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Introduction and Overview

Before diving into the in the paper presented algorithms, we need to look at what the All Pairs Shortest
Paths (APSP) problem is and how it relates to the All Pairs Almost Shortest Paths (APASP) problem.
For this we first define some commonly used terms in graph theory.

terms in graph theory

(un)weighted graphs: A weighted graph is a graph which has a number (the weight) assigned to each
edge. Here (if not stated otherwise) we only look at unweighted graphs, which means that the
distance between two vertices connected by an edge is exactly one.

(un)directed graphs: A directed graph is a graph in which edges have an orientation, meaning we
can only traverse the edge along its orientation. Here we only look at undirected graphs, which
means that we can travel across an edge in both directions.

dominating set: A dominating set for a graph is a subset of vertices in the graph such that each
vertex is either in the dominating set itself or adjacent to a vertex in the dominating set.

dominate(G, s): We run an algorithm on the graph G that constructs a dominating set D that
dominates all the vertices with degree higher than s and also gives us an edge set E such that
for each vertex with degree higher than s we have an edge that connects it to a vertex in D.
Note that if we first compute D we can construct E easily by finding one neighbouring vertex
for each high degree vertex that is in D and put the connecting edge into E. For all the high
degree vertices that are in D themselves, we can just add any neighbouring vertex to D and the
corresponding edge to E. This way we at worst double the size of D, which has no influence on
the asymptotic running time or space.

Dijkstra’s algorithm: Dijkstra’s algorithm runs on a graph G = (V,E) from a starting vertex s and
finds distances and a tree of shortest paths from s to all other vertices of in G in O(m+n log n)
for graphs with general weights.

δ : In a graph δ(a, b) denotes the shortest distance from vertex a to vertex b.

bfs(G, δ̂, u): We run breadth-first search (bfs) on the graph G from starting vertex u. δ̂ is a matrix
that contains estimated distances between the vertices in G and is updated during the run where
shorter distances are found.

djikstra(G, δ̂, u): We run Djikstra’s algorithm on the graph G from starting vertex u. δ̂ is a matrix
that contains estimated distances between the vertices in G and is updated during the run where
shorter distances are found.

All Pairs Shortest Paths
The All Pairs Shortest Paths problem is - as the name suggests - the problem of computing the
shortest paths for all pairs of vertices in a graph. For unweigthed graphs, we can compute this by



simply running breadth first search (bfs) on all vertices in overall O(n(m + n)) time. Even for dense
graphs, m is bounded by

(
n
2

)
which is in O(n2) and gives a bound for the runing time for APSP of

O(n3).

All Pairs Almost Shortest Paths
As usual, if we don’t find a way to improve the running time of a problem, we start to relax the
requirements. So here, we only care about an approximation of the shortest paths. There are two
metrics to say something about how good an instance of such an approximation is. The first one is the
additive error, the second one the multiplicative error. Since we want almost shortest paths between
to vertices u and v it makes sense to only allow distance approximations δ̂(u, v) of the actual distance
δ(u, v) with δ̂(u, v) ≥ δ(u, v). To see how good such an approximation is we can use one of the two
mentioned metrics to give us the guarantee that δ̂(u, v) ≤ δ(u, v) + s or δ̂(u, v) ≤ δ(u, v) × f for a
given summand s or factor f respectively. Distance approximations that have an error factor of f are
called stretch f estimated distances, distance approximations that have an additive error of s are called
surplus s estimated distances, which we will mostly be looking at.

Goal
This Papers main goal is to improve an algorithm from Aingworth et al. [2], which we won’t discuss
in detail here. It is sufficient to know that Aingowrth et al. describe an algorithm which solves the
APASP problem with an additive error of 2 in time Õ(n2.5

√
log n) which is based on the following

observation: There is a small set of vertices that dominates all the high degree vertices of a graph.
Intuitively this makes sense: Vertices with a high degree have a lot of neighbours that can potentially
be in the dominating set. So if we choose our threshold s for the degree of high degree vertices, then
from the work done in [2] we can conclude the following Lemma:

Lemma 1 Let G = (V,E) be an undirected graph with n vertices and m edges. Let 1 ≤ s ≤ n. A

set D of size O( (n logn)
s ) that dominates all the vertices of degree at least s in the graph can be found

deterministically in O(m+ ns) time.

APASPk

We will simply present this algorithm family after having looked at the APASP2 algorithm but not
cover it deeply. The paper looks at a family of algorithms APASPk for k ≥ 2 that solves the APASP

problem. For each even k > 2 APASPk has running time Õ(min{n2−
2

k+2m
2

k+2 , n2+
2

3k−2 }) and a one-
sided error of at most k. At first, this seems unnecessarily complicated but when k increases, the
running time decreases, so we see that this family exhibits a trade-off between running time and
accuracy. With this, we can push the running time towards Õ(n2) by choosing k = Ω(log n). This
means we can compute APASP with an additive error of log(n) in Õ(n2) time. Also, we define APASP∞
as an instance of APASPk with k = 2blog nc, which produces stretch 3 distances in Õ(n2) time.

We will be focusing on an APASP2 algorithm that is the base case of the APASPk algorithms and
improves the running time for the APASP problem with additive error 2 to Õ(min{n

3
2m

1
2 , n

7
3 }) from

the previously achieved bound of Õ(n2.5
√

log n) .

Algorithms

APASP2

The APASP2 algorithm consists of two algorithms apasp2 and apasp3 with running time Õ(n
3
2m

1
2 )

and Õ(n
7
3 ) respectively. Both apasp2 and apasp3 produce surplus 2 distances, so we just choose the

faster one to get the running time of Õ(min{n
3
2m

1
2 , n

7
3 }) for APASP2. We see that apasp2 is faster

for sufficiently sparse graphs (m < n
5
3 ) and apasp3 is faster for sufficiently dense graphs (m > n

5
3 ).

The focus should lie on the functionality of the apasp2 algorithm, as it has one less phase of vertex
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partitioning and distance calculation. The apasp3 has the same idea in mind but we will look at it
only after having thoroughly analyzed the apasp2 algorithm.

apasp2

Before we go into the apasp2 algorithm, we want to provide some intuition of what is happening. We
want to compute distances and we are okay with having an additive error of 2, but not more. The
main idea is to first select a subset of vertices and simply compute their distances to all vertices in
the graph. No error so far. For all other vertices, we construct a new edge set (that is not necessarily
a subset of the edge set in the original graph) and compute their distances on this new edge set only.
Why would this be a good idea? We see that this idea is only significantly faster than naively solving
the APSP problem, if we make sure that in both phases we somehow have a smaller running time
than the needed O(n3) for computing all distances. Also we have to make sure that the computed
distances are actually good enough, meaning surplus 2 distances.

What is done in the algorithm is to first select the dominating set of all vertices with a degree higher
than (mn )

1
2 to compute distances on, of which we know there exists a tighter bound than O(n) (Lemma

1). This way we only need O(f(n)(m + n)) = O(f(n)n2) time to compute the distances, where f(n)
is the sub-linear bound obtained from the Lemma 1.
In the second step, we reduce the running time not by having a tighter bound than O(n) on the vertices,
but having a tighter bound than O(n2) for the edges. We need a special edge set that somehow has
a tighter bound than O(n2), but still computes the distances (with an additive error of at most 2).
Below is the apasp2 algorithm from the paper that computes surplus 2 distances. We will have a look
at what this edge set actually is and why we can say anything about its bound and error of estimated
distances.
(Variables with index 1 are related to the high degree vertices, the ones with index 2 are related to
the low degree vertices.)

Algorithm apasp2:
input: An unweighted undirected graph G = (V,E).
output: A matrix {δ̂(u, v)}u,v of estimated distances.

(1) s1 ← (mn )
1
2

(2) V1 ← {v ∈ V |deg(v) ≥ s1}
(3) E2 ← {(u, v) ∈ E|deg(u) < s1 or deg (v) < s1}
(4) (D1, E

∗)← dominate(G, s1)

(5) For every u, v ∈ V let δ̂(u, v)←

{
1 if(u, v) ∈ E,
+∞ otherwise.

(6) For every u ∈ D1 run bfs(G, δ̂, u)
(7) For every u ∈ V \D1 run dijkstra((V,E2 ∪ E∗ ∪ ({u} ×D1)), δ̂, u)

To get an idea of what is happening, we look at the following example:
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Figure 1a): Part of an example graph to visualise what apasp2 does in the first distance computing
phase (Line 6). This is just the original graph we got as input for apasp2. We denote the vertices of
high degree with v1 and v2 and vertices in the dominating set with d1 and d2. Indicated are some

edges that connect this part to the rest of the graph.
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Figure 1b): Part of an example graph to visualise what apasp2 does in the second distance
computing phase (Line 7), starting from vertex u. We now consider not the edge set in the original
graph but the one constructed in Line 7. We denote the vertices of high degree with v1 and v2 and
vertices in the dominating set with d1 and d2. Next to each edge is indicated to which edge set this

edge belongs to. Note that certain edges belong to multiple edge sets (e.g. (u,d1) is also in E2).
Indicated are some edges that connect this part to the rest of the graph, but we do not know which

of these edges are actually in the considered edge set.

Now we get to the interesting part. How fast is this actually and why does it compute distances with
an additive error of at most 2? We take a look at the analysis, first why it even works and then how
fast it is.

accuracy:
The distances found in Line 6 are exact. For all distances we find in Line 7, there exist a corresponding
path (not necessarily the shortest one) in the original graph with the same length, so δ(u, v) ≤ δ̂(u, v).

To further prove that ˆδ(u, v) ≤ δ(u, v) + 2 we have to get more technical and look at the following two
(non-exclusive but exhaustive) cases:
Case 1: There is a shortest path between u and v that contains a vertex from V1.
Let w be the last vertex on the path that belongs to V1 (Figure 2). All the edges on the path from
w to v touch vertices in V2 and therefore belong to E2. Let w′ ∈ D1 be such that (w,w′) ∈ E∗. The
edge (w,w′) belongs to E∗. As w′ ∈ D1, the weighted edge (u,w′) is in {u} ×D1. The weight of this
edge is δ(u,w′), the distance between u and w′ in G, found by the BFS from w′ ∈ D1. Note that
δ(u,w′) ≤ δ(u,w) + 1. By running Dijkstras algorithm from u, we find therefore that

δ̂(u, v) ≤ δ(u,w′) + δ(w′, w) + δ(w, v) ≤ (δ(u,w) + 1) + 1 + δ(w, v) = δ(u, v) + 2.
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∈ E∗

⊆ E2

Figure 2: Case 1 of the apasp2 accuracy analysis. The line connecting w and v represents an
arbitrary number of edges.

Case 2: There is a shortest path between u and v that does not contain any vertex from V1.
This shortest path is contained in (V,E2) and therefore δ̂(u, v) = δ(u, v).

Note that these two cases are not exclusive only because we can have multiple shortest paths in a
graph.

running time:
Line 1-3: We simply run through all vertices and edges which only needs O(n+m) time (trivial).
Line 4: We can simply use s1 as the threshold of vertex degrees in Lemma 1, which gives us a dominating

set of size O((n
3
2 /m

1
2 ) log n) = Õ((n

3
2 /m

1
2 ). Here is where the Õ comes in and the logarithmic term

from the Lemma vanishes. Lemma 1 states further, that we then can find this dominating set in
O(m+ n(s1)) = O(m+ (mn)

1
2 ) = O(n2) time.

Line 5: We set entries of a n× n matrix which is done in O(n2) (trivial).

Line 6: A single bfs on any graph runs in O(m+n) = O(m). Since we here run bfs on |D1| = O(n
3
2 /m

1
2 )

vertices we need O((n
3
2 /m

1
2 )m) = O(n

3
2m

1
2 ) time.

Line 7:

Lemma 2 (without proof): If the weights of the edges are integers in the range {1, 2, · · · , n} and no
distance is higher than m, the djikstra algorithm can be implemented to run in O(m+ n) time.

Here we run dijkstra in a weighted graph. All edges have weight one, except the edges in ({u} ×D1)
which have the weight of the estimated distance in δ̂. This is a graph which has edge weights in the
range {1, 2, · · · , n} and no distance higher than m (because the original graph is unweighted and has
m edges with weight 1), so a single run of dijkstra can be done in O(m + n) time (Lemma 2). The
amount of low degree vertices has no tighter bound than O(n) so we have to run dijkstra O(n) times.
We do not run this on the original graph G, but a graph with the same vertices and this new edge set
that should have a tighter bound than O(n2). So far we managed to run the algorithm in O(n

3
2m

1
2 )

from Line 6, so if we are able to show that our edge set is in size O((nm)
1
2 ), we get an overall running

time of O((nm)
1
2n) = O(n

3
2m

1
2 ). For this we need to show that each individual edge set of the union

used for dijkstra is bounded by O((nm)
1
2 ) for the union to also be bounded by this.

E2: Each low degree vertex has less than (mn )
1
2 outgoing edges, meaning the number of edges touching

a low degree vertex is bounded by O(n(mn )
1
2 ) = O((nm)

1
2 ).

E∗: The call to dominate gives us this edge set in size O(n).

({u} × D1): In each run, u contains exactly one vertex, so this is in |D1| = O(n
3
2 /m

1
2 )

In conclusion, all edge sets are small enough for the algorithm to run in O(n
3
2m

1
2 ).

apasp3

Below is the apasp3 algorithm from the paper that also computes surplus 2 distances. We will not
look into this algorithm deeply, the details are still written here. We mention only the main differences
to the apasp2 algorithm: The approach is similar but we now have 3 phases of computing distances
(Lines 7-9), in each considering a different vertex and edge set, which leads to a different running time
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bound of O(n
7
3 ).

Again, to proof that this works we would have to make sure that in each phase we have a significantly
smaller vertex or edge set to be faster than trivially computing the distances exactly.

Algorithm apasp3:
input: An unweighted undirected graph G = (V,E).
output: A matrix δ̂(u, v)u,v of estimated distances.

(1) s1 ← n
2
3 ; s2 ← n

1
3

(2) For i← 1 to 2 let Vi ← {v ∈ V |deg(v) ≥ si}
(3) For i← 2 to 3 let Ei ← {(u, v) ∈ E|deg(u) < si−1 or deg (v) < si−1}
(4) For i← 1 to 2 let (Di, E

∗
i )← dominate(G, si)

(5) E∗ ← E∗1 ∪ E∗2

(6) For every u, v ∈ V let δ̂(u, v)←

{
1 if(u, v) ∈ E,
+∞ otherwise.

(7) For every u ∈ D1 run bfs(G, δ̂, u)
(8) For every u ∈ D2 run bfs((V,E2), δ̂, u)
(9) For every u ∈ V run dijkstra((V,E3 ∪ E∗ ∪ (D1 × V ) ∪ (D2 ×D2) ∪ ({u} ×D2)), δ̂, u)

Again the question is why would this algorithm run in the promised running time O(n
7
3 ) and still

compute surplus 2 distances. This time we can profit from the work already done in apasp2 but there
are some changes in the algorithm we need to look at. Again we start with the accuracy then move to
the time complexity.

accuracy:
As in apasp2, it is clear that δ(u, v) ≤ δ̂(u, v) and we only need to show that ˆδ(u, v) ≤ δ(u, v) + 2, so
we look at the following three cases in detail:
Case 1: There is a shortest path between u and v that contains a vertex w from V1.
Let w′ ∈ D1 such that (w,w′) ∈ E∗ (Figure 3). The edges (u,w′) and (w′, v) belong to the graph
on which Dijkstras algorithm is run from u. The weights of these edges are δ(u,w′) and δ(w′, v), the
distances found by the BFS on G from w′ ∈ D1. Note that δ(u,w) ≤ δ(u,w) + 1 and δ(w′, v) ≤
1 + δ(w, v). By running Dijkstras algorithm from u, we find therefore that

δ̂(u, v) ≤ δ(u,w, ) + δ(w′, v) ≤ δ(u, v) + 2.

u

w’

w v

∈ D1 × V
∈ E∗

∈ D1 × V

Figure 3: Case 1 of the accuracy analysis of apasp3

Case 2: There is a shortest path between u and v that contains vertices from V2 but not from V1.
This case is very similar to case 1 in the accuracy proof of apasp2. Let w be the last vertex on the
path that belongs to V2. All the edges on the path from w to v touch vertices in V3 and are therefore
in E3. Let w′ ∈ D2 be such that (w,w′) ∈ E∗. The graph we run djikstra on contains weighted edges
connecting u to all the vertices of D2. It contains in particular a weighted edge (u,w′). The weight
of this edge is the distance δ2(u,w

′) between u and w′ in the graph G2 = (V,E2), found by the BFS
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from w′ ∈ D2 on G2. As all the edges on the path from u to w, as well as (w,w′) belong to E2, we get
that δ2(u,w

′) ≤ δ(u,w) + l. By running Dijkstras algorithm from u we find therefore that

δ̂(u, v) ≤ δ2(u,w′) + δ(w′, w) + δ(w, v) ≤ δ(u, v) + 2.

Case 3: There is a shortest path between u and v that does not contain any vertex from V2.
This shortest path is then contained in (V,E3) and therefore δ̂(u, v) = δu, v.

running time:
Line 1-3: Here we split the vertices into 3 instead of 2 classes according to their degree and accordingly
have multiple edge sets touching the medium/low degree vertices. For this we still simply go over all
vertices and edges in O(n+m) (trivial). Note that V1 ⊆ V2 and E2 ⊆ E3.
Line 4-5: Here we dominate the different vertex sets separately and get two different dominating sets.

According to Lemma 1, these two calls to dominate produce dominating sets of size O(n log n/n
2
3 ) =

O(n
1
3 log n) and O(n log n/n

1
3 ) = O(n

2
3 log n) in time O(m+n(n

2
3 )) = O(m+n

5
3 ) and O(m+n(n

1
3 )) =

O(m + n
4
3 ). Because O(m) is bounded by O(n2) we need only O(n2) time to compute D1 and D2.

Note that E∗ still has the two important properties of E∗1 and E∗2; it is in size O(n) and for each
u ∈ (V1 ∪ V2) = V2 there exists v ∈ D1 ∪D2 such that (u, v) ∈ E∗.
Line 6: same as in Line 5 in apasp2.
Line 7: Same as in Line 6 in apasp2 but on a different set of starting vertices. We can run bfs in

Õ(n
1
3 log n(m+ n)) = Õ(n

1
3n2) = Õ(n

7
3 ) time.

Line 8: Here we not only have a different starting vertex set but also we restrict the edges in the graph
to be used. The restricting of the edges lets us have a tighter bound on the number of edges involved,
namely O(n

5
3 ) since E2 consists of all the edges that touch a vertex of degree lower than s1 of which

there can be at most ns1 = n
5
3 . Considering this, these calls to bfs also only take O(n

2
3n

5
3 ) = O(n

7
3 )

time.
Line 9: same as in Line 7 in apasp2 but we have a different edge set. If the edge set is in O(n

4
3 ) we get

our running time of Õ(n
7
3 ).

E3: These are the edges that touch vertices of degree smaller than s2 so there can only be at most
s2 ∗ n = O(n

4
3 ) of them.

E∗: E∗ = E∗1 ∪ E∗2 and E∗1 and E∗2 are in O(n), so E∗ is also in O(n).

D1× V: |D1| = O(n
1
3 log n) and |V | = O(n), so |(D1 × V )| = O(n

4
3 ).

D2× D2: |D2| = O(n
2
3 ), so |D2 ×D2| = O(n

4
3 ).

{u} × D2: |{u}| = 1 and |D2| = O(n
2
3 ), so {u} ×D2 = O(n

2
3 ).

In conclusion, each edge set is in O(n
4
3 ) and apasp3 actually runs in O(n

7
3 )

Summary so far
We showed an APASP2 algorithm that consists of two algorithms that each compute surplus 2 distances
faster than in O(n3). Based on the density of the graph we work on we can pick either apasp2 or apasp3

to get the minimum of both running times as our overall running time.

APASPk

Note: We will not present the following parts as it would take to much time. Since they still are a big
part of the paper we decided to include them here anyway.

After seeing the APASP2 algorithm consisting of the two parts apasp2 and apasp3 with additive error
of 2, APASPk reduces the running time by allowing larger errors up to k.
It again consists of two algorithms apaspk and apaspk, but we have have for a fix k an error bound of
2(k − 1) in apaspk and an error bound of 2(bk3c + 1) in apaspk. If we want to get APASPk that has
an additive error of k, we need to look at apasp k

2
+1 and apasp (3k−2)

2

and choose the faster one to be
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in the running time Õ(min{n2−
2

k+2m
2

k+2 , n2+
2

3k−2 }). The pseudo code for the algorithms is below, the
proofs to the running time and accuracy is very similar to the ones found for apasp2 and apasp3, as
they are just special cases of these more general algorithms, so they are omitted.

Algorithm apaspk:
input: An unweighted undirected graph G = (V,E).
output: A matrix δ̂(u, v)u,v of estimated distances.

(1) For i← 1 to k − 1 let si ← (mn )1−
i
k

(2) For i← 1 to k − 1 let Vi ← {v ∈ V |deg(v) ≥ si}
(3) For i← 2 to k let Ei ← {(u, v) ∈ E|deg(u) < si−1 or deg (v) < si−1}
(4) For i← 1 to k − 1 let (Di, E

∗
i )← dominate(G, si)

(5) E1 ← E ; Dk ← V ; E∗ ← ∪1≤i<kE
∗
i

(6) For every u, v ∈ V let δ̂(u, v)←

{
1 if(u, v) ∈ E,
+∞ otherwise.

(7) For every i← 1 to k do
(8) For every u ∈ Di run dijkstra((V,Ei ∪ E∗ ∪ ({u} × V )), δ̂, u)

Algorithm apaspk:
input: An unweighted undirected graph G = (V,E).
output: A matrix δ̂(u, v)u,v of estimated distances.

(1) For i← 1 to k − 1 let si ← n1−
i
k

(2) For i← 1 to k − 1 let Vi ← {v ∈ V |deg(v) ≥ si}
(3) For i← 2 to k let Ei ← {(u, v) ∈ E|deg(u) < si−1 or deg (v) < si−1}
(4) For i← 1 to k − 1 let (Di, E

∗
i )← dominate(G, si)

(5) E1 ← E ; Dk ← V ; E∗ ← ∪1≤i<kE
∗
i

(6) For every u, v ∈ V let δ̂(u, v)←

{
1 if(u, v) ∈ E,
+∞ otherwise.

(7) For every i← 1 to k do
(8) For every u ∈ Di run dijkstra((V,Ei ∪ E∗ ∪ ({u} × V ) ∪ (∪i+j1+j2≤2k+1Dj1 ×Dj2)), δ̂, u)

Boolean Matrix Multiplication
Theorem 1: If all the distances in an undirected n vertex graph can be approximated with a one-sided
error of at most one in O(A(n)) time, then Boolean matrix multiplication can also be performed in
O(A(n)) time.

Proof : Let C = A×B be a Boolean matrix multiplication of size n×n. We can also interpret A×B
as the graph G = (V,E) with

V = {u1, · · · , un} ∪ {v1, · · · , vn} ∪ {w1, · · · , wn},
E = {u1, vk|aik = 1} ∪ {vk, wj |bkj = 1}.

In this case, aik indicates whether there is an edge between the vertex ui and vk and bkj indicates
whether there is an edge between the vertex vk and wj . In the result, cij = 1 if and only if there exists a
direct path (ui, vk, wj) for some vk and therefore δG(ui, wj) = 2. So if all the distances in an undirected
n vertex graph can be calculated in O(A(n)) time, then Boolean matrix multiplication can also be
performed in O(A(n)) time. But we don’t actually need to compute the distances exactly, as the only
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condition we need to check in G is, whether δG(ui, wj) ≤ 3, since δG(ui, wj) ∈ {2, 4, 6, · · · } ∪ {∞} and
the Theorem holds.

Summary
We get algorithms with flexible accuracy and running time, that, in the case of an additive error of 2,
is faster then the previously explored algorithm in [2]. Also important to mention is that the APASP∞
algorithm runs in quadratic time and produces constant stretch estimated distances (with a factor of
3), which was not previously achieved. The work on Boolean Matrix Multiplication shows that if we
want to further improve the error estimate to a surplus 1 distance we have to look into the lower
bounds of boolean matrix multiplication.
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