
Hollow Heaps

Thomas Dueholm Hansen1, Haim Kaplan2(B),
Robert E. Tarjan3,4, and Uri Zwick2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
tdh@cs.au.dk

2 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv-Yafo, Israel
zwick@tau.ac.il, haimk@post.tau.ac.il

3 Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
4 Intertrust Technologies, Sunnyvale, CA 94085, USA

ret@CS.Princeton.EDU

Abstract. We introduce the hollow heap, a very simple data structure
with the same amortized efficiency as the classical Fibonacci heap. All
heap operations except delete and delete-min take O(1) time, worst case
as well as amortized; delete and delete-min take O(log n) amortized time.
Hollow heaps are by far the simplest structure to achieve this. Hollow
heaps combine two novel ideas: the use of lazy deletion and re-insertion to
do decrease-key operations, and the use of a dag (directed acyclic graph)
instead of a tree or set of trees to represent a heap. Lazy deletion produces
hollow nodes (nodes without items), giving the data structure its name.

1 Introduction

A heap is a data structure consisting of a set of items, each with a key selected
from a totally ordered universe. Heaps support the following operations:

make-heap(): Return a new, empty heap.
find-min(h) : Return an item of minimum key in heap h, or null if h is empty.
insert(e, k, h): Return a heap formed from heap h by inserting item e, with key k.

Item e must be in no heap.
delete-min(h): Return a heap formed from non-empty heap h by deleting the

item returned by find-min(h).
meld(h1, h2): Return a heap containing all items in item-disjoint heaps h1 and h2.
decrease-key(e, k, h): Given that e is an item in heap h with key greater than k,

return a heap formed from h by changing the key of e to k.
delete(e, h) : Return a heap formed by deleting e, assumed to be in h, from h.

The original heap h passed to insert, delete-min, decrease-key, and delete,
and the heaps h1 and h2 passed to meld, are destroyed by the operations. Heaps
do not support search by key; operations decrease-key and delete are given the
location of item e in heap h. The parameter h can be omitted from decrease-key
and delete, but then to make decrease-key operations efficient if there are inter-
mixed meld operations, a separate disjoint set data structure is needed to keep
track of the partition of items into heaps. (See the discussion in [12].)
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 689–700, 2015.
DOI: 10.1007/978-3-662-47672-7 56



690 T.D. Hansen et al.

Fredman and Tarjan [8] invented the Fibonacci heap, an implementation of
heaps that supports delete-min and delete on an n-item heap in O(log n) amor-
tized time and each of the other operations in O(1) amortized time. Applica-
tions of Fibonacci heaps include a fast implementation of Dijkstra’s shortest
path algorithm [4,8] and fast algorithms for undirected and directed minimum
spanning trees [6,9]. Since the invention of Fibonacci heaps, a number of other
heap implementations with the same amortized time bounds have been pro-
posed [1–3,7,10,11,13,16,18]. Notably, Brodal [1] invented a very complicated
heap implementation that achieves the time bounds of Fibonacci heaps in the
worst case. Brodal et al. [2] later simplified this data structure, but it is still sig-
nificantly more complicated than any of the amortized-efficient structures. For
further discussion of these and related results, see [10]. We focus here on the
amortized efficiency of heaps.

In spite of its many competitors, Fibonacci heaps remain one of the simplest
heap implementations to describe and code, and are taught in numerous under-
graduate and graduate data structures courses. We present hollow heaps, a data
structure that we believe surpasses Fibonacci heaps in its simplicity. Our data
structure has two novelties: it uses lazy deletion to do decrease-key operations in
a simple and natural way, avoiding the cascading cut process used by Fibonacci
heaps, and it represents a heap by a dag (directed acyclic graph) instead of a
tree or a set of trees. The amortized analysis of hollow heaps is simple, yet non-
trivial. We believe that simplifying fundamental data structures, while retaining
their performance, is an important endeavor.

In a Fibonacci heap, a decrease-key produces a heap-order violation if the new
key is less than that of the parent node. This causes a cut of the violating node
and its subtree from its parent. Such cuts can eventually destroy the “balance”
of the data structure. To maintain balance, each such cut may trigger a cascade
of cuts at ancestors of the originally cut node. The cutting process results in
loss of information about the outcomes of previous comparisons. It also makes
the worst-case time of a decrease-key operation Θ(n) (although modifying the
data structure reduces this to Θ(log n); see e.g., [14]). In a hollow heap, the item
whose key decreases is merely moved to a new node, preserving the existing
structure. Doing such lazy deletions carefully is what makes hollow heaps simple
but efficient.

The remainder of this paper consists of six sections. Section 2 describes hollow
heaps at a high level. Section 3 analyzes them. Section 4 presents an alternative
version of hollow heaps that uses a tree representation instead of a dag represen-
tation. Section 5 describes a rebuilding process that can be used to improve the
time and space efficiency of hollow heaps. Section 6 gives implementation details
for the data structure in Section 2. The full version of this paper also contains
implementation details of the data structure in Section 4 and further explores
the design space of the data structures, identifying variants that are efficient and
variants that are not.



Hollow Heaps 691

2 Hollow Heaps

Our data structure extends and refines a well-known generic representation of
heaps. The structure is exogenous rather than endogenous [19]: nodes hold items
rather than being items. Moving items among nodes precludes the possibility of
making the data structure endogenous.

Many previous heap implementations, including Fibonacci heaps, represent
a heap by a set of heap-ordered trees: each node holds an item, with each child
holding an item having key no less than that of the item in its parent. We
extend this idea from trees to dags, and to dags whose nodes may or may not
hold items. Since the data structure is an extension of a tree, we extend standard
tree terminology to describe it. If (u, v) is a dag arc, we say u is a parent of v
and v is a child of u. A node that is not a child of any other node is a root.

We represent a non-empty heap by a dag whose nodes hold the heap items,
at most one per node. If e is an item, e.node is the node holding e. We call a
node full if it holds an item and hollow if not. If u is a full node, u.item is the
item u holds. Thus if e is an item, e.node.item = e. A node is full when created
but can later become hollow, by having its item moved to a newly created node
or deleted. A hollow node remains hollow until it is destroyed. Each node, full or
hollow, has a key. The key of a full node is the key of the item it holds. The key
of a hollow node is the key of the item it once held, just before that item was
moved to another node or deleted. A full node is a child of at most one other
node; a hollow node is a child of at most two other nodes.

The dag is topologically ordered by key: if u is a parent of v, then u.key ≤
v.key. Henceforth we call this heap order. Except in the middle of a delete oper-
ation, the dag has one full root and no hollow roots. Heap order guarantees that
the root holds an item of minimum key. We access the dag via its root. We call
the item in the root the root item.

We do the heap operations with the help of the link primitive. Given two
full roots v and w, link(v, w) compares the keys of v and w and makes the root
of larger key a child of the other; if the keys are equal, it makes v a child of
w. The new child is the loser of the link, its new parent is the winner. Linking
eliminates one full root, preserves heap order, and gives the loser a parent, its
first parent.

To make a heap, return an empty dag. To do find-min, return the item in the
root. To meld two heaps, if one is empty return the other; if both are non-empty,
link the roots of their dags and return the winner. To insert an item into a heap,
create a new node, store the item in it (making the node full), and meld the
resulting one-node heap with the existing heap.

We do decrease-key and delete operations using lazy deletion. To decrease the
key of item e in heap h to k, let u = e.node. If u = h (u is the root of the dag),
merely set u.key = k. Otherwise (u is a child), proceed as follows. Create a new
node v; move e from u to v, making u hollow; set v.key = k; do link(h, v); and,
if v is the loser of this link, make u a child of v. If u becomes a child of v, then v
is the second parent of u, in contrast to its first parent, previously acquired via a



692 T.D. Hansen et al.

link with a full node. A node only becomes hollow once, so it acquires a second
parent at most once.

Remark. The arc (v, u) added to the dag by decrease-key represents the inequal-
ity v.key < u.key. If such arcs are not added, the resulting algorithm does not
have the desired efficiency, as we show in the full version of this paper.

To do a delete-min, do a find-min followed by a deletion of the returned item.
To delete an item e, remove e from the node holding it, say u, making u hollow.
A node u made hollow in this way never acquires a second parent. If u is not the
root of the dag, the deletion is complete. Otherwise, repeatedly destroy hollow
roots and link full roots until there are no hollow roots and at most one full root.
The proof of the following theorem is immediate.

Theorem 1. The hollow heap operations perform the heap operations correctly
and maintain the invariants that the graph representing a heap is a heap-ordered
dag; each full node has at most one parent; each hollow node has at most two
parents; and, except in the middle of a delete operation, the dag representing a
heap has no hollow roots and at most one full root.

The only flexibility in this implementation is the choice of which links to do in
deletions of root items. To keep the number of links small, we give each node u a
non-negative integer rank u.rank. We use ranks in a special kind of link called a
ranked link. A ranked link of two roots is allowed only if they have the same rank;
it links them and increases the rank of the winner (the remaining root) by 1.
In contrast to a ranked link, an unranked link links any two roots and changes
no ranks. We call a child ranked or unranked if it most recently acquired a first
parent via a ranked or unranked link, respectively.

When linking two roots of equal rank, we can do either a ranked or an
unranked link. We do ranked links only when needed to guarantee efficiency.
Specifically, links in meld and decrease-key are unranked. Each delete-min oper-
ation destroys hollow roots and does ranked links until none are possible (there
are no hollow roots and all full roots have different ranks); then it does unranked
links until there is at most one root.

The last design choice is the initial node ranks. We give a node created by
an insert a rank of 0. In a decrease-key that moves an item from a node u to a
new node v, we give v a rank of max{0, u.rank − 2}. The latter choice is what
makes hollow heaps efficient.

We conclude this section by mentioning some benefits of using hollow nodes
and a dag representation. Hollow nodes allow us to treat decrease-key as a special
kind of insertion, allowing us to avoid cutting subtrees as in Fibonacci heaps. As a
consequence, decrease-key takes O(1) time worst case: there are no cascading cuts
as in [8], no cascading rank changes as in [10,14], and no restructuring steps to
eliminate heap-order violations as in [2,5,13]. The dag representation explicitly
maintains all key comparisons between undeleted items, allowing us to avoid
restructuring altogether: links are cut only when hollow roots are destroyed.



Hollow Heaps 693

0

4 13 12 6 3 10 8 5

9 11

14

33

4 5 102 1

6 13 8 9 111

12 14

1

33

4 5 102 1

6 13 8 9 111

12 14

(a) (b) (c)

1

7 21

33

4 5 102 1

6 13 8 9 111

12 14

7

21

33

4 5 102 1

6 13 8 9 111

12 14

43

7 6 132 1

9 10 8 121

11

14

(d) (e) (f)

Fig. 1. Operations on a hollow heap. Numbers in nodes are keys; black nodes are
hollow. Bold gray, solid, and dashed lines denote ranked links, unranked links, and
second parents, respectively. Numbers next to nodes are non-zero ranks. (a) Successive
insertions of items with keys 14, 11, 5, 9, 0, 8, 10, 3, 6, 12, 13, 4 into an initially empty
heap. (b) After a delete-min operation. All links during the delete-min are ranked. (c)
After a decrease of key 5 to 1. (d) After a decrease of key 3 to 2 followed by a decrease
of key 8 to 7. The two new hollow nodes both have two parents. (e) After a second
delete-min. The only hollow node that becomes a root is the original root. One unranked
link, between the nodes holding keys 2 and 7 occurs. (f) After a third delete-min. Two
hollow nodes become roots; the other loses one parent. All links are ranked.

3 Analysis

The most mysterious detail of hollow heaps is the way ranks are updated in
decrease-key operations. Our analysis reveals the reason for this choice. We need
to show that the rank of a heap node is at most logarithmic in the number
of nodes in the dag representing the heap, and that the amortized number of
ranked children per node is also at most logarithmic.

To do both, we assign virtual parents to certain nodes. We use virtual par-
ents in the analysis only; they are not part of the data structure in Section 2.
(Section 4 presents a version of hollow heaps that does use them.)

A node may acquire a virtual parent, have its virtual parent changed, or
lose its virtual parent. As we shall see, virtual parents define a virtual forest. In
particular, each node has at most one virtual parent at a time. If v is the virtual
parent of u, we say that u is a virtual child of v. A node u is a virtual descendant
of a node v if there is a path from v to u via virtual children.



694 T.D. Hansen et al.

When a node is created, it has no virtual parent. When a root u loses a
link to a node v, v becomes the virtual parent of u (as well as its first parent).
If u already has a virtual parent, v replaces it. (By Lemma 1 below, a root
cannot have a virtual parent, so such a replacement never happens.) When a
decrease-key moves an item from a node u to a new node v, if u has more than
two ranked virtual children, two of its ranked virtual children of highest ranks
remain virtual children of u, and the rest of its virtual children become virtual
children of v. (By Lemma 2 below, the ranked virtual children of a node have
distinct ranks, so the two that remain virtual children of u are uniquely defined.)
If the virtual parent of a node u is destroyed, u loses its virtual parent. If u is
full it can subsequently acquire a new virtual parent by losing a link.

Lemma 1. If w is a virtual child of u, there is a path in the dag from u to w.

Proof. We prove the lemma for a given node w by induction on time. When w
is created it has no virtual parent. It may acquire a virtual parent only by losing
a link to a node u, which then becomes both its parent and its virtual parent,
so the lemma holds after the link. Suppose that u is currently the virtual parent
of w. By the induction hypothesis, there is a path from u to w in the dag, so w
is not a root and cannot participate in link operations. The virtual parent of w
can change only as a result of a decrease-key operation on the item e = u.item.
If u �= h, such a decrease-key operation creates a new node v, moves e to v, and
then links v and h. The operation may also make v the new virtual parent of w.
If v wins the link, it becomes the unique root, so there is a path from v to w in
the dag. If v loses the link, the arc (v, u) is added to the dag, making v the second
parent of u. Since there was a path in the dag from u to w, there is now also a path
from v to w. Finally, note that dag arcs are only destroyed when hollow roots are
destroyed. Thus a path to w from its virtual parent u in the dag, present when u
becomes the virtual parent of w, cannot be destroyed unless u is destroyed, in
which case w loses its virtual parent, so the lemma holds vacuously. ��
Corollary 1. Virtual parents define a forest. If w is a root of the dag, it has no
virtual parent. If w is a virtual child of u, then w stops being a virtual child of u
only when u is destroyed or when a decrease-key operation is applied to the item
residing in u.

Lemma 2. Let u be a node of rank r. If u is full, or u is a node made hollow
by a delete, u has exactly one ranked virtual child of each rank from 0 to r − 1
inclusive, and none of rank r or greater. If u was made hollow by a decrease-key
and r > 1, u has exactly two ranked virtual children, of ranks r − 1 and r − 2.
If u was made hollow by a decrease-key and r = 1, u has exactly one ranked
virtual child, of rank 0. If u was made hollow by a decrease-key and r = 0, u has
no ranked virtual children.

Proof. The proof is by induction on the number of operations. The lemma is
immediate for nodes created by insertions. Both ranked and unranked links
preserve the truth of the lemma, as does the removal of an item from a node



Hollow Heaps 695

by a delete. By Corollary 1, a node loses virtual children only as a result of
a decrease-key operation. Suppose the lemma is true before a decrease-key on
the item in a node u of rank r. By the induction hypothesis, u has exactly one
ranked virtual child of rank i for 0 ≤ i < r, and none of rank r or greater. If
the decrease-key makes u hollow, the new node v created by the decrease-key has
rank max{0, u.rank − 2}, and v acquires all the virtual children of u except the
two ranked virtual children of ranks r − 1 and r − 2 if r > 1, or the one ranked
virtual child of rank 0 if r = 1. Thus the lemma holds after the decrease-key. ��
Recall the definition of the Fibonacci numbers: F0 = 0, F1 = 1, Fi = Fi−1+Fi−2

for i ≥ 2. These numbers satisfy Fi+2 ≥ φi, where φ = (1 +
√

5)/2 is the golden
ratio [15].

Corollary 2. A node of rank r has at least Fr+3 − 1 virtual descendants.

Proof. The proof is by induction on r using Lemma 2. The corollary is immediate
for r = 0 and r = 1. If r > 1, the virtual descendants of a node u of rank r
include itself and all virtual descendants of its virtual children v and w of ranks
r − 1 and r − 2, which it has by Lemma 2. By Corollary 1, virtual parents
define a forest, so the sets of virtual descendants of v and w are disjoint. By the
induction hypothesis, u has at least 1 + Fr+2 − 1 + Fr+1 − 1 = Fr+3 − 1 virtual
descendants. ��
Theorem 2. The maximum rank of a node in a hollow heap of N nodes is at
most logφ N .

Proof. Immediate from Corollary 2 since Fr+3 − 1 ≥ Fr+2 ≥ φr for r ≥ 0. ��
To complete our analysis, we need to bound the time of an arbitrary sequence of
heap operations that starts with no heaps. It is straightforward to implement the
operations so that the worst-case time per operation other than delete-min and
delete is O(1), and that of a delete on a heap of N nodes is O(1) plus O(1) per
hollow node that loses a parent plus O(1) per link plus O(log N). In Section 6
we give an implementation that satisfies these bounds and is space-efficient. We
shall show that the amortized time for a delete on a heap of N nodes is O(log N)
by charging the parent losses of hollow nodes and some of the links to other
operations, O(1) per operation.

Suppose a hollow node u loses a parent in a delete. This either makes u a
root, in which case u is destroyed by the same delete, or it reduces the number
of parents of u from two to one. We charge the former case to the insert or
decrease-key that created u, and the latter case to the decrease-key that gave u
its second parent. Since an insert or decrease-key can create at most one node,
and a decrease-key can give at most one node a second parent, the total charge,
and hence the total number of parent losses of hollow nodes, is at most 1 per
insert and 2 per decrease-key.

A delete does unranked links only once there is at most one root per rank.
Thus the number of unranked links is at most the maximum node rank, which
is at most logφ N by Theorem 2. To bound the number of ranked links, we use a



696 T.D. Hansen et al.

potential argument. We give each root and each unranked child a potential of 1.
We give a ranked child a potential of 0 if it has a full virtual parent, 1 otherwise
(its virtual parent is hollow or has been deleted). We define the potential of a
set of dags to be the sum of the potentials of their nodes. With this definition
the initial potential is 0 (there are no nodes), and the potential is always non-
negative. Each ranked link reduces the potential by 1: a root becomes a ranked
child of a full node. It follows that the total number of ranked links over a
sequence of operations is at most the sum of the increases in potential produced
by the operations.

An unranked link does not change the potential: a root becomes an unranked
child. An insert increases the potential by 1: it creates a new root (+1) and does
an unranked link (+0). A decrease-key increases the potential by at most 3: it
creates a new root (+1), it creates a hollow node that has at most two ranked
virtual children by Lemma 2 (+2), and it does an unranked link (+0). Removing
the item in a node u during a delete increases the potential by u.rank, also by
Lemma 2: each of the u.rank ranked virtual children of u gains 1 in potential. By
Theorem 2, u.rank = O(log N). We conclude that the total number of ranked
links is at most 1 per insert plus 3 per decrease-key plus O(log N) per delete on
a heap with N nodes. Combining our bounds gives the following theorem:

Theorem 3. The amortized time per hollow heap operation is O(1) for each
operation other than a delete, and O(log N) per delete on a heap of N nodes.

4 Eager Hollow Heaps

It is natural to ask whether there is a way to represent a hollow heap by a tree
instead of a dag. The answer is yes: we maintain the structure defined by the
virtual parents instead of that defined by the parents. We call this the eager
version of hollow heaps: it moves children among nodes, which the lazy version
in Section 2 does not do. As a result it can do different links than the lazy
version, but it has the same amortized efficiency.

To obtain eager hollow heaps, we modify decrease-key as follows: When a new
node v is created to hold the item previously in a node u, if u.rank > 2, make v
the parent of all but the two ranked children of u of highest ranks; optionally,
make v the parent of some or all of the unranked children of u. Do not make u
a child of v.

In an eager hollow heap, each node has at most one parent. Thus each heap
is represented by a tree, accessed via its root. The analysis of eager hollow heaps
differs from that of lazy hollow heaps only in using parents instead of virtual
parents. Only the parents of ranked children matter in the analysis.

The proofs of the following results are essentially identical to the proofs of
the results in Section 2, with the word “virtual” deleted.

Lemma 3. Let u be a node of rank r in an eager hollow heap. If u is full, or u
is a node made hollow by a delete, u has exactly one ranked child of each rank
from 0 to r − 1 inclusive, and none of rank r or greater. If u was made hollow



Hollow Heaps 697

by a decrease-key and r > 1, u has exactly two ranked children, of ranks r − 1
and r − 2. If u was made hollow by a decrease-key and r = 1, u has exactly one
ranked child, of rank 0. If u was made hollow by a decrease-key and r = 0, u has
no ranked children.

Corollary 3. A node of rank r in an eager hollow heap has at least Fr+3 − 1
descendants.

Theorem 4. The maximum rank of a node in an eager hollow heap of N nodes
is at most logφ N .

Theorem 5. The amortized time per eager hollow heap operation is O(1) for
each operation other than a delete, and O(log N) per delete on an N -node heap.

An alternative way to think about eager hollow heaps is as a variant of Fibonacci
heaps. In a Fibonacci heap, the cascading cuts that occur during a decrease-key
prune the tree in a way that guarantees that ranks remain logarithmic in subtree
sizes. Eager hollow heaps guarantee logarithmic ranks by leaving (at least) two
children and a hollow node behind at the site of the cut. This avoids the need
for cascading cuts or rank changes, and makes the decrease-key operation O(1)
time in the worst case.

5 Rebuilding

The number of nodes N in a heap is at most the number of items n plus the
number of decrease-key operations on items that were ever in the heap or in
heaps melded into it. If the number of decrease-key operations is polynomial in
the number of insertions, log N = O(log n), so the amortized time per delete is
O(log n), the same as for Fibonacci heaps. In applications in which the storage
required for the problem input is at least linear in the number of heap opera-
tions, the extra space needed for hollow nodes is linear in the problem size. Both
of these conditions hold for the heaps used in many graph algorithms, including
Dijkstra’s shortest path algorithm [4,8], various minimum spanning tree algo-
rithms [4,8,9,17], and Edmonds’ optimum branching algorithm [6,9]. In these
applications there is at most one insert per vertex and one or two decrease-key
operations per edge or arc, and the number of edges or arcs is at most quadratic
in the number of vertices. In such applications hollow heaps are asymptotically
as efficient as Fibonacci heaps.

For applications in which the number of decrease-key operations is huge
compared to the heap sizes, we can use periodic rebuilding to guarantee that
N = O(n) for every heap. To do this, keep track of N and n for every heap.
When N > cn for a suitable constant c > 1, rebuild. We offer two ways to do
the rebuilding. The first is to completely disassemble the dag and reinsert all its
items into a new, initially empty heap. A second method that does no key com-
parisons is to convert the dag into a tree containing only full nodes, as follows:
For each node that has two parents, eliminate the second parent, making the dag
a tree. Give each full child a rank of 0 and a parent equal to its nearest full proper



698 T.D. Hansen et al.

ancestor. Delete all the hollow nodes. To extend the analysis in Sections 3 and
4 to cover the second rebuilding method, we define every child to be unranked
after rebuilding. Either way of rebuilding can be done in a single traversal of the
dag, taking O(N) time. Since N > cn and c > 1, O(N) = O(N − n). That is,
the rebuilding time is O(1) per hollow node. By charging the rebuilding time to
the decrease-key and delete operations that created the hollow nodes, O(1) per
operation, we obtain the following theorem:

Theorem 6. With rebuilding, the amortized time per hollow heap operation is
O(1) for each operation other than a delete-min or delete, and O(log n) per
delete-min or delete on a heap of n items. These bounds hold for both lazy and
eager hollow heaps.

By making c sufficiently large, we can arbitrarily reduce the rebuilding overhead,
at a constant factor cost in space and an additive constant cost in the amortized
time of delete. Whether rebuilding is actually a good idea in any particular
application is a question to be answered by experiments.

6 Implementation of Hollow Heaps

In this section we develop an implementation of the data structure in Section
2 that satisfies the time bounds in Section 3 and that is tuned to save space.
We store each set of children in a list. Each new child of a node v is added to
the front of the list of children of v. Since hollow nodes can be in two lists of
children, it might seem that we need to make the lists of children exogenous. But
we can make them endogenous by observing that only hollow nodes can have
two parents, and a hollow node with two parents is last on the list of children of
its second parent (since it is the earliest child, and later children are added to
the front of the list). This allows us to use two pointers per node u to represent
lists of children: u.child is the first child of u, null if u has no children; u.next is
the next sibling of u on the list of children of its first parent.

With this representation, given a child u of a node v, we need ways to answer
three questions: (i) Is u last on the list of children of v? (ii) Does u have two
parents? (iii) Is v the first or the second parent of u? If u has only one par-
ent, the first question is easy to answer: u is the last child of v if and only if
u.next = null. There are several ways to answer the second two questions in
O(1) time. We develop a detailed implementation using one method, and we
discuss alternatives in the full version of the paper.

Each node u stores a pointer u.item to the item it holds if it is full; if u is
hollow, u.item = null. Each hollow node u stores a pointer to its second parent
u.sp; if u is hollow but has at most one parent, u.sp = null. A decrease-key
operation makes a newly hollow node u a child of a new node v by setting
v.child = u but not changing u.next: u.next is the next sibling of u on the list of
children of the first parent of u. We answer the three questions as follows: (i) A
child u of v is last on the list of children of v if and only if u.next = null (u is last
on any list of children containing it) or u.sp = v (u is hollow with two parents



Hollow Heaps 699

and v is its second parent); (ii) u has two parents if and only if u.sp �= null; (iii)
v is the second parent of u if and only if u.sp = v.

Each node u also stores its key and rank, and each item e stores the node
e.node holding it. The total space needed is four pointers, a key and a rank per
node, and one pointer per item. Ranks are small integers, requiring lg lg N +O(1)
bits each.

Implementation of delete requires keeping track of roots as they are deleted
and linked. To do this, we maintain a list L of hollow roots, singly linked by
next pointers. We also maintain an array A of full roots, indexed by rank, at
most one per rank. When a delete makes a root hollow, do the following. First,
initialize L to contain the hollow root and A to be empty. Second, repeat the
following until L is empty: Delete a node x from L, apply the appropriate one
of the following cases to each child u of x, and then destroy x:

(i) u is hollow and v is its only parent: Add u to L: deletion of x makes u a root.
(ii) u has two parents and v is the second: Set u.sp = null and stop processing

children of x: u is the last child of x. Since u still has its first parent, it
does not become a root.

(iii) u has two parents and v is the first: Set u.sp = null and u.next = null.
(iv) u is full: Add u to A unless A contains a root of the same rank. If it does,

link u with this root via a ranked link and repeat this with the winner until
A does not contain a root of the same rank; then add the final winner to A.

Third and finally (once L is empty), empty A and link full roots via unranked
links until there is at most one.

With this implementation, the worst-case time per operation is O(1) except
for delete operations that remove root items. A delete that removes a root item
takes O(1) time plus O(1) time per hollow node that loses a parent plus O(1)
time per link plus O(logφ N) time, where N is the number of nodes in the tree
just before the delete, since max -rank = O(logφ N) by Theorem 2. These are the
bounds claimed in Section 3.

Acknowledgement. Thomas Dueholm Hansen is supported by The Danish Council
for Independent Research | Natural Sciences (grant no. 12-126512); and the Sino-Danish
Center for the Theory of Interactive Computation, funded by the Danish National
Research Foundation and the National Science Foundation of China (under the grant
61061130540). Haim Kaplan is supported by the Israel Science Foundation grants no.
822-10 and 1841/14, the German-Israeli Foundation for Scientific Research and Devel-
opment (GIF) grant no. 1161/2011, and the Israeli Centers of Research Excellence
(I-CORE) program (Center No. 4/11). Uri Zwick is supported by BSF grant no.
2012338 and by The Israeli Centers of Research Excellence (I-CORE) program (Center
No. 4/11).

References

1. Brodal, G.S.: Worst-case efficient priority queues. In: Proceedings of the 7th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 52–58 (1996)



700 T.D. Hansen et al.

2. Brodal, G.S., Lagogiannis, G., Tarjan, R.E.: Strict Fibonacci heaps. In: Proc. of
the 44th ACM STOC, pp. 1177–1184 (2012)

3. Chan, T.M.: Quake heaps: a simple alternative to fibonacci heaps. In: Brodnik,
A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures,
Streams, and Algorithms. LNCS, vol. 8066, pp. 27–32. Springer, Heidelberg (2013)

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

5. Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed heaps: an alter-
native to Fibonacci heaps with applications to parallel computation. Communica-
tions of the ACM 31(11), 1343–1354 (1988)

6. Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Standards 71B, 233–240
(1967)

7. Elmasry, A.: The violation heap: a relaxed Fibonacci-like heap. Discrete Math.,
Alg. and Appl., 2(4), 493–504 (2010)

8. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM 34(3), 596–615 (1987)

9. Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algorithms for find-
ing minimum spanning trees in undirected and directed graphs. Combinatorica 6,
109–122 (1986)

10. Haeupler, B., Sen, S., Tarjan, R.E.: Rank-pairing heaps. SIAM Journal on Com-
puting 40(6), 1463–1485 (2011)

11. Høyer, P.: A general technique for implementation of efficient priority queues. In:
Proceedings of the 3rd Israeli Symposium on the Theory of Computing and Systems
(ISTCS), pp. 57–66 (1995)

12. Kaplan, H., Shafrir, N., Tarjan, R.E.: Meldable heaps and boolean union-find. In:
Proc. of the 34th ACM STOC, pp. 573–582 (2002)

13. Kaplan, H., Tarjan, R.E.: Thin heaps, thick heaps. ACM Transactions on Algo-
rithms 4(1), 1–14 (2008)

14. Kaplan, H., Tarjan, R.E., Zwick, U.: Fibonacci heaps revisited. CoRR,
abs/1407.5750 (2014)

15. Knuth, D.E.: Sorting and searching. The art of computer programming, vol. 3, 2nd
edn. Addison-Wesley (1998)

16. Peterson, G.L.: A balanced tree scheme for meldable heaps with updates. Techni-
cal Report GIT-ICS-87-23, School of Informatics and Computer Science, Georgia
Institute of Technology, Atlanta, GA (1987)

17. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technical Journal 36, 1389–1401 (1957)

18. Takaoka, T.: Theory of 2–3 heaps. Discrete Appl. Math. 126(1), 115–128 (2003)
19. Tarjan, R.E.: Data structures and network algorithms. SIAM (1983)


	Hollow Heaps
	1 Introduction
	2 Hollow Heaps
	3 Analysis
	4 Eager Hollow Heaps
	5 Rebuilding
	6 Implementation of Hollow Heaps
	References


