Seminar Advanced Algorithms and Data Structures - Student Report

The Power of Simple Tabulation Hashing

Jonas Mohler
April 17, 2018

Introduction

In this report I will try to neatly present the results of Patragcu and Thorup
in their paper ”"The Power of Simple Tabulation Hashing. In order to do so, I
will first introduce the Algorithm and then the mathematical concepts used to
analyse it. This should provide a clear view of what we’re looking at and why
we’re looking at it. Patragcu and Thorup actually provide an implementation
of Simple Tabulation Hashing for which they can give good bounds with high
probability. Demonstrating their approach will be the last part of the report.

Algorithm

In this section, I am going to introduce Tabulation Hashing. I will start by
showing how totally random hash functions can be used to build hash tables
that would be expected to run fast, while using way too much space. Then
Simple Tabulation Hashing will be presented as a way to lower the usage of
space and Chaining will provide a means to handle collisions.

Totally Random Hash Functions

A hash function h: {0,1,...,u-1} — > {0,1,..,m-1}, so a function mapping u keys
to m hashes, is called totally random if:

Plh(x) =t] = 1/m, for all keys x independent of all other keys. [1]

So in words this means a hash function is totally random, if it distributes the
keys uniformly in the table and its behaviour is statistically independent for any
number of keys.

Now in this state our dictionary needs ©(u lg m) space, with ©(lg m) bits to
store the hash of a key and u keys to hash, which is no real improvement com-
pared to the O(u lg u) of a binary tree, but with Simple Tabulation we can find
a solution to this problem.

Simple Tabulation Hashing

In Simple Tabulation Hashing we initialize ¢ totally random tables T;, i €
{1,...,c}. We view keys as vectors of ¢ equally long characters z1,z2,, 2. and
then hash each character x; with its respective hash function h; = T;[z;]. We
then xor all these hashes to get the hash of our original key. Now instead of
having to keep a map of u keys to m hashes, we keep ¢ maps of 2(092u)/c = y1/c
keys to m hashes. These ¢ tables now only take up a combined space of size
O(cu'/c), making a real improvement on the O(u lg m) of one totally random
hash table. [1]

hMed——— f
h2x2———

hexc)

h(x) = h1(x1) xor h2(x2) xor ... xor hc(xc)

Figure 1: Simple Tabulation Hashing

Now our space complexity is reasonable, but our hash function has changed.
We’re now calculating our hash by xor-ing c totally random hashed characters
and we can not assume independence of these hashes anymore, which plays an
important role in the analysis of the algorithm.

Chaining

There is a multitude of possibilities to resolve collisions in a hash table. While
the paper analyses Cuckoo Hashing, Linear Probing and Chaining, I am re-
straining myself to the last. Chaining is fairly simple. Instead of letting our
hashes point to our data directly they now point to linked-lists, also referred
to as bins, whenever we want to insert into our dictionary we simply add our
element to the end of the linked-list pointed to by the keys hash, and deletion
is a simple matter of redirecting a pointer.

Delete: Cutthe
fink pointing to the
element

L T T T T e
i N end of Linked-
\ \
\

/ \ List
/ K

\ y \
T Y .
Delete: Let the pointer

previously pointing to the

element point to s next
instead

Figure 2: Example of insertion and deletion on a linked-list pointed to by a hash
table

Now a totally random hash function maps keys to a specific linked-list with
probability 1/m, so after inserting n elements we would expect that list to con-
tain n/m of them. The hash table can always be resized on need to keep m in
range of n (m = ©(n)), so n/m can be kept constant and we would expect our
operations to be in O(1). [1]

Using Simple Tabulation Hashing, independence of hashes can’t just be as-
sumed, as stated above. The next section therefore attempts to provide a small
insight into the methods used to analyse such a more complicated case.

Analytical Tools

When analysing hashing that makes use of families of hash functions, such as
our ¢ hash functions in simple tabulation hashing, what is usually used is k-
independence. K-independence is a measure of how correlated the individual
hashes are, 2-independence of a family H of hash function for example implies
that for every function h € H, the hash of any two distinct keys are independent
random variables. K-independence, as a generalization of this concept, implies
any k distinct keys are hashed independently for every h € H. [1] With a cer-
tain degree of independence, depending on the implementation, we can then
guarantee operations in O(1). Linear Probing for example is known to need
5-independence.

Unfortunately, Tabulation Hashing is known to only be 3-independent, which
doesn’t provide us with a bound strong enough to guarantee O(1) operations for
Chaining. [2] Patragcu and Thorup are going a different way. They are using
so called Chernoff Bounds to analyse the distribution of random variables, in
our case the number of keys ending up in a bin, in a region of the distribution
not around the mean, the so called tail. They provide their bounds ”with high
probability”, which is understood as follows

High Probability Bound: In Probability Theory, an event E is said to occur
"with high probability”, if P[E] > 1 —n~7 for any constant 7. [1] So basically
the bigger the v we choose, the closer our bound gets to a probability of 1.

Chernoff Bounds

As stated above, Chernoff Bounds give us a way of bounding how far off the
mean our random variable can be, by looking at the probability that a random
variable is a prespecified constant smaller or larger than the mean. For X being
the number of keys being hashed to a particular bin, the Paper will provide us
with the following Bounds:

PIX > (14+0)] < (8 /(1 +))" and PIX > (1=0)p] < (¢3/((1 — 8)' """

2]

In these bounds, 4 = n/m is our mean, J is the parameter that allows us to
specify how close to the mean we are going to look, and d is a bound on the
contribution of a Group (we're going to introduce these later),to a specific bin.
Now as with k-independence, Chernoftf Bounds require their random variables
to be independent, but as it turns out not as independent as k-indepence would
need. Specifically, even if our random variables depend on the previous random
variables, as long as the mean of a random variable X;, given all previous ran-
dom variables, is itself a constant independent of all the previous X, our bounds
hold. [2]

Showing how to guarantee this condition is basically what Patrascu and Thorup
are doing and how they’re doing that will be the topic of the last section.

The Papers Approach

So at this point we know how hashes are obtained in Simple Tabulation Hash-
ing. Also, we know that if the mean of our random variable (the number of
keys being hashed to a specific bin) is a constant independent of the random
variables, we can apply Chernoff Bounds and thereby get a good estimation
on the load of the bins. We are going to need one key Lemma to display the
method.

Lemma: When hashing n < m!'~¢ keys into m bins, for some constant ¢ > 0,
for all constants « all bins get less than d = min{((1 + 7)/e)¢,2(1+7/¢} keys,
with high probability. [2]

The v is again our parameter for high probability, and the € is used to state
that we hash into significantly more bins than the number of keys.

This Lemma relies on two core claims, the first of them being that any set T of
keys contains a subset U of logs|T| keys, that hash independently. Specifically,
if |T| > d, then |U| > (1 + v)/e.

The detailed proof of this claim will not be given, but I will try to present the
basic idea: We look at keys as vectors of ¢ characters again and we define a
position-character to be a character and its index in the vector it appears in.
We then look at a position i in our set of keys T where we have different char-
acters, and we pick a key x using the character that is least common. We then
remove all other keys using that position-character from our set, then the key

we picked hashes independently of the hash of the remaining set of keys, since
only the hash of key x depends on the hash of that position-character. So in
this manner we can find an independent subset of keys for every set of keys.
We define a Group G, to be the Set containing all keys x that contain the least
common position-character a. If we look at he contribution of a group to a bin
as a random variable X, we know the distribution of X to depend on previous
hashes, but we know the mean to be independent. Also, we know that all these
X are bounded by d, so X < d. The second claim is that the probability of
having v = (1 + v)/e keys that independently hash to the same bin is m™"7.
The proof of this claim is a combinatorial argument, that can now rely on the
independence of the keys.

Algorithm 1 Recursive method to hash a set S of keys while constructing
independent subsets
1: procedure CONSTRUCTSUBSETSFROM(Set S)

2:

3: « < least common position-character in S;

4:

5: Go < keys in S for which « is the last position-character to be fixed;
6:

7: if there is elements in S\ G, then

8:

9: ConstructSubsetsFrom(S\ G4);

10: hash all position-characters in S except «;
11:

12: hash «;

So to finally prove constant complexity of Chaining in Simple Tabulation
Hashing, we go along as follows:
First, we partition the set of keys T into independent groups G by applying the
algorithm above.
Using another small Lemma, relying on the fact that when constructing the
Groups G at each point in time we pick our next « such that G is minimal,
we know that with high probability, each group G contributes with < d to each
bin. [2]
For X, being the contribution of G, to a fixed bin, we define X/, = X¢ if G, is
d-bounded and X/, = G,/m (a constant) otherwise. Since with probability 1 -
m ™7 all groups are d-bounded and ¥, X/, = ¥, X, in these cases, a probabilistic
bound on X/, is also a bound on X, up to a constant factor. [2]
We know E[X/.] to be a constant independent on previous hashes and can
therefore apply Chernoff Bounds to derive a constant load on the bins, given we
keep the tables large enough, and therefore constant time for Chaining.

Conclusion

In Conclusion, the paper shows that we can get constant time complexitiy on
a hashing scheme liked for its simplicity, by taking a less common approach on
the analysis of such algorithms. Instead of trying to prove high independence
the authors can show that by careful construction, which is essentially hashing
the common characters first, a different kind of independence can be guaranteed
and, using high probability bounds, this suffices to provide our hoped for bounds
when using Chaining.

References

[1] MIT, Advanced Data Structures Course, Lecture Notes, Spring 2014
https://courses.csail.mit.edu/6.851/springl4/scribe/lec10.pdf

[2] M. Patragcu, M. Thorup. The Power of Simple Tabulation Hashing STOC
2011

