest 1’ produced

by this computation is the forest that would be

produced by Kruskal’s algorithm applied to the

edges in H, and is therefore exactly the minimum

spanning forest of H. Our goal is to show that

the number of edges not discarded is probably

small.

The coin-flips corresponding to discarded

edges are irrelevant; such edges are F-heavy re-

gardless of whether they are included in H. We

therefore consider only coin-flips corresponding
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to non-discarded edges. For each. non-discarded

edge, if the coin comes up heads, the edge is

placed in F. The size of F is at most n– 1. Hence

the probability y that the number of non-discarded

edges exceeds k is at most the probability that k

coin-flips take place before the nth occurence of

heads. Since the number of occurrences of heads

could be any i from O to n – 1, the probability of

this happening is at most ~~:~(~)pi(l – p)~-i,

•1

Remark. Lemma 1 has an immediate general-

ization to matroids. See [14].

Corollary 1.1 The expected value of the num-

ber of F-ljght edges is at most n/p.

Proof: The expected value is

~ Prob[number of F-light edges exceeds k].

k>o

We obtain the bound n/p by substituting the

bound (1) and applying standard techniques for

series summation. ❑

3 The Algorithm

The algorithm intermeshes steps of Boriivka’s

minimum-spanning-tree algorithm [3] with

random-sampling steps that dkicard edges that

cannot be in the minimum spanning tree. Each

Boriivka step reduces the number of vertices by

at least a factor oft wo. A random-sampling step

is performed only if the graph density (the num-

ber of edges divided by the number of vertices) is

sufficiently high, in which case the step reduces

the number of edges by a constant factor with

high probability.

The algorithm is recursive. In the case of a

dense graph, it performs two recursive calls, but

the total size of the two subproblems is with high

probability no more than a fraction less than one

of the size of the original problem. It follows

that the expected running time is linear. The

recurrence relation resembles the one arising in

the analysis of a linear-time selection algorithm

[2].

Here is a complete specification of the algo-

rithm.

Step 1. For each vertex, select the minimum-

weight edge incident to the vertex. Contract all

the selected edges, replacing by a single vertex

each connected component defined by the se-

lected edges and eliminating resulting isolated

vertices, loops (edges both of whose (endpoints

are the same) and all but the lowest-weight edge

among each set of multiple edges.

Step 2. If the density of the remaining graph

is less than 6, go directly to Step 3; otherwise,

proceed as follows. Choose a subgra,ph H by

including each edge independently with proba-

bility 1/2. Apply the algorithm recursively to

H, producing a minimum spanning fcmest F of

this subgraph. Find all the F-heavy edges in the

entire graph and delete them.

Step 3. Apply the algorithm recursively to the

remaining graph to compute a minimum span-

ning forest F’. The minimum spanning forest

for the original graph consists of those edges con-

tracted in Step 1 plus the edges of F’.

It follows from the “blue rule” for lminimum-

spanning-forest construction ([21], p.711 ) that the

edges selected in Step 1 belong to the minimum

spanning forest of the given graph. It follows

from the “red rule” that the edges deleted in Step

2 do not belong to the minimum spanning for-

est. Assuming inductively that the recursive call

in Step 3 correctly computes a minimum span-

ning forest of the graph remaining by Step 3, it

follows that the algorithm correctly computes a

minimum spanning forest of the given graph.

4 Analysis of the Algorithm

First we show that the algorithm runs in ex-

pected linear time. Then we carry out a worst-

case analysis of the algorithm. Finally, we use

the results of the worst-case analysis tc) show that

the algorithm runs in linear time except with ex-

ponentially small probability.

Suppose the algorithm is applied to a graph

with n vertices and m edges. The total time

spent in Steps 1–3, excluding the time spent on
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the recursive subproblems, is O(m): Step 1 is

just a single step of Boriivka’s algorithm, which

takes O(m) time using straightforward graph-

algorithmic techniques; Step 2 takes O(m) time

using the modified Dixon- Rauch-Tarjan verifica-

tion algorithm, as noted in Section 2. Let cm be

an upper bound on the time spent by the algo-

rithm not including recursive calls.

4.1 Expected-time analysis

let T’(nz) be the expected time for a worst-case

graph with at most m edges. We prove by induc-

tion that T(m) ~ 7cm. The basis is trivial. For

the induction step, let no and m. be the number

of vertices and the number of edges, respectively,

in the graph remaining after Step 1. At least n/2

edges are contracted in Step 1, since one edge is

selected for each vertex but an edge can be se-

lected twice, once for each of its endpoints. This

implies that no s n/2 and m. s m – n/2. Com-

bining these inequalities yields mo < m – no.

There are two cases, corresponding to the two

cases in the algorithm. If the density me/no of

the graph remaining after Step 1 is less than 6,

then m. < m – me/6 , so m. < 6m/7. In this

case the recursive invocation in Step 3 is applied

to a graph with fewer than ~m edges. Thus in

this case we have l’(m) ~ cm+ Z’($m). By the

inductive hypothesis, T( $m) ~ 7C .$ m. Hence

T(m) s cm+ 6cm = 7cm.

Next we consider the case where the density of

the graph remaining aft er Step 1 is at least 6. In

this case, there are two recursive calls, one on the

random-sample graph If, and one on the graph

consisting of F-1ight edges. Let X be the ran-

dom variable that is the number of edges in the

graph H. There are at most m – 1 edges in the

contracted graph. Since each of these edges is

included in H with probability one-half, the ex-

pected value of X is at most (m– 1)/2. Since the

number of edges in the contracted graph is less

than m, X is certainly less than m. Hence the

inductive hypothesis states that T(X) < 7cX.

It follows that the expected value of T(X) is at

most the expected value of 7cX, which is at most

7cm/2.

Let Y be the number of F-1ight edges. It fol-

lows from Corollary 1.1 that the expected value

of Y is at most twice the number no of nodes in

the contracted graph. Since no < me/6 < m/6,

it follows that the expected value of Y is at most

m/3. Since the number of edges in the con-

tracted graph is less than m, certainly the num-

ber Y of F-1ight edges is less than m. Hence by

the inductive hypothesis, T(Y) s 7cY. It follows

that the expected value of T’(Y) is at most the

expected value of 7cY, which is at most 7cm/3.

Thus the total expected time in this case is at

most cm + 7cm/2 + 7cm/3. This proves that

!!!’(m) s 7cm, completing the induction step.

4.2 Worst-case analysis

As shown in Subsection 4.1, the number no of

nodes in the graph remaining after Step 1 is at

most n/2, and the number m. of edges is less

than m. If the density me/no of the remaining

graph is less than 6, the recursive invocation in

Step 3 is applied to that graph.

Suppose mo/nO is at least 6. In this case the

random-sampling step is performed. As in Sub-

section 4.1, let X be the number of edges in

the sample graph H, and let Y be the num-

ber of edges left after deletion of the F-heavy

edges. The forest F’ constructed in Step 2 has

at most no – 1 edges; these edges are the only

ones in 11 not deleted by Step 2. It follows that

X + Y ~ m. + no – 1< m. This inequality al-

lows us to derive a bound of m on the number of

recursive invocations of the algorithm. If I(m) is

the worst-case number of invocations as a func-

tion of m, we have the following recurrence:

1(1) = 1

I(m) ~ 1 + ma{l(z) + 1(Y) :

x+y<m}form>l

It follows by induction that I(m) ~ m.

Next we bound the worst-case running time

of the algorithm. If Z’(n, m) is the worst-case

running time on a graph of at most n vertices and

at most m edges, T(n, m) satisfies the following

recurrence:
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T(l, m) = o(m)

T(n, m) s O(m)+ max{Tln/2], z)+

Z’([n/2], g): z+y<m,}forn>l

A proof by induction yields T(n, m) =

O(mlogn) = O(mlogrn).

Remark. The alternative recurrence 7’(1, m) =

O(l), T(n, m) s 0(n2) + 2Z’([n/2J, m) for n >

1, which follows from the inequality m < (~),

yields the bound T’(n, m) = 0(n2). Combin-

ing bounds gives a worst-case running time of

O(min{m log m, n2}), the same as the bound for

Boriika’s algorithm.

4.3 High-probability analysis

We are now ready to undertake a probabilistic

analysis of the algorithm. As shown in Subsec-

tion 4.1, if the density me/no of the graph re-

maining after Step 1 is less than 6, the recur-

sive invocation in Step 3 is applied to a graph

with fewer than $ m edges. If mofno ~ 6, there

are two recursive calls, one on a graph with

X edges (the sample graph H) and the other

on a graph with Y edges (the graph of F-1ight

edges). The key to the analysis is to show that

X + Y ~ (1 – c)m with high probability, for a

sufficiently small positive constant e. An appro-

priate recurrence then yields a running time that

is O(m) with high probability y.

The number X of edges in the sample graph

H is binomially distributed with mean me/2 s

m/2. A standard bound on the tail of the bino-

mial distribution [1, 19] implies that the proba-

bility that X > ;(1 + & ) is exponentially small,

namely exp ( – Q(m)), for any constant & > 0.

Choosing & = 1/10, we have X > llm/20 with

probability exp ( – Q(m)).

Next we estimate the number of F-light edges,

Y. Lemma 1 applies with p = 1/2 to give an up-
no

per bound of (~ )~~(~) on the probability that
2=0

Y exceeds k. This sum is the probability of

at most no heads occuring in a sequence of k

fllps of an unbiased coin. The expected num-

ber of heads is k/2. Let k = Y(1 + 62), where

82 >0 is a constant to be specified later. Since

no < me/6 ~ m/6, we have no ~ ;(1 + 62)–1.

The bound on the tail of the binomial distribu-

tion cited above implies that the probability of at

most no heads occuring in k unbiased coin flips

is exp ( – Q(m)). Choosing 62 = 1/20, we find

that Y > 7m/20 with probability exp ( -- Q(m)).

We call an invocation of the algorithm a j’ail-

ure if Step 2 is executed but X > llm/20 or

Y > 7m/20. The analysis above shows that the

probability of failure is exp ( – Q(m)). Let r be a

parameter to be determined. We call an invoca-

tion of the algorithm large if the number of edges

in the corresponding problem graph exceeds ~.

We analyze the running time of the algorithm

under the assumption that no large invocation

fails. We show later that this assumption holds

with high probability.

Let A(m) denote the running time of the algo-

rithm on a graph of at most m edges assuming

that no large invocation fails. Using the worst-

case time bound of O (m log m) and the clefinition

of failure, we obtain the following recurrence for

A(m), where co and c1 are suitable positive con-

stants:

A(m) s comlog m ifm~r

A(m) s clm + max{A(llm/20) + A(7m/20),

A(6m/7)} ifm>r

Lemma 2 A(m) < 10c1 m + coml-%’ log r

where E < 1 is a suitable positive constant.

Proof. The proof is by induction on m. If m s ~

then com l-crC log ~ > comlog m, so the inequal-—

ity follows from the base case of the recurrence.

Suppose m > ~. By the induction hypc)thesis,

A(llm/20) s llclm/2 + co(llm/2Cl)l-’r’ log r

~ llclm/2 + co(3/5)ml–’r’log r

if e is chosen so that (11/20)1–’ s 3/5.

Similarly,

A(7m/20) s 7c1m/2 + co(2/5)ml-’r’log~

if c is chosen so that (7/20)1–’ s 2/5.

It follows that
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Clm + A(llm/20) +
4

A(7m/20) ~ locl?n + cod-%’]og r.

The inequality

Clm + A(6nz/7) s 10clm + com l–eT’logr

also follows easily from the induction hypothesis.

Thus the inequality of the lemma holds, and the

proof is complete. •1

A few observations complete the analysis. For

a graph of m edges we choose r = m/ logli’ m.

Lemma 2 implies that the running time of the

algorithm is O(m) unless some large invocation

among those in the recursion fails. The probabil-

ity of one such invocation failing is exp ( – Q(T)).

There are at most m recursive invocations alto-

gether, which means that the probability of even

one failure occuring is m exp ( – Q(T)) = exp ( –

Q(r)). Thus the algorithm runs in O(m) time

except with probability exp(–fl(m/ logo(l) m)).

1.

2.

3.

5 Remarks

The algorithm can be changed in many ways

without affecting the high-probability O(m) time

bound. For example, the random-sampling step

can be performed unconditionally, rat her t han

just when the graph is dense. The running time

analysis becomes more complicated if this change

is made, however.

In joint work with Richard Cole to be de-

scribed in a future paper [5], we have adapted

our randomized algorithm to run in parallel.

The parallel algorithm does linear expected work

and runs in O (log n 21°g* n) expected time on a

CRCW PRAM [15]. This is the first parallel al-

gorithm for minimum spanning tree that does

linear work. In contrast, Karger [12] gives an

algorithm running on an EREW PRAM that re-

quires O (log n) time and m/ log n + nl+’ pro-

cessors for any constant 6 > 0. Also, Cole

and Vishkin [6] give an algorithm running on a

CRCW PRAM that requires O(log n) time and

O ((n + m) log log n/ log n) processors.

Among remaining open problems, we note es-

pecially the following three:

Is there a deterministic linear-time mini-

mum spanning tree algorithm in the re-

stricted random-access model?

Can randomization be used to simplify the

linear-time verification algorithm?

Can randomization be used fruitfully to

solve other network optimization prob-

lems, such as the shortest-path problem?

Randomization has already proved valu-

able in solving the maximum-flow [4] and

minimum-cut [13] problems.
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