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1 Introduction

This paper[1] shows us a method to solve the replacement paths problem by
using fast matrix multiplication. This problem is defined as follows:

Definition 1.1. Replacement Paths: Given a graph G and the shortest path
P from a vertex s to a vertex t, a replacement paths algorithm should find
the shortest s-to-t path that avoids e, for every edge e € P.

So every edge of the shortest path is individually removed and the new
shortest path should be found. Naively, this can be solved by computing the
shortest s-to-t path on G \ e, for every e on the replacement path.

This problem can be expanded to that of All Pairs Replacement Paths.
Here, the goal is finding the replacement paths for every pair of vertices in
the graph. The paper does this by constructing a distance sensitivity oracle,
using effectively the same steps as the solution of the replacement paths
problem, so we will focus on just that.

1.1 Motivation

The paper’s goal is to present an algorithm that solves the replacement paths
problem on directed, possibly negatively weighted graphs with no negative
cycles. It does so by probabilistically constructing several smaller sub-graphs.
Several operations are then performed on these sub-graphs, notably faster
than if they had been performed on the initial graph. The information gained
from all these operations can then be combined to construct small, represen-
tative graphs on which we can find the shortest replacement paths with a
very high probability.



The paper is noteworthy as at the time of publication, no solution to
the replacement paths problem, other than the naive one, was known for
directed, weighted graphs. The naive solution runs in O(mn+n?logn). The
paper’s solution runs in O(Mn'*3%). Here M is the maximum magnitude
of an edge-weight, and w is the fast matrix multiplication exponent. It is an
improvement over the naive algorithm in the case that m > ns® = %84 and
M is a small constant, so sufficiently dense graphs with small edge-weights.
The algorithm is however not really practical. This is because it is based
on fast matrix multiplication, which itself does not (yet) have a practical
implementation. Since the algorithm is more like a proof of concept, this
report will focus on the ideas behind the constructions used to solve the
problem, rather than prove the time-bounds achieved by them.

2 High level examination

Before going into the different specific constructions, I introduce the algo-
rithm with an intuitive explanation of what it does. Generally speaking, we
are probabilistically shrinking the amount of edges to work over in one step,
and the amount of vertices to work over in another, effectively lowering the
time bound.

We are given a graph G = (V| E), two vertices s and ¢, and the shortest
path P = {ej,...,ex} between s and t. We would like to find the shortest
paths P;, which avoid edge e; on P for every i = {1,...,k}. This is done in
three steps.

In the first step we generate several sub-graphs G; = (V}, E;) by removing
individual edges with a certain probability, so that £; C E. For each edge
e; € P, we then have a set of sub-graphs F;,, which do not include it. We
generate enough sub-graphs so that every edge of P; should be present in
some G € Fi,. The number of sub-graphs generated should be lower than
the number of edges on P, so we will have captured all replacement paths in
a smaller number of graphs than the naive approach would.

In the second step, we select a subset of vertices B € V', which must
include s and ¢, and produce a matrix B; per G;. Every B; has an entry for
every vertex in B, and the values are the shortest distances between these
vertices over the respective G;. The idea is that every shortest path P; (and
effectively all paths with a start and end point in B), can be composed of
overlapping B-to-B paths.

We then finally combine these matrices to construct the dense distance
graph G%. This graph should capture the shortest B-to-B distances over all
sub-graphs in F,,. A s-to-t shortest path is then computed on this consider-



ably smaller graph G%.

2.1 Step 1

To start, we generate a number of these sub-graphs G;. Our goal is that
every sub-path of length n'~® lies completely within one of these sub-graphs.
Here, « is a chosen constant and 0 < o < 1. The sub-graphs are computed
by individually removing every edge of the graph with probability n®!.

To intuitively understand the relevance of these values, consider a set of
1% = n'~ edges. Since they are all individually randomly removed (i.e. by
Bernoulli trials), all of them survive with a constant probability (1—P)? 3
So all our sub-paths survive in every G; with constant probability, which is
taken into account in all other constructions.

We now have a number of sub-graphs ;. Let us consider just one re-
placement shortest path P., which avoids edge e. The set of sub-graphs
relevant to finding F,, F,, is the set of sub-graphs G, which do not contain
the edge e. To make the earlier goal more specific, every sub-path of P, of
length n'~* (henceforth an interval) should survive in some G; € F,. This
constraint informs the number of sub-graphs we need to generate, and will
be explored later.

Figure 1: Example of a shortest path captured in a single interval.

If P, is no longer than an interval, we will likely already have captured it
in one of the sub-graphs, as represented in Figure 1. In this case it we could
simply run a shortest path algorithm on the sub-graphs. We however clearly



also have to handle the case where P, is not a single interval, but rather a
composition of many.

Since it is unlikely that all intervals of P, survived in a single sub-graph
(in which case the entire path would be captured by it anyway), we need a
way to combine intervals from different sub-graphs. Intuitively, we could find
the shortest paths over all vertices using only edges in F,. If this were our
approach, we would be better off just using the naive solution. Instead, we
want to reduce the number of vertices handled by the shortest-path algorithm
we will finally use. To do so we select a random subset of vertices B.

2.2 Step 2

The goal for this subset, is that shortest replacement path can be decomposed
into disjoint intervals whose endpoints are both in B. Notably, vertices s and
t must be in B. If every interval contains its endpoints in B, then all intervals
on the shortest-path P, will overlap in B, and thus P, can be composed of
B-to-B paths.

Figure 2: The effect of different selections of B on a shortest path
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Let us consider two vertices u and v, both on P.. If u and v are both not
in B, then some vertex z, the endpoint of another interval that overlaps the
(u,v) interval will be (as at least one vertex per interval should be in B).
So the shortest s-to-t path could then, as shown in Figure 2 for intervals of
three nodes, for example, be composed of some intervals (s, z), (z,v), (y,1t).
Conversely, if u and v were in B but no vertex like x is, then it would be
(s,u), (u,v),(v,y), (y,t), or something analogous instead. We see that in
both selections of B, B-to-B paths can be captured by overlapping intervals.



Given this overlap, and that s and t are in B, every interval on P. will be
captured by some overlapping intervals in B.

We randomly select B with a specific size | B|, where |B| is large enough
that the above goal is met with high probability. Given B, we then want
to compute the matrices B;, which capture the B-to-B distances over the
respective Gj. This is done by finding the distance product of a matrix of
the distances from B to all vertices in G, and a matrix with the distances
of all vertices in G; to all vertices in B. The exact definition of the distance
product as well as the process of creating it are explored in another section.

2.3 Step 3

We now have a set of matrices B;, each representing the shortest paths
between two vertices in B over the respective sub-graph G;. We use these
to construct the dense distance graphs G%. Every G’ has the vertex set B,
and an edge set F’ with edges between all vertices B, the weight of an edge
(u,v) is the shortest u-to-v path in all G; € F, (so in all sub-graphs without
edge ¢;). To find a weight, we simply examine the (u,v) entry in every B;
where the respective G; € F,, and choose the smallest one.

Now we find the shortest s-to-t path on every G, and these are with high
probability the replacement paths P;. We could do this with some algorithm
which handles negative edge-weights, but it is more efficient to apply a cost
function making all edge weights of G positive, and then run Dijkstra’s
algorithm on it. The details of this cost function are explained in a later
section.

2.4 Recap

So to recap: We begin by generating several sub-graphs G; C G by randomly
removing some edges per GG;. We then choose a random subset of vertices
B which should contain the endpoints of every interval. We compute the
matrices Bj, which capture the shortest distances between vertices in B over
the respective sub-graph G;. For every edge e; on the initial shortest path P,
we consider all B;s where G; € F,, to compute the graph G, which captures
the shortest paths between vertices in B over all F;,. Finally, we adjust the

weights to be non-negative, and compute the shortest s-to-t path on every
.



2.5 All pairs shortest paths

Before I go into more depth on some of the constructions, it is worth mention-
ing that this algorithm can also be extended to create a distance sensitivity
oracle, which takes a pair of vertices (u,v), and an edge e as a query, and
returns the length of the shortest u-to-v path that avoids e.

Creating the oracle is effectively constructing all B;s. The query phase
then involves us adding u and v to all B;s if they aren’t already present, and
then computing G4 and the shortest path on it.

This can further be expanded to avoid multiple edges. To do so, all of
the probabilistic bounds and the number of sub-graphs generated have to
change to accommodate the shorter average surviving intervals. As my focus
lies on the core of the replacement paths algorithm, the details of both these
expansions are being left out of this report, and can be read up in the original

paper.

3 Selection of details of the algorithm

Following are some of the details I deem the most relevant, that were omit-
ted in the initial overview of the algorithm. The probabilistic bounds and
closely related time bounds are mentioned briefly, but the construction of
the distance products used to compute the graphs G, and the construction
of these graphs themselves are the focus.

3.1 Computing the distance product

Definition 3.1. Distance Product: A distance product D = A x B of two
matrices A and C'is defined by D[i, j] = ming{Ali, k] + Clk, 5]}

In our case, we want matrix A to represent the minimal distances from
every vertex in B, to every vertex in the graph over the sub-graph we are
working on, and matrix C to represent the minimal distances from every
vertex in the graph to every vertex in B. The distance product of these two
matrices gives us, for any vertices (u,v) € B, the shortest u-to-v path, while
making use of all possible sub-paths in the graph. We generate a distance
product for every sub-graph Gj, these distance products are B;, which were
briefly mentioned earlier.



3.1.1 Constructing the input matrices needed to compute the dis-
tance product

First, we need to produce the two matrices A and C, or henceforth D;; and
Djs. Here the notation should imply that the D;s were constructed over the
respective Gj.

This is done with an algorithm by Yuster-Zwick (notably one of the au-
thors of this paper was a co-author). The following Lemma from the paper
defines its in and output. Let c(u,v) represent the smallest number of edges
on a shortest path from u to v and é(u,v) represent the distance (sum of
edge weights) from u to v.

Lemma 3.1. [2] Given an n-vertex graph, the Yuster-Zwick algorithm con-
structs in O(Mn®) time, an n x n matrix D with the following properties:
For any pair of vertices 7, j there exists a vertex k£ on a shortest path realizing
c(i,7) so that D[i, k] = §(i, k), D[k, j] = 0(k, j), and DI[i, k]+ D[k, j] = 6(i, 7).

This algorithm also lowers the amount of computations necessary by prob-
abalistically reducing the number of entries computed over. It makes use of
the distance product algorithm outlined in Lemma 3.2. This makes use of
fast matrix multiplication and thus introduces w, the fast matrix multipli-
cation exponent. It represents the value w, where fast matrix multiplication
can be done in O(n*). Hence it is also the part where the practicality of the
algorithm falls apart.

The input it takes is the matrix W, which represents the integer edge
weights of a directed graph G = (V, E). If two vertices have no edge be-
tween them the value is set to +o00. It works by iteratively computing the
distance product of every node to every other node. It starts by finding the
distance product W W, giving us the shortest paths over at most one inter-
mediary vertex. It then repeats this several times, until a certain numerical
threshold that decreases with every iteration is reached. Every iteration, it
only updates the values where the newly computed ones are smaller than
the ones present, so the matrix now captures the shortest paths over some [
intermediary vertices.

It then selects a random subset C' C V', and computes the distance prod-
ucts V x C' and C x V', updating appropriate entries if new minimums are
found. The idea is similar to the one we use when constructing the subset
of vertices B used in the main algorithm, namely, that some vertex on the
shortest path between two vertices will be in B or C' respectively. This pro-
cess is iterated, where C' is shrinking by a constant factor every iteration
so Cjy1 C C;. It iterates until we have a high probability that all shortest



paths have been found. Further details of reasoning and proof are omitted
for brevity.

We get the output D;, with the properties described by the Lemma. To
find the shortest distance from vertex 7 to vertex j, one would need to take
the distance product of the i-th row and j-th column of D;. Alternatively, to
find all shortest distances simply take the distance product D; » D;. We do
something inbetween, we construct the two matrices D;; and Djy from D;.
Djy simply is all rows of D, that correspond to vertices in B, so it represents
the shortest distance from every vertex in B to every vertex in the graph.
Do similarly is all columns of D; which correspond to B, representing the
shortest distance from every vertex in the graph to every vertex in B. Again,
these distances are all over GG;. Thus the distance product Dj; x D, contains
all B-to-B distances over G;.

3.1.2 Computing the distance product

The distance product is computed according to the following Lemma from
the paper.

Lemma 3.2. [3] Let A be an n” X n® matrix and let B be an n® x n' matrix,
both with elements taken from {—L,...,L} U {+oo}. Then, the distance
product A+ B can be computed in O(Ln*"*%) time, where w(r, s,t) is the
matrix multiplication exponent of multiplying an n” x n® matrix with an
n® x n' matrix.

As time is limited, I wont go into detail about this specific implementation
of the distance product computation, but rather point out how the bound L
of element magnitude is dealt with.

The issue at hand is that the elements of Dj; and Dj, can be as large as
M(n — 1), the maximal edge weight times the longest possible path between
two vertices, but we would like to minimize it to reduce the time taken to
compute the distance product, without losing any relevant information.

The shortest path between two vertices in B is only of interest to us if
the path is no longer than an interval, since otherwise the path can be con-
structed by combining intervals. Our construction gives us a high probability
guarantee that all intervals have a vertex in B, so the overlap necessary to
construct the path out of intervals will exist. Worst case, we must combine
a couple reads of D; to represent this long path. Therefore, we only consider
elements of Dj;; and Dj, with values less than M n'~®, the maximal length
of an interval. All other entries are set to 400, and Lemma 3.2 gives us a
time-bound of O(Mn!'~nw(@ha),



3.2 Constructing dense distance graphs from B; & F.,

Having computed B; for j = {1,...,7}, we can now use these to construct
the dense distance graphs G4= (B, E’). They have the vertex set B, and
the weight of an edge (u,v) is the shortest u-to-v path in all G; € F,,. To
get this weight for an edge, we examine a single entry in every B; such that
G; € F,,, and choose the minimum value.

3.3 Adjusting the weights to be non-negative

To be able to use Dijkstra’s shortest-path algorithm, all the weights of G
must be adjusted to be non-negative. This is done with a feasible price
function.

Definition 3.2. Feasible price function: A price function ¢(-) maps from
the vertices of some graph G = (V, E) to the reals. We use the values ¢(u)
and ¢(v) to reduce the length of the edge (u,v) with respect to ¢. The
new weight is w,(u, v) = w(u,v) + ¢(u) — ¢(v). The price function is called
feasible if w,(u,v) > 0 for all edges (u,v) € E.

The function being used here, d(-), adds some vertex z to the graph G,
where x has an edge of weight 0 to every other vertex on the graph. For some
vertex u in V', d(u) is the length of the shortest path from z to v in GU{z}.
For every edge (u,v), d(v) < d(u) + w(u,v), so wg(u,v) > 0. It follows that
wa(u,v) = w(u,v) + d(u) — d(v) > 0. If w(u,v), and/or d(u) are negative,
d(v) must be as negative as the sum of the two (as it is the shortest distance
from z-to-v, which can be decomposed into z-to-u and u-to-v, and thus by
subtracting it, the adjusted weight is at least equal to zero).

4 Probabilistic bounds

I now briefly examine the reasoning and proof of some of the probabilistic
bounds in this paper.

4.1 Number of sub-graphs G;

How did we decide on the number of sub-graphs r generated in the first step?
Again, the goal of the sub-graphs is that every interval of a replacement path
lies in one of the sub-graphs, which does not include the edge being avoided
(i.e. in some G; € F,, ).

The expected number of sub-graphs without edge e; is F[|F,,|] = rn®"
Notably, we want both a lower and an upper bound, where the lower bound

1

9



gives us a high probability to meet the goal, while the upper bound keeps
the time-bound of all following operations low. To achieve this, the paper
chooses an r so that r = O(n'"*logn). So E[|F..|]] = O(logn).

The paper proves that every |F,,| lies within defined bounds with prob-
ability 1 — % on either side by using Chernoff and union bounds, details of
which can be found in the paper.

|F¢,| is relevant as we need all intervals of P; to exist within F,,. We will
also eventually construct a B; for every G; € F,,, so we would like to keep
|F,| as small as possible to avoid redundant computations.

We can find a lower bound on the probability that all n? possible intervals

of a replacement path survive in F,,, using similar reasoning as above.

4.2 Probability that all intervals survive
Every interval survives in a single sub-graph with probability:

—a 1

1 — a—1\n(l-®)_1 > -
(=) :
That is, the probability that an edge isn’t removed to the power of the length
of an interval (in edges). So the probability that some interval doesn’t survive
in F,, is less than (1 — 1)/F«l. Using the precise lower bound for |F,,| defined
in the paper, we get:

1 1
(1 _ g)|FeZ| < (1 o E)leogn < (1/6)410gn < 1/n4

By union bound:

n? n?

P(U Interval j doesn’t survive) < Z P(Interval j doesn’t survive)
j=1 j=1

n? x # = #, so all n? intervals survive with probability 1 — #

4.3 Number of elements selected for B

The goal of our construction of B, is to have at least one vertex from every
disjoint interval (so given a vertex on P;, some vertex within the next interval)
present in B. This is so that we can combine all the shortest intervals found
in the various sub-graphs in F;, to the actual replacement path F;. The
size |B| is chosen, so that every interval contains some vertex in B with
probability of at least 1 — %
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In a general sense, we use the probability that a specific vertex is not in
B, which is based on | B| (as we select vertices until we reach the predefined
size), and then expand this to the probability of a whole interval not being
in B. Finally, using inequality identities and union bounds we prove the
lower bound stated above. As these transformations aren’t really of interest,
for the sake of understanding the time bounds, we should just know that

1Bl =

5

O(n®).

Time Bounds

The paper set out to prove that they could solve the replacement paths
problem in O(M n1+%“). Now that we have established the probabilistic
bounds, which have a large effect on the time bound, I briefly explain how
this total time bound was reached.

1.

We generate sub-graphs in

O(rn?) = O(n* %), as we handle every one of n? possible edges 7 times.

. We select B in O(n®), as we select that amount of vertices.

. We then construct the intermediary matrices D; in O(rMn®) = O(Mn®*+1-9),

according to the time-bound of the lemma, multiplied by the number
of times it must be done.

. We then compute the distance products in O(rMn'~*n®(@12)) = O(Mn'=o++),

details of this transformation can be found in the paper.

. We constructed all G5 in O(|B[*nlogn) = O(n***!), as all | B|* (where

|B] = O(n®)) entries of one G% are found by going through every
graph in F,,, and |F,,| = O(logn). The extra n represents the maximal
number of edges on the initial path (as we must construct a G’ for
every €;).

Finally, Dijkstra’s algorithm runs in O(|BJ?), so running it for all G%

takes O(n|B|?) = O(n'*?®)

All together, we get:

O<n3—a_I_noc+Mn1—a+w+Mn1—a+w+n1+2a+nl+2a) _ O(n3—a+Mnl—a+w+n1+2a)

The paper sets a to %, giving us O(Mn““%“), which they set out to prove.
(note: n3~3% < Mn'*3% as w = 2.376, n2208 < Mn2584)
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6 Conclusion

The algorithm presented may not be practical due to its reliance on fast ma-
trix multiplication, but the use of probabilistic bounds to reduce the overall
workload, as well as the idea to combine sub-paths from different sub-graphs
are interesting concepts. The algorithm can also be altered slightly to model
the avoidance of vertices, or expanded to handle the all pairs replacement
paths problem.

In terms of further expansion, the authors suggest that a possible im-
provement would be reducing the dependency on M.
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