
Subcubic Equivalences Between Path, Matrix, and Triangle Problems

Virginia Vassilevska Williams
Computer Science Division, UC Berkeley

Berkeley, CA, USA
virgi@eecs.berkeley.edu

Ryan Williams
IBM Almaden Research Center

San Jose, CA, USA
ryanwill@us.ibm.com

Abstract—We say an algorithm on 𝑛 × 𝑛 matrices with
entries in [−𝑀,𝑀] (or 𝑛-node graphs with edge weights from
[−𝑀,𝑀]) is truly subcubic if it runs in 𝑂(𝑛3−𝛿 ⋅ poly(log𝑀))
time for some 𝛿 > 0. We define a notion of subcubic reducibility,
and show that many important problems on graphs and
matrices solvable in 𝑂(𝑛3) time are equivalent under subcubic
reductions. Namely, the following weighted problems either all
have truly subcubic algorithms, or none of them do:

∙ The all-pairs shortest paths problem (APSP).
∙ Detecting if a weighted graph has a triangle of negative

total edge weight.
∙ Listing up to 𝑛2.99 negative triangles in an edge-weighted

graph.
∙ Finding a minimum weight cycle in a graph of non-

negative edge weights.
∙ The replacement paths problem in an edge-weighted

digraph.
∙ Finding the second shortest simple path between two

nodes in an edge-weighted digraph.
∙ Checking whether a given matrix defines a metric.
∙ Verifying the correctness of a matrix product over the

(min,+)-semiring.
Therefore, if APSP cannot be solved in 𝑛3−𝜀 time for

any 𝜀 > 0, then many other problems also need essentially
cubic time. In fact we show generic equivalences between
matrix products over a large class of algebraic structures
used in optimization, verifying a matrix product over the
same structure, and corresponding triangle detection problems
over the structure. These equivalences simplify prior work
on subcubic algorithms for all-pairs path problems, since it
now suffices to give appropriate subcubic triangle detection
algorithms.

Other consequences of our work are new combinatorial ap-
proaches to Boolean matrix multiplication over the (OR,AND)-
semiring (abbreviated as BMM). We show that practical
advances in triangle detection would imply practical BMM
algorithms, among other results. Building on our techniques,
we give two new BMM algorithms: a derandomization of the
recent combinatorial BMM algorithm of Bansal and Williams
(FOCS’09), and an improved quantum algorithm for BMM.

Keywords-all pairs shortest paths, subcubic algorithms,
equivalences, reductions, matrix multiplication, triangle detec-
tion, minimum cycle, replacement paths

I. INTRODUCTION

Many computational problems on graphs and matrices
have natural cubic time solutions. For example, 𝑛 × 𝑛
matrix multiplication over any algebraic structure can be
done in 𝑂(𝑛3) operations. For algebraic structures that

arise in optimization, such as the (min,+)-semiring, it is
of interest to determine when we need only a subcubic
number of operations.1 The all-pairs shortest paths problem
(APSP) also has a cubic-time algorithm, known for over
40 years [16], [38]. One of the “Holy Grails” of graph
algorithms is to determine whether this cubic complexity
is basically inherent, or whether a significant improvement
(say, 𝑂(𝑛2.9) time) is possible. (It is known that this question
is equivalent to finding a faster algorithm for (min,+)
matrix multiplication. [15], [25]) Most researchers believe
that cubic time is essentially necessary: there are 𝑛2 pairs of
nodes, and in the worst case we should not expect to improve
too much on Ω(𝑛) time per pair. (We should note that a
long line of work has produced slightly subcubic algorithms
with small poly(log 𝑛) improvements in the running time;
the current best runs in 𝑂(𝑛3 log log3 𝑛/ log2 𝑛) time [10].)

Related to APSP is the replacement paths problem (RPP):
given nodes 𝑠 and 𝑡 in a weighted directed graph and a
shortest path 𝑃 from 𝑠 to 𝑡, compute the length of the
shortest simple path that avoids edge 𝑒, for all edges 𝑒 on 𝑃 .
This problem is studied extensively ([40], [21], [14], [20],
[30], [28], [6]) for its applications to network reliability. A
slightly subcubic time algorithm is not hard to obtain from
a slightly subcubic APSP algorithm, but nothing faster than
this is known. It does seem that cubic time may be inherent,
since for all edges in a path (and there may be Ω(𝑛) of
them) we need to recompute a shortest path. A well-studied
restriction of RPP is to find the second shortest (simple) path
between two given nodes 𝑠 and 𝑡. Of course this problem
also has a cubic algorithm, but again nothing much faster
is known. However, the cubic complexity does not seem to
be as vital: we simply want to find a certain type of path
between two endpoints. Similarly, finding a minimum weight
cycle in a graph with non-negative weights is only known
to be possible in slightly subcubic time.2

An even simpler example is that of finding a triangle

1Note that in the specific case when the structure is a ring, it is
well known that one can solve the problem much faster than 𝑂(𝑛3)
operations [33], [11]. However it is unknown if this fact can be used to
compute the matrix product fast on many other important structures such
as commutative semirings.

2Note that if we allowed negative weights, this problem is immediately
NP-hard.

2010 IEEE 51st Annual Symposium on Foundations of Computer Science

0272-5428/10 $26.00 © 2010 IEEE

DOI 10.1109/FOCS.2010.67

645

2010 IEEE 51st Annual Symposium on Foundations of Computer Science

0272-5428/10 $26.00 © 2010 IEEE

DOI 10.1109/FOCS.2010.67

645

2010 IEEE 51st Annual Symposium on Foundations of Computer Science

0272-5428/10 $26.00 © 2010 IEEE

DOI 10.1109/FOCS.2010.67

645

in an edge-weighted graph where the sum of edge weights
is negative. Exhaustive search of all triples of nodes takes
𝑂(𝑛3) time, and applying the best APSP algorithm makes
this 𝑂(𝑛3 log log3 𝑛/ log2 𝑛) time, but we do not know
a faster algorithm. Recent work has suggested that this
negative triangle problem might have a faster algorithm,
since the node-weighted version of the problem can be
solved faster [35], [36], [12]. (In fact the node-weighted
version of the problem is no harder than the unweighted
triangle detection problem, which is solvable in 𝑂(𝑛2.38)
time [19].) Since the cubic algorithm for negative triangle
is so simple, and many restrictions of the problem have
faster algorithms, it would appear that cubic complexity is
unnecessary for finding a negative triangle.

We give theoretical evidence that these open algorithmic
questions may be hard to resolve, by showing that they and
other well-studied problems are all surprisingly equivalent,
in the sense that there is a substantially subcubic algorithm
for one of them if and only if all of them have substantially
subcubic algorithms. Compare with the phenomenon of NP-
completeness: one reason P vs NP looks so hard to resolve
is that many researchers working in different areas have
all been working on essentially the same (NP-complete)
problem with no success. Our situation is entirely analogous:
either these problems really need essentially cubic time, or
we are missing a fundamental insight which would make all
of them simultaneously easier.

We say that an algorithm on 𝑛 × 𝑛 matrices (or an 𝑛-
node graph) computing a set of values in {−𝑀, . . . ,𝑀}
is truly subcubic if it uses 𝑂(𝑛3−𝛿 ⋅ poly(log𝑀)) time for
some 𝛿 > 0. In general, poly log𝑀 factors are natural: the
truly subcubic ring matrix multiplication algorithms have
poly log𝑀 overhead if one counts the bit complexity of
operations. We develop subcubic reductions between many
problems, proving:

Theorem I.1 The following problems either all have truly
subcubic algorithms, or none of them do:

1) The all-pairs shortest paths problem on weighted
digraphs (APSP).

2) The all-pairs shortest paths problem on undirected
weighted graphs.

3) Detecting if a weighted graph has a triangle of nega-
tive total edge weight.

4) Listing up to 𝑛2.99 negative triangles in an edge-
weighted graph.

5) Verifying the correctness of a matrix product over the
(min,+)-semiring.

6) Checking whether a given matrix defines a metric.
7) Finding a minimum weight cycle in a graph of non-

negative edge weights.
8) The replacement paths problem on weighted digraphs.
9) Finding the second shortest simple path between two

nodes in a weighted digraph.

Note the only previously known equivalence in the above
was that of (1) and (2).

An explicit definition of our reducibility concept is given
in Section IV. The truly subcubic runtimes may vary depend-
ing on the problem: given our reductions, an �̃�(𝑛2.9) algo-
rithm for negative triangle implies an �̃�(𝑛2.96) algorithm
for APSP. However, asymptotic runtime equivalences hold
with respect to polylogarithmic improvements. That is, for
each 𝑐 ≥ 2, the above either all have 𝑂(𝑛3

log𝑐 𝑛 ⋅ poly log𝑀)

algorithms, or none of them do. Hence an Ω(𝑛3/ log2 𝑛)
lower bound on APSP would imply a similar lower bound
on all the above (within poly log𝑀 factors).

Perhaps the most interesting aspect of Theorem I.1 is that
some of the problems are decision problems and others are
functions. Hence to prove lower bounds on some decision
problems, it suffices to prove them on analogous multi-
output functions. It is counterintuitive that an 𝑂(𝑛2.9) algo-
rithm returning one bit can be used to compute a function
on Ω(𝑛2) bits in 𝑂(𝑛2.96) time. Nevertheless, it is possible
and in retrospect, our reductions are very natural.

A few equivalences in Theorem I.1 follow from a more
general theorem, which can be used to simplify prior work
on all-pairs path problems. In general we consider (min,⊙)
structures defined over a set 𝑅 ⊂ ℤ together with an
operation ⊙ : 𝑅 × 𝑅 → ℤ ∪ {−∞,∞}.3 We define a type
of (min,⊙) structure that we call extended, which allows
for an “identity matrix” and an “all-zeroes matrix” over the
structure. (For definitions, see the Preliminaries.) Almost all
structures we consider in this paper are extended, including
the Boolean semiring over OR and AND, the (min,max)-
semiring, and the (min,+)-semiring. In Section V we prove:

Theorem I.2 (Informal Statement of Theorems V.1
and V.2) Let ℛ̄ be an extended (min,⊙) structure. The
following problems over ℛ̄ either all have truly subcubic
algorithms, or none of them do:

∙ Negative Triangle Detection. Given an 𝑛-node graph
with weight function 𝑤 : 𝑉 × 𝑉 → 𝑅 ∪ ℤ, find nodes
𝑖, 𝑗, 𝑘 such that 𝑤(𝑖, 𝑗) ∈ ℤ, 𝑤(𝑖, 𝑘) ∈ 𝑅, 𝑤(𝑘, 𝑗) ∈ 𝑅,
and (𝑤(𝑖, 𝑘)⊙ 𝑤(𝑘, 𝑗)) + 𝑤(𝑖, 𝑗) < 0.

∙ Matrix Product. Given two 𝑛×𝑛 matrices 𝐴, 𝐵 with
entries from 𝑅, compute the product of 𝐴 and 𝐵 over
ℛ̄.

∙ Matrix Product Verification. Given three 𝑛 × 𝑛 ma-
trices 𝐴, 𝐵, 𝐶 with entries from 𝑅, determine if the
product of 𝐴 and 𝐵 over ℛ̄ is 𝐶.

The relationship between matrix product and its verifi-
cation is particularly surprising, as 𝑛 × 𝑛 matrix product
verification over rings can be done in 𝑂(𝑛2) randomized
time [7] but it is not known whether ring matrix multipli-
cation can be reduced to this fast verification. Spinrad [32]

3An analogous treatment is possible for (max,⊙) structures. We omit
the details, as they merely involve negations of entries.

646646646

(Open Problem 8.2) and Alon [1] asked if the verification of
various matrix products can be done faster than the products
themselves. Our reductions rely crucially on the fact that the
addition operation in a (min,⊙) structure is a minimum.

In the full version of the paper we show how our tech-
niques can also be used to design alternative approaches to
Boolean matrix multiplication (BMM). First we have as a
consequence of Theorem I.2:

Theorem I.3 The following all have truly subcubic combi-
natorial algorithms, or none of them do:

∙ Boolean matrix multiplication (BMM).
∙ Detecting if a graph has a triangle.
∙ Listing up to 𝑛2.99 triangles in a graph.
∙ Verifying the correctness of a matrix product over the

Boolean semiring.

These reductions have low overhead, hence any simple fast
triangle algorithm would yield a simple (and only slightly
slower) BMM algorithm. This is a problem that has been
investigated by many researchers, e.g. ([39], Open Problem
4.3(c)) and ([32], Open Problem 8.1). More concretely,
Theorem I.3 can already yield new BMM algorithms, with
a little extra work. First, we can derandomize the recent
combinatorial BMM algorithm of Bansal and Williams [5]:

Theorem I.4 There is a deterministic combinatorial
𝑂(𝑛3/ log2.25 𝑛)-time algorithm for BMM.

The BMM algorithm of [5] uses randomness in two
different ways: it reduces BMM to a graph theoretic prob-
lem, computes a pseudoregular partition of the graph in
randomized quadratic time, then it uses random samples of
nodes along with the partition to speed up the solution of the
graph problem. We can avoid the random sampling by giving
a triangle algorithm with 𝑂(𝑛3/ log2.25 𝑛) running time,
and applying Theorem I.3. To get a deterministic triangle
algorithm, we show (using a new reduction) that in fact any
polynomial time algorithm for pseudoregularity suffices to
get a subcubic triangle algorithm. With this relaxed con-
dition, we can replace the randomized quadratic algorithm
for pseudoregularity with a deterministic polynomial time
algorithm of Alon and Naor [3].

We also obtain a new quantum algorithm for BMM,
improving the previous best by Buhrman and Špalek [9]:

Theorem I.5 There is an �̃�(min{𝑛1.3𝐿17/30, 𝑛2 +
𝐿47/60𝑛13/15}) quantum algorithm for computing the
product of two 𝑛 × 𝑛 Boolean matrices, where 𝐿 is the
number of ones in the output matrix.

II. PRELIMINARIES

Unless otherwise noted, all graphs have 𝑛 vertices, and 𝑚
denotes the number of edges. Whenever an algorithm in our

paper uses ∞ or −∞, these can be substituted by numbers
of suitably large absolute value. We use 𝜔 to denote the
smallest real number such that 𝑛 × 𝑛 matrix multiplication
over an arbitrary ring can be done in 𝑂(𝑛𝜔) operations.

Structures and Extended Structures: We give a general
definition encompassing all algebraic structures for which
our results apply. Let 𝑅 be a finite set. A (min,⊙) structure
over 𝑅 is defined by a binary operation ⊙ : 𝑅 × 𝑅 →
ℤ∪{−∞,∞}. We use the variable ℛ to refer to a (min,⊙)
structure. We say a (min,⊙) structure is extended if 𝑅 ⊂ ℤ

and 𝑅 contains elements 𝜀0 and 𝜀1 such that for all 𝑥 ∈ 𝑅,
𝑥 ⊙ 𝜀0 = 𝜀0 ⊙ 𝑥 = ∞ and 𝜀1 ⊙ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑅.
That is, 𝜀0 is a type of annihilator, and 𝜀1 is a left identity.
We use the variable ℛ̄ to refer to an extended structure.
The elements 𝜀0 and 𝜀1 allow us to define (for every 𝑛) an
𝑛 × 𝑛 identity matrix 𝐼𝑛 and a 𝑛 × 𝑛 zero matrix 𝑍𝑛 over
ℛ̄. More precisely, 𝐼𝑛[𝑖, 𝑗] = 𝜀0 for all 𝑖 ∕= 𝑗, 𝐼𝑛[𝑖, 𝑖] = 𝜀1,
and 𝑍𝑛[𝑖, 𝑗] = 𝜀0 for all 𝑖, 𝑗. We shall omit the subscripts
of 𝐼𝑛 and 𝑍𝑛 when the dimension is clear.

Examples of extended structures ℛ̄ are the (𝑂𝑅,𝐴𝑁𝐷)
(or Boolean) semiring,4 as well as the (min,max) and
(min,+) semirings (also called subtropical and tropical),
and the (min,≤) structure used to solve all pairs earliest
arrivals [34]. An example of a structure that is not ex-
tended is the “existence dominance” structure defined as
𝑅 = ℤ ∪ {−∞,∞}, and 𝑎⊙ 𝑏 = 0 if 𝑎 ≤ 𝑏 and 𝑎⊙ 𝑏 = 1
otherwise.

Matrix Products Over Structures: The matrix product
of two 𝑛× 𝑛 matrices over ℛ is

(𝐴⊙𝐵)[𝑖, 𝑗] = min
𝑘∈[𝑛]

(𝐴[𝑖, 𝑘]⊙𝐵[𝑘, 𝑗]).

It is easy to verify that for all matrices 𝐴 over an extended
ℛ̄, 𝐼⊙𝐴 = 𝐴 and 𝑍⊙𝐴 = 𝐴⊙𝑍 = 𝐹 where 𝐹 [𝑖, 𝑗] = ∞
for all 𝑖, 𝑗. The problem of matrix product verification
over an extended structure ℛ̄ is to determine whether
min𝑘∈[𝑛](𝐴[𝑖, 𝑘] ⊙ 𝐵[𝑘, 𝑗]) = 𝐶[𝑖, 𝑗] for all 𝑖, 𝑗 ∈ [𝑛],
where 𝐴,𝐵,𝐶 are given 𝑛 × 𝑛 matrices with entries from
𝑅. Although it looks like a simpler problem, matrix product
verification for the (min,+) semiring (for instance) is not
known to have a truly subcubic algorithm.

Negative Triangles Over Structures: The negative tri-
angle problem over ℛ is defined on a weighted tripartite
graph with parts 𝐼, 𝐽,𝐾. Edge weights between 𝐼 and 𝐽
are from ℤ, and all other edge weights are from 𝑅. The
problem is to detect if there are 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 so
that (𝑤(𝑖, 𝑘) ⊙ 𝑤(𝑘, 𝑗)) + 𝑤(𝑖, 𝑗) < 0. Note that if one
negates all weights of edges between 𝐼 and 𝐽 , the condition
becomes (𝑤(𝑖, 𝑘) ⊙ 𝑤(𝑘, 𝑗)) < 𝑤(𝑖, 𝑗). In the special case
when ⊙ = + and 𝑅 ⊆ ℤ ∪ {−∞,∞}, the tripartiteness re-
quirement is unnecessary, and the negative triangle problem
is defined on an arbitrary graph with edge weights from

4Observe the Boolean semiring is isomorphic to the structure on elements
𝜀0 = ∞ and 𝜀1 = 0, where 𝑥⊙ 𝑦 = 𝑥+ 𝑦.

647647647

ℤ∪{−∞,∞}. This holds for the negative triangle problem
over both the (min,+) and Boolean semirings.

III. PRIOR AND RELATED WORK

Matrix Products and Path Problems: Matrix multipli-
cation is fundamental to computer science. The case of
multiplying over a ring is well known to admit surprisingly
fast algorithms using the magic of subtraction, beginning
with the famous 𝑂(𝑛log2 7) time algorithm of Strassen [33].
After many improvements on Strassen’s original result, the
current best upper bound on ring matrix multiplication is
𝑂(𝑛2.376) by Coppersmith and Winograd [11].

Over algebraic structures without subtraction, there has
been little progress in the search for truly subcubic algo-
rithms. These “exotic” matrix products are extremely useful
in graph algorithms and optimization. For example, matrix
multiplication over the (max,min)-semiring, with max and
min operators in place of plus and times (respectively),
can be used to solve the all pairs bottleneck paths problem
(APBP) on arbitrary weighted graphs, where we wish to find
a maximum capacity path from 𝑠 to 𝑡 for all pairs of nodes 𝑠
and 𝑡. Recent work [37], [13] has shown that fast matrix mul-
tiplication over rings can be applied to obtain a truly subcu-
bic algorithm over the (max,min)-semiring, yielding truly
subcubic APBP. Matrix multiplication over the (min,+)-
semiring (also known as the distance product) can be used
to solve all pairs shortest paths (APSP) in arbitrary weighted
graphs [15]. That is, truly subcubic distance product would
imply truly subcubic APSP, one of the “Holy Grails” of
graph algorithms. The fastest known algorithms for distance
product are the 𝑂(𝑛3 log log3 𝑛/ log2 𝑛) solution due to
Chan [10], and �̃�(𝑀𝑛𝜔) where 𝑀 is the largest weight in
the matrices due to Alon, Galil and Margalit [2] (following
Yuval [41]). Unfortunately, the latter is pseudopolynomial
(exponential in the bit complexity), and can only be used to
efficiently solve APSP in special cases [31].

Many over the years have asked if APSP can be solved
faster than cubic time. For an explicit reference, Shoshan
and Zwick [31] asked if the distance product of two 𝑛× 𝑛
matrices with entries in {1, . . . ,𝑀} can be computed in
𝑂(𝑛3−𝛿 log𝑀) for some 𝛿 > 0. (Note an APSP algorithm
of similar runtime would follow from such an algorithm.)

Triangles and Matrix Products: Itai and Rodeh [19]
were the first to show that triangle detection can be done
with Boolean matrix multiplication.

The trilinear decomposition of Pan [26], [27] implies that
any bilinear circuit for computing the trace of the cube of a
matrix 𝐴 (i.e., 𝑡𝑟(𝐴3)) over any ring can be used to compute
matrix products over any ring. So in a sense, algebraic
circuits that can count the number of triangles in a graph
can be turned into matrix multiplication circuits. Note, this
correspondence relies heavily on the algebraic circuit model:
it is non-black box in an extreme way. (Our reductions are
all black box.)

The 𝑘 Shortest Paths Problem: A natural generalization
of the 𝑠, 𝑡-shortest path problem is that of returning the first
𝑘 of the shortest paths between 𝑠 and 𝑡. In the early 1970s,
Yen [40] and Lawler [21] presented an algorithm which
solved this problem for directed graphs with nonnegative
edge weights; with Fibonacci heaps [17] their algorithm
runs in 𝑂(𝑘(𝑚𝑛 + 𝑛2 log 𝑛)) time. Eppstein [14] showed
that if the paths can have cycles, then the problem can
be solved in 𝑂(𝑘 + 𝑚 + 𝑛 log 𝑛) time. When the input
graph is undirected, even the 𝑘 shortest simple paths prob-
lem is solvable in 𝑂(𝑘(𝑚 + 𝑛 log 𝑛)) time [20]. For di-
rected unweighted graphs, the best known algorithm for the
problem is the �̃�(𝑘𝑚

√
𝑛) time randomized combinatorial

algorithm of Roditty and Zwick [30]. Roditty [28] noticed
that the 𝑘 shortest simple paths can be approximated fast,
culminating in Bernstein’s [6] amazing �̃�(𝑘𝑚/𝜀) running
time for a (1 + 𝜀)-approximation. When the paths are to be
computed exactly, however, the best running time is still the
𝑂(𝑘(𝑚𝑛+ 𝑛2 log 𝑛)) time of Yen and Lawler’s algorithm.

Roditty and Zwick [30] showed that the 𝑘 shortest simple
paths can be reduced to 𝑘 computations of the second
shortest simple path, and so any 𝑇 (𝑚,𝑛) time algorithm for
the second shortest simple path implies an 𝑂(𝑘𝑇 (𝑚,𝑛))
algorithm for the 𝑘 shortest simple paths. The second
shortest simple path always has the following form: take
a prefix of the shortest path 𝑃 to some node 𝑥, then take
a path to some node 𝑦 on 𝑃 using only edges that are not
on 𝑃 (this part is called a detour), then take the remaining
portion of 𝑃 to 𝑡. The problem then reduces to finding a
good detour.

Verifying a Metric: In the metricity problem, we are
given an 𝑛 × 𝑛 matrix and want to determine whether it
defines a metric on [𝑛]. The metricity problem is a special
case of the metric nearness problem (MNP): given a matrix
𝐷, find a closest matrix 𝐷′ such that 𝐷 dominates 𝐷′

and 𝐷′ satisfies the triangle inequality. Brickell et. al [8]
show that MNP is equivalent to APSP and ask whether
the metricity problem is equivalent to MNP. Theorem V.2
partially answers their question in the sense that subcubic
metricity implies subcubic MNP.

Prior reductions of APSP to other problems: Roditty
and Zwick [29] consider the incremental and decremen-
tal versions of the single source shortest path problem
in weighted and unweighted directed graphs. They show
that either APSP has a truly subcubic algorithm, or any
data structure for the decremental/incremental single source
shortest paths problem must either have been initialized in
cubic time, or its updates must take amortized Ω(𝑛2) time,
or its query time must be Ω(𝑛). They also give a similar
relationship between the problem for unweighted directed
graphs and combinatorial algorithms for BMM.

648648648

IV. SUBCUBIC REDUCIBILITY

Here we formally define the notion of subcubic reducibil-
ity used in this paper, and prove a few consequences of it.
Recall that an algorithm with oracle access to 𝐵 has special
workspace in memory reserved for oracle calls, and at any
step in the algorithm, it can call 𝐵 on the content of the
special workspace in one unit of time and receive a solution
to 𝐵 in the workspace.

Let Σ be an underlying alphabet. We define a size measure
to be any function 𝑚 : Σ★ → ℕ. In this paper, the size
measure on weighted graphs with weights from [−𝑀,𝑀]
(or square matrices with entries from [−𝑀,𝑀]) is taken to
be the number of nodes in the given graph times log𝑀 (or
the matrix dimension times log𝑀).

Definition IV.1 Let 𝐴 and 𝐵 be computational problems
with a common size measure 𝑚 on inputs. We say that there
is a subcubic reduction from 𝐴 to 𝐵 if there is an algorithm
𝒜 with oracle access to 𝐵, such that for every 𝜀 > 0 there
is a 𝛿 > 0 satisfying three properties:

∙ For every instance 𝑥 of 𝐴, 𝒜(𝑥) solves the problem 𝐴
on 𝑥.

∙ 𝒜 runs in 𝑂(𝑚3−𝛿) time on instances of size 𝑚.
∙ For every instance 𝑥 of 𝐴 of size 𝑚, let 𝑚𝑖 be the size

of the 𝑖th oracle call to 𝐵 in 𝒜(𝑥). Then
∑

𝑖𝑚
3−𝜀
𝑖 ≤

𝑚3−𝛿 .

We use the notation 𝐴 ≤3 𝐵 to denote the existence of a
subcubic reduction from 𝐴 to 𝐵, and 𝐴 ≡3 𝐵 as shorthand
for 𝐴 ≤3 𝐵 and 𝐵 ≤3 𝐴. In such a case we say that 𝐴 and
𝐵 are subcubic-equivalent.

The above reducibility relation is reflexive and transitive.
More details on these properties can be found in the full
version of the paper. There is a natural extension of the
concept to 𝑂(𝑛𝑞) running times, for any constant 𝑞 ≥ 1, by
replacing all occurrences of 3 in the above definition with 𝑞.
For such reductions we denote their existence by 𝐴 ≤𝑞 𝐵,
and say there is a sub-𝑞 reduction from 𝐴 to 𝐵, for values
of 𝑞 such as “quadratic”, “cubic”, “quartic”, etc.

Now let us verify that the definition gives us the property
we want. In the following, let 𝐴 and 𝐵 be computational
problems on 𝑛 × 𝑛 matrices with entries in [−𝑀,𝑀] (or
equivalently, weighted graphs on 𝑛 nodes).

Proposition 1 If 𝐴 ≤3 𝐵 then a truly subcubic algorithm
for 𝐵 implies a truly subcubic algorithm for 𝐴.

Proof: If there is an 𝑂(𝑛3−𝜀poly log𝑀) algorithm
for 𝐵 then the algorithm for 𝐴 in the reduction runs in∑

𝑖 𝑛
3−𝜀
𝑖 poly log𝑀 ≤ 𝑛3−𝛿poly log𝑀 time.
Strongly Subcubic Reductions: All subcubic equiva-

lences proved in this paper have one additional property in
their reductions: the number of oracle calls and the sizes
of oracle calls depend only on the input, and not on the

parameter 𝜀. (In some other reductions, such as the example
below, this is not the case.) Let us define a reduction with
this property to be a strongly subcubic reduction. These
stronger reductions have the nice quality that, with respect to
polylogarithmic improvements, running times are preserved.
The proof of the theorem below appears in the full version
of the paper.

Theorem IV.1 If there is a strongly subcubic reduction from
𝐴 to 𝐵, then

∙ For all 𝑐 > 0, an 𝑂(𝑛3(log𝑀)𝑑/ log𝑐 𝑛) algorithm
for 𝐵 implies an 𝑂(𝑛3(log𝑀)3𝑑/ log𝑐 𝑛) algorithm for
𝐴, and an 𝑂(𝑛3/ log𝑐 𝑛) algorithm for 𝐵 implies an
𝑂(𝑛3/ log𝑐 𝑛) algorithm for 𝐴.

∙ For all 𝛾 > 0, an 𝑛3/2Ω(log𝛾 𝑛) algorithm for 𝐵 implies
an 𝑛3/2Ω(log𝛾 𝑛) algorithm for 𝐴.

Note that if the sizes of oracle calls or their number
depend on 𝜀, one can find cases where polylog factors are
diminished in the algorithm for 𝐴. (In fact, the reduction
below of Matoušek is one example.)

These kinds of reductions were implicit in prior work,
but have not been studied systematically. For one example,
Matoušek [24] showed that computing dominances in ℝ

𝑛

between pairs of 𝑛 vectors can be done in 𝑂(𝑛(3+𝑡)/2) time,
where 𝑂(𝑛𝑡) is an upper bound on 𝑛×𝑛 integer matrix mul-
tiplication. The algorithm works by making 𝑂(𝑛3/2/𝑛𝑡/2)
calls to 𝑛 × 𝑛 integer matrix multiplication. (Note this is
not a strongly subcubic reduction, since the number of calls
depends on 𝑡.) Notice that for any 𝑡 < 3, the running time
𝑂(𝑛(3+𝑡)/2) is truly subcubic. Hence we can say:

Dominances in ℝ
𝑛 ≤3 Integer Matrix Multiplication.

Another example is that of 3SUM-hardness in computational
geometry. Gajentaan and Overmars [18] showed that for
many problems Π solvable in quadratic time, one can reduce
3SUM to Π in such a way that a subquadratic algorithm for
Π implies one for 3SUM. Hence under the conjecture that
the 3SUM problem is hard to solve faster, many other Π are
also hard.5 Proofs of 3SUM-hardness imply 3SUM ≤2 Π,
but the notion of reduction used in [18] is weaker than ours.
(They only allow 𝑂(1) calls to the oracle for Π.)

V. EQUIVALENCES BETWEEN PROBLEMS ON GENERIC

STRUCTURES

A generic approach to computing fast (min,⊙) matrix
products (for an arbitrary binary operation ⊙) would be of
major interest. Here we prove truly subcubic equivalences

5Sometimes Π is defined to be 3SUM-hard if “Π is in subquadratic time
implies 3SUM is in subquadratic time”. This definition leaves something
to be desired: if 3SUM turned out to be in subquadratic time then all
problems are 3SUM-hard, and if 3SUM is not in subquadratic time then
no subquadratic problem is 3SUM-hard. Hence the 3SUM-hardness of some
problems would be contingent on the complexity of 3SUM itself. Note this
is not the definition of [18], which is a reducibility notion like ours.

649649649

between matrix products, negative triangles, and matrix
product verification for (min,⊙) structures. (For definitions,
see the Preliminaries.)

Reminder of Theorems V.1 and V.2 Let ℛ̄ be an extended
(min,+) structure. The following problems over ℛ̄ either all
have truly subcubic algorithms, or none of them do:

∙ Negative Triangle Detection. Given an 𝑛-node graph
with weight function 𝑤 : 𝑉 × 𝑉 → 𝑅 ∪ ℤ, find nodes
𝑖, 𝑗, 𝑘 such that 𝑤(𝑖, 𝑗) ∈ ℤ, 𝑤(𝑖, 𝑘) ∈ 𝑅, 𝑤(𝑘, 𝑗) ∈ 𝑅,
and (𝑤(𝑖, 𝑘)⊙ 𝑤(𝑘, 𝑗)) + 𝑤(𝑖, 𝑗) < 0.

∙ Matrix Product. Given two 𝑛×𝑛 matrices 𝐴, 𝐵 with
entries from 𝑅, compute the product of 𝐴 and 𝐵 over
ℛ̄.

∙ Matrix Product Verification. Given three 𝑛 × 𝑛 ma-
trices 𝐴, 𝐵, 𝐶 with entries from 𝑅, determine if the
product of 𝐴 and 𝐵 over ℛ̄ is 𝐶.

A. Matrix Product Verification Implies Negative Triangle
Detection

We start by showing that matrix product verification
can solve the negative triangle problem over any extended
structure ℛ̄ in the same asymptotic runtime.

Theorem V.1 (Negative Triangle Over ℛ̄ ≤3 Matrix
Product Verification Over ℛ̄.) Suppose matrix product
verification over ℛ̄ can be done in time 𝑇 (𝑛). Then the
negative triangle problem for graphs over ℛ̄ can be solved
in 𝑂(𝑇 (𝑛)) time.

Proof: From the tripartite graph 𝐺 = (𝐼 ∪ 𝐽 ∪ 𝐾,𝐸)
given by the negative triangle problem over ℛ̄, construct
matrices 𝐴,𝐵,𝐶 as follows. For each edge (𝑖, 𝑗) ∈ (𝐼 ×
𝐽) ∩ 𝐸 set 𝐶[𝑖, 𝑗] = 𝑤(𝑖, 𝑗). Similarly, for each edge
(𝑖, 𝑘) ∈ (𝐼 × 𝐾) ∩ 𝐸 set 𝐴[𝑖, 𝑘] = 𝑤(𝑖, 𝑘) and for each
edge (𝑘, 𝑗) ∈ (𝐾 × 𝐽) ∩ 𝐸 set 𝐵[𝑘, 𝑗] = 𝑤(𝑘, 𝑗). When
there is no edge in the graph, the corresponding matrix
entry in 𝐴 or 𝐵 becomes 𝜀0 and in 𝐶 it becomes ∞. The
problem becomes to determine whether there are 𝑖, 𝑗, 𝑘 ∈ [𝑛]
so that 𝐴[𝑖, 𝑘] ⊙ 𝐵[𝑘, 𝑗] < 𝐶[𝑖, 𝑗]. Let 𝐴′ be the 𝑛 × 2𝑛
matrix obtained by concatenating 𝐴 to the left of the 𝑛× 𝑛
identity matrix 𝐼 . Let 𝐵′ be the 2𝑛× 𝑛 matrix obtained by
concatenating 𝐵 on top of 𝐶. Then 𝐴′ ⊙𝐵′ is equal to the
componentwise minimum of 𝐴⊙𝐵 and 𝐶. One can complete
𝐴′, 𝐵′ and 𝐶 to square 2𝑛× 2𝑛 matrices by concatenating
an all 𝜀0 𝑛×2𝑛 matrix to the bottom of 𝐴′, an all 𝜀0 2𝑛×𝑛
matrix to the right of 𝐵′ and 𝑛 columns of all 𝜀0s and 𝑛
rows of all 𝜀0s to the right and bottom of 𝐶 respectively.

Run matrix product verification on 𝐴′, 𝐵′, 𝐶. Sup-
pose there are some 𝑖, 𝑗 so that min𝑘(𝐴

′[𝑖, 𝑘] ⊙
𝐵′[𝑘, 𝑗]) ∕= 𝐶[𝑖, 𝑗]. Then since min𝑘(𝐴

′[𝑖, 𝑘] ⊙ 𝐵′[𝑘, 𝑗]) =
min{𝐶[𝑖, 𝑗],min𝑘(𝐴[𝑖, 𝑘] ⊙ 𝐵[𝑘, 𝑗])} ≤ 𝐶[𝑖, 𝑗], there must
exists a 𝑘 ∈ [𝑛] so that 𝐴[𝑖, 𝑘]⊙ 𝐵[𝑘, 𝑗] < 𝐶[𝑖, 𝑗]. In other
words, 𝑖, 𝑘, 𝑗 is a negative triangle over ℛ̄. If on the other
hand for all 𝑖, 𝑗 we have min𝑘(𝐴

′[𝑖, 𝑘]⊙𝐵′[𝑘, 𝑗]) = 𝐶[𝑖, 𝑗],

then for all 𝑖, 𝑗 we have min𝑘(𝐴[𝑖, 𝑘] ⊙ 𝐵[𝑘, 𝑗]) ≥ 𝐶[𝑖, 𝑗]
and there is no negative triangle.

B. Negative Triangle Implies Matrix Multiplication

Next we show that from negative triangle detection over a
(min,⊙) structure ℛ, we can obtain the full matrix product
over ℛ. Specifically, we prove the following.

Theorem V.2 (Matrix Product Over ℛ ≤3 Negative Tri-
angle Over ℛ.) Let 𝑇 (𝑛) be a function so that 𝑇 (𝑛)/𝑛 is
nondecreasing. Suppose the negative triangle problem over
ℛ in an 𝑛-node graph can be solved in 𝑇 (𝑛) time. Then the
product of two 𝑛× 𝑛 matrices over ℛ can be performed in
𝑂(𝑛2 ⋅𝑇 (𝑛1/3) log𝑊) time, where 𝑊 is the absolute value
of the largest finite integer in the output.

Before we proceed, let us state some simple but useful
relationships between triangle detecting, finding, and listing.
The proofs of the Lemma V.1 and Theorem V.3 appear in
the full version.

Lemma V.1 (Folklore) Let 𝑇 (𝑛) be a function so that
𝑇 (𝑛)/𝑛 is nondecreasing. If there is a 𝑇 (𝑛) time algo-
rithm for negative triangle detection over ℛ on a graph
𝐺 = (𝐼 ∪ 𝐽 ∪ 𝐾,𝐸), then there is an 𝑂(𝑇 (𝑛)) algorithm
which returns a negative triangle over ℛ in 𝐺 if one exists.

It will be useful in our final algorithm to have a method
for finding many triangles, given an algorithm that can
detect one. We can extend Lemma V.1 in a new way,
to show that subcubic negative triangle detection implies
subcubic negative triangle listing, provided that the number
of negative triangles to be listed is subcubic.

Theorem V.3 (Negative Triangle Listing Over ℛ ≤3 Neg-
ative Triangle Over ℛ) Suppose there is a truly subcubic
algorithm for negative triangle detection over ℛ. Then there
is a truly subcubic algorithm which lists Δ negative triangles
over ℛ in any graph with at least Δ negative triangles, for
any Δ = 𝑂(𝑛3−𝛿), 𝛿 > 0.

Next we show that fast negative triangle detection over
ℛ implies a fast algorithm for finding many edge-disjoint
negative triangles over ℛ. Consider a tripartite graph with
parts 𝐼, 𝐽,𝐾. We say a set of triangles 𝑇 ⊆ 𝐼×𝐽×𝐾 in the
graph is 𝐼𝐽-disjoint if for all (𝑖, 𝑗, 𝑘) ∈ 𝑇 , (𝑖′, 𝑗′, 𝑘′) ∈ 𝑇 ,
(𝑖, 𝑗) ∕= (𝑖′, 𝑗′).

Lemma V.2 Let 𝑇 (𝑛) be a function so that 𝑇 (𝑛)/𝑛 is
nondecreasing. Given a 𝑇 (𝑛) algorithm for negative triangle
detection over ℛ, there is an algorithm 𝐴 which outputs
a maximal set 𝐿 of 𝐼𝐽-disjoint negative triangles over ℛ
in a tripartite graph with distinguished parts (𝐼, 𝐽,𝐾), in
𝑂(𝑇 (𝑛1/3)𝑛2) time. Furthermore, if there is a constant

650650650

𝜀 : 0 < 𝜀 < 1 such that for all large enough 𝑛,
𝑇 (𝑛) ≥ 𝑇 (21/3𝑛)/(2(1 − 𝜀)), then there is an output-
sensitive 𝑂(𝑇 (𝑛/∣𝐿∣1/3)∣𝐿∣)-time algorithm.

In particular, Lemma V.2 implies that given any graph on
𝑛 nodes, we can determine those pairs of nodes that lie on
a negative triangle in 𝑂(𝑇 (𝑛1/3)𝑛2) time. The condition
required for the output sensitive algorithm holds for all
subcubic polynomials, but it does not necessarily hold for
runtimes of the form 𝑛3/𝑓(𝑛) with 𝑓(𝑛) = 𝑛𝑜(1). In the
special case when 𝑇 (𝑛) is Θ(𝑛3/ log𝑐 𝑛) for a constant 𝑐,
the output sensitive algorithm only multiplies a log ∣𝐿∣ factor
to the runtime.

Proof: Algorithm 𝐴 maintains a global list 𝐿 of nega-
tive triangles over ℛ which is originally empty and will be
the eventual output of the algorithm. Let 𝑎 be a parameter
to be set later. At each point the algorithm works with a
subgraph �̃� of the original graph, containing all of the nodes,
all of the edges between 𝐼 and 𝐾 and between 𝐽 and 𝐾 but
only a subset of the edges between 𝐼 and 𝐽 . In the beginning
�̃� = 𝐺 and at each step 𝐴 removes an edge from �̃�.

Algorithm 𝐴 starts by partitioning each set 𝐼, 𝐽,𝐾 into
𝑛𝑎 parts where each part has at most ⌈𝑛(1−𝑎)⌉ nodes each.
It iterates through all 𝑛3𝑎 possible ways to choose a triple of
parts (𝐼 ′, 𝐽 ′,𝐾 ′) so that 𝐼 ′ ⊂ 𝐼 , 𝐽 ′ ⊂ 𝐽 and 𝐾 ′ ⊂ 𝐾. For
each triple (𝐼 ′, 𝐽 ′,𝐾 ′) in turn, it considers the subgraph 𝐺′

of �̃� induced by 𝐼 ′∪𝐽 ′∪𝐾 ′ and repeatedly uses Lemma V.1
to return a negative triangle over ℛ. Each time a negative
triangle (𝑖, 𝑗, 𝑘) is found in 𝐺′, the algorithm adds (𝑖, 𝑗, 𝑘)
to 𝐿, removes edge (𝑖, 𝑗) from �̃� and attempts to find a
new negative triangle in 𝐺′. This process repeats until 𝐺′

contains no negative triangles, in which case algorithm 𝐴
moves on to the next triple of parts.

Now, let us analyze the running time of 𝐴. For a triple of
parts (𝐼 ′, 𝐽 ′,𝐾 ′) let 𝑒𝐼′𝐽 ′𝐾′ be the number of edges (𝑖, 𝑗)
in 𝐼 ′ × 𝐽 ′ that are found in the set of 𝐼 ′𝐽 ′-disjoint negative
triangles when (𝐼 ′, 𝐽 ′,𝐾 ′) is processed by 𝐴. Let 𝑇 (𝑛) be
the complexity of negative triangle detection over ℛ. Then
the runtime can be bounded from above as:

𝑂

⎛
⎝ ∑

triples 𝐼′,𝐽 ′,𝐾′

(
𝑒𝐼′𝐽 ′𝐾′ ⋅ 𝑇 (𝑛1−𝑎) + 𝑇 (𝑛1−𝑎)

)
⎞
⎠ (1)

Note that the sum of all 𝑒𝐼′𝐽 ′𝐾′ is at most 𝑛2, since if
edge (𝑖, 𝑗) ∈ 𝐼 ′×𝐽 ′ is reported to be in a negative triangle,
then it is removed from the graph. Hence there is a constant
𝑐 > 0 such that (1) is upper bounded by:

𝑐 ⋅ 𝑇 (𝑛1−𝑎) ⋅
∑

all 𝑛3𝑎 triples 𝐼′,𝐽 ′,𝐾′
(𝑒𝐼′𝐽 ′𝐾′ + 1) ≤

≤ 𝑐 ⋅ 𝑇 (𝑛1−𝑎) ⋅
⎛
⎝𝑛3𝑎 +

∑
all 𝑛3𝑎 triples 𝐼′,𝐽 ′,𝐾′

𝑒𝐼′𝐽 ′𝐾′

⎞
⎠ ≤

≤ 𝑐 ⋅ 𝑇 (𝑛1−𝑎) ⋅ (𝑛3𝑎 + 𝑛2).
Setting 𝑎 = 2/3, the runtime becomes 𝑂(𝑛2𝑇 (𝑛1/3)).
To get an output-sensitive algorithm 𝐴′, we make the

following modification. For all 𝑖 = 1, . . . , 2 log 𝑛, run
algorithm 𝐴 with 𝑎 := 𝑖/(3 log 𝑛), and stop when the list
𝐿 contains at least 2𝑖 edges. If ∣𝐿∣ = ∣𝐿𝑖−1∣ then return 𝐿;
otherwise set 𝐿𝑖 := 𝐿 and continue with stage 𝑖+ 1.

The runtime of 𝐴′ is

log ∣𝐿∣∑
𝑖=1

𝑇 (𝑛1−
𝑖

(3 log 𝑛))⋅
⎛
⎝𝑛 3𝑖

(3 log 𝑛) +
∑

triples 𝐼′,𝐽 ′,𝐾′
(𝑒𝐼′𝐽 ′𝐾′)

⎞
⎠ ≤

log ∣𝐿∣∑
𝑖=1

(
𝑛

𝑖
log 𝑛 + 2𝑖

)
⋅ 𝑇 (𝑛1− 𝑖

(3 log 𝑛)) = 2

log ∣𝐿∣∑
𝑖=1

2𝑖𝑇 (𝑛/2𝑖/3).

Since there is a constant 𝜀 < 1 so that for all 𝑛, 𝑇 (𝑛) ≥
𝑇 (21/3𝑛)/(2(1−𝜀)), then for all 𝑖, 2𝑖𝑇 (𝑛/2𝑖/3) ≤ 2𝑖+1(1−
𝜀)𝑇 (𝑛/2(𝑖+1)/3) and hence the runtime is bounded by

𝑂

⎛
⎝𝑇 (𝑛/∣𝐿∣1/3)∣𝐿∣

log ∣𝐿∣∑
𝑖=0

(1− 𝜀)𝑖
⎞
⎠ = 𝑂(𝑇 (𝑛/∣𝐿∣1/3)∣𝐿∣).

We are now ready to prove Theorem V.2, via a simulta-
neous binary search on entries of the matrix product. The
“oracle” used for binary search is our algorithm for 𝐼𝐽-
disjoint triangles.

Proof of Theorem V.2. Let 𝐴 and 𝐵 be the given 𝑛×𝑛
matrices. Suppose the integers in the output 𝐴 ⊙ 𝐵 lie in
[−𝑊,𝑊] ∪ {∞,−∞}. We will binary search on [−𝑊,𝑊]
for the finite entries.

We maintain two 𝑛×𝑛 matrices 𝑆 and𝐻 so that originally
𝑆[𝑖, 𝑗] = −𝑊 and 𝐻[𝑖, 𝑗] = 𝑊 + 1 for all 𝑖, 𝑗 ∈ [𝑛].
The algorithm proceeds in iterations. In each iteration a
complete tripartite graph 𝐺 is created on partitions 𝐼, 𝐽
and 𝐾. The edges of 𝐺 have weights 𝑤(⋅) so that for
𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 and 𝑘 ∈ 𝐾, 𝑤(𝑖, 𝑘) = 𝐴[𝑖, 𝑘], 𝑤(𝑘, 𝑗) =
𝐵[𝑘, 𝑗] and 𝑤(𝑖, 𝑗) = ⌈(𝑆[𝑖, 𝑗] + 𝐻[𝑖, 𝑗])/2⌉. After this,
using the algorithm from Lemma V.2, generate a list 𝐿 of
𝐼𝐽-disjoint negative triangles over ℛ for 𝐺 in 𝑂(𝑇 (𝑛))
time. Now, modify 𝑆 and 𝐻 as follows. If (𝑖, 𝑗) appears
in a triangle in 𝐿 for 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , then 𝐻[𝑖, 𝑗] = 𝑤(𝑖, 𝑗),
otherwise 𝑆[𝑖, 𝑗] = 𝑤(𝑖, 𝑗). Continue iterating until for all
𝑖, 𝑗, 𝐻[𝑖, 𝑗] ≤ 𝑆[𝑖, 𝑗] + 1.

Finally, create the result matrix 𝐶. To compute the entries
of 𝐶, set up a complete tripartite graph 𝐺 on partitions 𝐼, 𝐽
and 𝐾. The edges of 𝐺 have weights 𝑤(⋅) so that for 𝑖 ∈
𝐼, 𝑗 ∈ 𝐽 and 𝑘 ∈ 𝐾, 𝑤(𝑖, 𝑘) = 𝐴[𝑖, 𝑘], 𝑤(𝑘, 𝑗) = 𝐵[𝑘, 𝑗]
and 𝑤(𝑖, 𝑗) = 𝑆[𝑖, 𝑗]. Use the algorithm from Lemma V.2 to
obtain a list 𝐿 of 𝐼𝐽-disjoint negative triangles in 𝑂(𝑇 (𝑛))
time. For all 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 so that (𝑖, 𝑗) appears in a triangle
in 𝐿, set 𝐶[𝑖, 𝑗] = 𝑆[𝑖, 𝑗]; otherwise, set 𝐶[𝑖, 𝑗] = 𝐻[𝑖, 𝑗].
□

651651651

Corollary V.1 Suppose the negative triangle problem over
ℛ is in 𝑂(𝑛3/ log𝑐 𝑛) time for some constant 𝑐. Then
the product of 𝑛 × 𝑛 matrices over ℛ can be done in
𝑂((log𝑊)𝑛3/ log𝑐 𝑛) time.

An important special case of matrix multiplication is
that of multiplying rectangular matrices. Negative triangle
detection can also give a speedup in this case as well.

Theorem V.4 Suppose the negative triangle problem over
ℛ is in 𝑇 (𝑛) time. Then two matrices of dimensions 𝑚×𝑛
and 𝑛×𝑝 can be multiplied over ℛ in 𝑂(𝑚𝑝⋅𝑇 (𝑛1/3) log𝑊)
time, where the entries in the output lie in [−𝑊,𝑊] ∪
{−∞,∞}.

If 𝑇 (𝑛) = 𝑛𝑐 the runtime is 𝑂(𝑚𝑝(𝑛)𝑐/3). Notice that
if 𝑐 < 3 and if 𝑝 = 𝑛(3−𝑐)/3, then the runtime would be
𝑂(𝑚𝑛). That is, for any 𝑐 < 3, there is some 𝑝 ≥ 𝑛𝜀 such
that multiplication of 𝑚×𝑛 and 𝑛× 𝑝 matrices over ℛ can
be done optimally. Similar to Lemma V.2, for most functions
𝑇 (𝑛), the result can be modified to give an output-sensitive
𝑂(ℓ ⋅ 𝑇 ((𝑚𝑛𝑝/ℓ)1/3))-time algorithm for 𝑚× 𝑛 and 𝑛× 𝑝
matrix product over ℛ, where ℓ is the number of ones in
the product matrix. The proof of Theorem V.4 appears in
the full version.

VI. DISCUSSION

In this extended abstract, we can only include proofs of a
few of our results. The remaining results appear in the full
version. Here we summarize most of our results.

A. Problems Equivalent to All-Pairs Shortest Paths.

Most of the equivalences in Theorem I.1 almost im-
mediately follow from Theorem I.2 in the special case
where the structure ℛ̄ is the (min,+)-semiring, or by
reweighting tricks. However, the equivalences concerning
the Replacement Paths and Second Shortest Simple Path
problems require new constructions. We show that they are
equivalent to the others by showing that they can be used
to detect a negative triangle. (It is known that they can be
reduced to APSP.)

B. Boolean Matrix Multiplication and Related Problems.

We show how our techniques can be used to provide
alternative algorithms for BMM. It follows from Theorem I.2
that triangle detection in an unweighted graph, Boolean
matrix multiplication, and verifying the Boolean product of
two matrices have fast and practical reductions between each
other, so that any fast practical algorithm for one would
entail similar algorithms for the other two.

Roditty and Zwick [30] give a combinatorial algorithm
for the second shortest simple path problem in unweighted
directed graphs that runs in 𝑂(𝑚

√
𝑛 log 𝑛). We show that

even a polylogarithmic improvement on their algorithm
would imply a new subcubic algorithm for BMM.

Theorem VI.1 Suppose there exist nondecreasing functions
𝑓(𝑛) and 𝑚(𝑛) with 𝑚(𝑛) ≥ 𝑛, and a combinatorial algo-
rithm which runs in 𝑂(𝑚(𝑛)

√
𝑛/𝑓(𝑛)) time and computes

the second shortest simple path in any given unweighted
directed graph with 𝑛 nodes and 𝑚(𝑛) edges. Then there is
a combinatorial algorithm for triangle detection running in
𝑂(𝑛3/𝑓(𝑛)) time. If 𝑓(𝑛) = 𝑛𝜀 for some 𝜀 > 0, then there
is a truly subcubic combinatorial algorithm for BMM.

We also give two new BMM algorithms. First, we can
derandomize Bansal and Williams’ recent combinatorial
BMM algorithm [5], which was the first to asympotically
improve on the old Four Russians algorithm [4]. One step
is to show that for the problem of preprocessing a graph
to answer independent set queries fast, any polynomial time
processing suffices to get faster BMM:

Theorem VI.2 Suppose there are 𝑘, 𝑐 > 0 such that every
𝑛-node graph can be preprocessed in 𝑂(𝑛𝑘) time so that
all subsequent batches of 𝑂(log 𝑛) independent set queries
𝑆1, . . . , 𝑆log 𝑛 can be answered in 𝑂(𝑛2/ log𝑐 𝑛) time. Then
triangle detection (and hence Boolean matrix multiplication)
is solvable in 𝑂(𝑛3/ log𝑐+1 𝑛) time.

Generalizing Theorem VI.2, we can identify a natural
query problem on weighted graphs whose solution would
give faster APSP algorithms. On a graph with an edge weight
function 𝑐 : 𝐸 → ℤ, define a price query to be an assignment
of node weights 𝑝 : 𝑉 → ℤ, where a query answer is
yes if and only if there is an edge (𝑢, 𝑣) ∈ 𝐸 such that
𝑝(𝑢) + 𝑝(𝑣) > 𝑐(𝑢, 𝑣). Intuitively, think of 𝑝(𝑣) as a price
on node 𝑣, the edge weight 𝑐(𝑢, 𝑣) as the cost of producing
both 𝑢 and 𝑣, and we wish to find for a given list of prices
if there is any edge we are willing to “sell” at those prices.

Theorem VI.3 Suppose there are 𝑘, 𝑐 > 0 such that ev-
ery 𝑛-node edge-weighted graph can be preprocessed in
𝑂(𝑛𝑘) time so that any price query can be answered
in 𝑂(𝑛2/ log𝑐 𝑛) time. Then negative triangle detection is
solvable in 𝑂(𝑛3/ log𝑐 𝑛) time (and hence APSP is solvable
in 𝑂(𝑛3 log𝑊/ log𝑐 𝑛) time.

The contrapositive of Theorem VI.3 is interesting: assum-
ing that APSP needs Ω(𝑛3/poly log 𝑛) time, there is a super-
polynomial time lower bound on the preprocessing needed
for efficiently answering price queries.

Our second BMM algorithm, stated in Theorem I.5 is a
faster quantum BMM algorithm, obtained by a reduction
to quantum triangle detection. The first time bound of
Theorem I.5 is obtained by simply applying the best known
quantum algorithm for triangle [23] to our generic matrix
product to triangle detection reduction, already improving
the previous best [9] output-sensitive quantum algorithm for
BMM. The second time bound is obtained by using some
ideas from a paper by Lingas [22].

652652652

C. A Simplified View of All-Pairs Path Problems and Their
Matrix Products.

We show how our equivalences can be used to simplify
the constructions of subcubic algorithms for several special
matrix products and all-pairs path problems in the literature:
the existence-dominance product, node-weighted APSP, all-
pairs nondecreasing paths, and all-pairs bottleneck paths.
The first two reduce to a special triangle detection problem
called dominance triangle, and the last two reduce to another
type of triangle detection called nondecreasing triangle.
We show that both triangle problems have simple subcubic
algorithms.

D. Extension to 3SUM.

Using the ideas of the paper, we show a subquadratic
equivalence between the 3SUM problem and All-Ints 3SUM.
In the 3SUM problem, one is given three lists 𝐴, 𝐵, 𝐶
of integers, and the goal is to determine if there are 𝑎 ∈
𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 such that 𝑎 + 𝑏 + 𝑐 = 0. An 𝑂(𝑛2)
algorithm is well-known and it is a celebrated open problem
in computational geometry to find a much faster algorithm.
The All-Ints 3SUM problem is a function version of the
3SUM problem: given the same lists 𝐴, 𝐵, 𝐶, now the goal
is to determine all integers 𝑎 ∈ 𝐴 such that there exist 𝑏 ∈
𝐵, 𝑐 ∈ 𝐶 with 𝑎+ 𝑏+ 𝑐 = 0. Although this function version
looks much harder, we prove that an 𝑂(𝑛2−𝜀) algorithm for
3SUM implies an 𝑂(𝑛2−𝜀′) algorithm for All-Ints 3SUM.
This may be seen as further evidence that the 3SUM problem
is hard to solve substantially faster than quadratic time.

VII. CONCLUSION

We have explored a new notion of reducibility which
preserves truly subcubic runtimes. Our main contributions
are subcubic reductions from important function problems
(such as all-pairs paths and matrix products) to important
decision problems (such as triangle detection and product
verification), showing that subcubic algorithms for the latter
entail subcubic algorithms for the former. We have shown
that these reductions and the ideas behind them have many
interesting consequences.

We conclude with three open questions:
1) Does 𝑂(𝑛3−𝛿) negative triangle detection imply
𝑂(𝑛3−𝛿) matrix product (over any ℛ)? Note we can
currently show that 𝑂(𝑛3−𝛿) negative triangle implies
𝑂(𝑛3−𝛿/3) matrix product.

2) Does a truly subquadratic algorithm for 3SUM imply
truly subcubic APSP? It is quite possible that truly
subquadratic 3SUM would imply truly subcubic neg-
ative triangle, which would answer the question.

3) Is there a truly subcubic algorithm for minimum edge-
weight triangle? Although it has been asked in prior
work, clearly this question takes on a much stronger
importance, now that we know it is equivalent to
asking for a truly subcubic APSP algorithm.

VIII. ACKNOWLEDGMENTS

This material is based partially on work supported by the
National Science Foundation under Grant CCF-0832797 at
Princeton University/IAS. The first author is supported by
the National Science Foundation under Grant # 0937060
to the Computing Research Association for the CIFellows
Project. The second author is supported by the Josef Raviv
Memorial Fellowship.

The authors would like to thank the anonymous referees
for their feedback.

REFERENCES

[1] N. Alon. Personal communication. 2009.

[2] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all
pairs shortest path problem. J. Comput. Syst. Sci., 54(2):255–
262, 1997.

[3] N. Alon and A. Naor. Approximating the cut-norm via
Grothendieck’s inequality. SIAM J. Computing, 35:787–803,
2006.

[4] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A.
Faradzev. On economical construction of the transitive closure
of an oriented graph. Soviet Math. Dokl., 11:1209–1210,
1970.

[5] N. Bansal and R. Williams. Regularity lemmas and combi-
natorial algorithms. In Proc. FOCS, pages 745–754, 2009.

[6] A. Bernstein. A nearly optimal algorithm for approximating
replacement paths and 𝑘 shortest simple paths in general
graphs. In Proc. SODA, pages 742–755, 2010.

[7] M. Blum and S. Kannan. Designing programs that check their
work. J. ACM, 42(1):269–291, 1995.

[8] J. Brickell, I. Dhillon, S. Sra, and J. Tropp. The metric
nearness problem. SIAM J. Matrix Anal. Appl., 30(1):375–
396, 2008.

[9] H. Buhrman and R. Špalek. Quantum verification of matrix
products. In Proc. SODA, pages 880–889, 2006.

[10] T. M. Chan. More algorithms for all-pairs shortest paths in
weighted graphs. In Proc. STOC, pages 590–598, 2007.

[11] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. J. Symbolic Computation, 9(3):251–
280, 1990.

[12] A. Czumaj and A. Lingas. Finding a heaviest triangle is
not harder than matrix multiplication. In Proc. SODA, pages
986–994, 2007.

[13] R. Duan and S. Pettie. Fast algorithms for (max, min)-matrix
multiplication and bottleneck shortest paths. In Proc. SODA,
pages 384–391, 2009.

[14] D. Eppstein. Finding the 𝑘 shortest paths. SIAM Journal on
Computing, 28(2):652–673, 1998.

653653653

[15] M. J. Fischer and A. R. Meyer. Boolean matrix multiplication
and transitive closure. In Proc. FOCS, pages 129–131, 1971.

[16] R. W. Floyd. Algorithm 97: shortest path. Comm. ACM,
5:345, 1962.

[17] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. JACM,
34(3):596–615, 1987.

[18] A. Gajentaan and M. Overmars. On a class of 𝑂(𝑛2) prob-
lems in computational geometry. Computational Geometry,
5(3):165–185, 1995.

[19] A. Itai and M. Rodeh. Finding a minimum circuit in a graph.
SIAM J. Computing, 7(4):413–423, 1978.

[20] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for
𝐾 shortest simple paths. Networks, 12(4):411–427, 1982.

[21] E. Lawler. A procedure for computing the 𝐾 best solutions
to discrete optimization problems and its application to the
shortest path problem. Management Science, 18:401–405,
1971/72.

[22] A. Lingas. A fast output-sensitive algorithm for Boolean
matrix multiplication. In Proc. ESA, pages 408–419, 2009.

[23] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms
for the triangle problem. In Proc. SODA, pages 1109–1117,
2005.

[24] J. Matousek. Computing dominances in 𝐸𝑛. Information
Processing Letters, 38(5):277–278, 1991.

[25] J. I. Munro. Efficient determination of the transitive closure
of a directed graph. Inf. Process. Lett., 1(2):56–58, 1971.

[26] V. Y. Pan. Strassen’s algorithm is not optimal; trilinear tech-
nique of aggregating, uniting and canceling for constructing
fast algorithms for matrix operations. In Proc. FOCS, pages
166–176, 1978.

[27] V. Y. Pan. New fast algorithms for matrix operations. SIAM
J. Comput., 9(2):321–342, 1980.

[28] L. Roditty. On the 𝐾-simple shortest paths problem in
weighted directed graphs. In Proc. SODA, pages 920–928,
2007.

[29] L. Roditty and U. Zwick. On dynamic shortest paths prob-
lems. In ESA, pages 580–591, 2004.

[30] L. Roditty and U. Zwick. Replacement paths and 𝑘 simple
shortest paths in unweighted directed graphs. In Proc. ICALP,
pages 249–260, 2005.

[31] A. Shoshan and U. Zwick. All pairs shortest paths in
undirected graphs with integer weights. In Proc. FOCS, pages
605–614, 1999.

[32] J. P. Spinrad. Efficient graph representations. Fields Institute
Monographs, 19, 2003.

[33] V. Strassen. Gaussian elimination is not optimal. Numer.
Math., 13:354–356, 1969.

[34] V. Vassilevska. Nondecreasing paths in weighted graphs, or:
how to optimally read a train schedule. In Proc. SODA, pages
465–472, 2008.

[35] V. Vassilevska and R. Williams. Finding a maximum weight
triangle in 𝑛3−𝛿 time, with applications. In Proc. STOC,
pages 225–231, 2006.

[36] V. Vassilevska, R. Williams, and R. Yuster. Finding the
smallest 𝐻-subgraph in real weighted graphs and related
problems. In Proc. ICALP, pages 262–273, 2006.

[37] V. Vassilevska, R. Williams, and R. Yuster. All pairs bottle-
neck paths and max-min matrix products in truly subcubic
time. Theory of Computing, 5(1):173–189, 2009.

[38] S. Warshall. A theorem on boolean matrices. J. ACM,
9(1):11–12, 1962.

[39] G. J. Woeginger. Open problems around exact algorithms.
Discrete Applied Mathematics, 156(3):397 – 405, 2008.

[40] J. Y. Yen. Finding the 𝐾 shortest loopless paths in a network.
Management Science, 17:712–716, 1970/71.

[41] G. Yuval. An algorithm for finding all shortest paths using
𝑁2.81 infinite-precision multiplications. Inf. Proc. Letters,
4:155–156, 1976.

654654654

