
Edit Distance Cannot Be Computed in Strongly

Subquadratic Time (unless SETH is false)

Seminar on Advanced Algorithms and Data Structures

Simon Weber – 15-920-655

7th of April 2018

1 Introduction

In this presentation we will explore a proof from [BI15] showing that the Lev-
enshtein distance between two strings cannot be computed in strongly sub-
quadratic time given that the Strong Exponential Time Hypothesis [IP01]
is true.

The Levenshtein (or edit) distance counts the minimum number of op-
erations needed to transform one input string into the other. The allowed
operations are deletion and insertion of a character, or substitution of one
character for another. From now on we will denote the Levenshtein distance
between two strings a and b as EDIT (a, b).

As an example, the words “cat” and “mane” have an edit distance of
three – the c is changed into an m, the t is changed into an n and an e is
added at the end.

There exist many algorithms for solving EDIT in quadratic time in the
length of the input strings, for example the dynamic programming algorithm
that one usually encounters in basic Algorithmics classes. There are more
efficient algorithms that achieve a runtime of O(n2/log2n), but so far nobody
has discovered a “strongly subquadratic” algorithm – that is an algorithm
in O(n2−ε), with ε > 0. We will show that this is indeed a lower bound,
under the condition that the Strong Exponential Time Hypothesis is true.

In general, it is very difficult to prove lower bounds for computational
problems. There are two main ways to prove such lower bounds:

• Restricting the computational model: For example, sorting can be
shown to have a lower bound of Ω(nlogn), when only considering
comparison-based algorithms. In practice, other algorithms like count-
ing sort outperform this bound when the items to be sorted are inte-
gers.

1

• Reducing onto another problem: By showing that a problem is at least
as hard as another problem, we can “inherit” the lower bounds proven
or conjectured for that other problem. Even if no definitive proof for
a lower bound is found, knowing that a large set of problems reduce
to each other can reinforce the trust in that we have indeed reached
the theoretical limit.

In this case, we use the Strong Exponential Time Hypothesis (SETH)
as a root hypothesis for our lower bound. The SETH states that SAT,
the satisfiability problem of Conjunctive Normal Form formulae with no
limit on the amount of literals in a clause, cannot be solved in strongly
subexponential time, that is in O(2n(1−ε)), ε > 0, where n is the number
of variables. It remains unknown whether SETH is true. SETH is a much
stronger statement than P 6= NP , so it is unlikely to be proven correct
in the near future, but it could be disproven simply by finding a strongly
subexponential algorithm for SAT. We will explore whether it is reasonable
to assume SETH later in 5.1.

2 Proof Outline

We will show that the existence of an O(n2−ε) (ε > 0) algorithm for EDIT
implies the existence of an O(poly(m)2(1−δ)n) (δ > 0) algorithm for SAT,
where m is the number of CNF clauses. Assuming m = ω(logn), this is in
O(2(1−δ)n) and this contradicts SETH. Thus assuming SETH, there exists
no strongly subquadratic algorithm for EDIT.

The reduction will be done in two main steps:

1. Reduce SAT to the Orthogonal Vectors Problem. Something very sim-
ilar has been proven in a previous paper ([Wil05]) and we will show
the adapted proof for OVP.

2. Reduce the Orthogonal Vectors Problem to EDIT.

3 The Orthogonal Vector Problem

The Orthogonal Vectors Problem is the problem of deciding for two sets A
and B (|A| = |B| =: n) of binary vectors of dimension d whether there are
orthogonal vectors a ∈ A and b ∈ B, in other words a · b = 0.

OVP can be solved easily in O(n2d), for example by naively computing
a · b for each pair of vectors. Similar to EDIT, given SETH, there is no
strongly subquadratic (in terms of n) algorithm (given d = ω(logn)). This
has been called the Orthogonal Vectors Conjecture [Wil05]. Not only is it
implied by SETH, it is also considered more likely to be true [Wil18].

2

In [Wil05] a very similar problem has been proven not to have strongly
subquadratic algorithms, given SETH – the problem of deciding whether
a vector from A is a subset of a vector from B. The proof can be easily
adapted to work for the OVP :

Given a CNF formula, the variables are split into two equally sized sets
and for both sets, all possible assignments are generated. For each of those
partial assignments we compute the following vector v:

vi =

{
0 if the assignment satisfies the i-th clause
1 otherwise

For the formula to be true under a pair of two partial assignments, at least
one of the partial assignments needs to satisfy each clause. Therefore the
CNF formula is satisfied if and only if there are two orthogonal vectors,
because for every clause (coordinate) there is at least one partial assignment
(vector) satisfying the clause (the vector being 0 at this coordinate).

The OVP problem instance has size O(2n/2) for n SAT variables. The
number of clauses m directly translates into the dimension d of the vec-
tors. Therefore a strongly subquadratic algorithm for OVP would induce a
strongly subexponential algorithm for SAT, as (2n/2)2−ε = 2n(1−ε/2).

4 Reducing EDIT

For this second part of the proof, we will build a string S1 out of the vector
set A and a string S2 out of B, such that the edit distance takes on a fixed
value if there are no two orthogonal vectors and a lower value if there are.

Let us first define our goal in detail: We want to generate two strings S1
and S2, such that we can decide from the value of EDIT (S1, S2) whether
there are orthogonal vectors. The length of the strings has to be linear
in the number of vectors n in A and B and at most polynomial in their
dimension d. For a more streamlined proof we allow us to use an alphabet
of size 4 for the strings, Σ = {0, 1, 2, 3}. In [BK15], a proof for a binary
alphabet is shown, but it complicates the process too much for only a small
improvement in the final conclusion.

Luckily the proof is possible with an incremental construction. We will
encode every coordinate of the vectors into a so called coordinate gadget
string. Using the coordinate gadgets, we will build an encoding for the full
vectors (vector gadgets). The vector gadgets are then used to build the final
strings for our instance of EDIT.

We will go through the proof backwards, such that it is more clear why
each step is constructed the way it is.
◦ will denote the concatenation of two strings, © the concatenation of a

set of strings.

3

4.1 From vector gadgets to the final strings

We assume that we have vector encodings with the following properties:

• A vector a ∈ A is translated to the vector gadget V G1(a), a vector
b ∈ B is translated to V G2(b).

• EDIT (V G1(a), V G2(b)) ≤ Es if a and b are orthogonal, and = Eu
otherwise. Eu > Es and both are constants (only depending on the
dimension of the vectors).

• Vector Gadgets only contain 0s and 1s.

Now we concatenate these vector gadgets in such a way that if there are
no orthogonal vectors, the edit distance will be a predicted value, and any
lower value otherwise.

For our first string (from vector set A) we concatenate all vector gadgets,
separated with long runs of 2s. Additionally, we encapsulate the whole string
in huge runs of 3s.

S1 = 3|S2|©a∈A (2TV G1(a)2T)3|S2|

where T is just a “large enough” number (polynomial in d), that prevents
interference between neighboring vector gadgets.

For our second string (from vector set B) we also concatenate all vector
gadgets, separating them the same way. We now insert additional vector
gadgets on both beginning and end. These additional vector gadgets are all
identical and are the gadgets of the full-one-vector f .

S2 =
(
©|A|−1i=1 2TV G2(f)2T

) (
©b∈B2TV G2(b)2

T
) (
©|A|−1i=1 2TV G2(f)2T

)
As the full-one-vector f obviously can’t be orthogonal to any other vec-

tor, adding it’s gadget into S2 gives us the ability to shift the two sets relative
to each other, without introducing any new orthogonal vector pair. Thanks
to this shifting we can make the gadgets of orthogonal vectors align.

Notice that the lengths of S1 and S2 are inO(n·poly(d)·max(|V G1|, |V G2|),
which is what we required.

If there are no two orthogonal vectors, going from S1 to S2, one
obviously has to remove/transform the huge runs of 3s as there are no 3s
in S2. Additionally, the |A| vector gadgets have to be transformed as well,
each one giving Eu edit operations. This gives a fixed cost of

EDIT (S1, S2) = 2 · |S2|+ |A| · Eu

We assumed that it is optimal to transform each vector gadget indepen-
dently. This might be intuitive (especially when considering the structure of
the vector and coordinate gadgets in the next chapters) but it isn’t trivial to

4

prove. The full proof involves an extensive case distinction on the location
of similar substrings in the two strings, but we omit it here.

On the other hand, if there are orthogonal vectors, say a′ ·b′ = 0,
showing that the edit distance is lower than a certain value can be done
simply by showing the editing process: The sequence of vector gadgets in
S1 is transformed into a substring of S2 by transforming each vector gadget
independently. The vector gadgets are aligned in such a way that V G1(a

′)
is transformed into V G2(b

′). Thanks to the repetitions of V G2(f), this is
always possible and takes at most (|A| − 1) ·Eu +Es steps. Now we remove
or substitute the 3s, to get to S2. Note that we will never need to add any
symbols, as |S2| 3s on both sides are always enough to build S2 from. This
gives us a cost of

EDIT (S1, S2) ≤ 2 · |S2|+ |A| · Eu + (Es − Eu)

Figure 1: The editing process if there are orthogonal vectors a′ and b′

...
3|S2| ©a∈A(2TV G1(a)2T)

...
3|S2|

a′

b′
Es

... Eu each

©b∈B2TV G2(b)2T

...

©|A|−1i=1 2TV G2(f)2T©|A|−1i=1 2TV G2(f)2T

|S2| in total|S2| in total

4.2 From coordinate gadgets to vector gadgets

In this part we will construct vector gadgets out of coordinate gadgets with
the following properties:

• A coordinate ai from a vector a ∈ A is translated to the coordinate
gadget CG1(ai) and a coordinate bi from a vector b ∈ B is translated
to CG2(bi).

• The edit distance between two coordinate gadgets is 3 · l0 if they are
both 1 and l0 otherwise.

• There is an additional gadget g that has edit distance of l0 + 1 to any
coordinate gadget from B.

• Coordinate gadgets only contain 0s and 1s.

5

We obviously want our vector gadgets to have the properties outlined in the
previous chapter.

It would be easy to construct vector gadgets for which the edit distance
scales linearly with the product a · b, for example by concatenating all coor-
dinate gadgets. This would generate problems when looking at more than
one vector, as a “strongly non-orthogonal” vector pair would increase the
edit distance by a lot, and thus masking the lower edit distance coming from
an orthogonal vector pair.

Luckily, the additional gadget g comes in handy. As it is always more
expensive to transform a coordinate gadget into g than to transform an
orthogonal coordinate gadget pair, but cheaper than non-orthogonal coor-
dinate gadget pairs, it can be used to provide a constant-sized alternative
editing path. The edit distance always searches for the minimum possible,
therefore it will choose the cheaper orthogonal way if it exists, but also not
grow without limit with regards to a · b if the vectors aren’t orthogonal.

The vector gadgets we use are

V G1(a) = Z1LV0RZ2

and
V G2(b) = V1DV2

where Z1 = Z2 = 0l2 and V0 = V1 = V2 = 1l2 . R is the concatenation
of all coordinate gadgets of a and D is the concatenation of all coordinate
gadgets of b. L is the sequence of d times the extra gadget g. l2 is once
again just a “large enough” constant, defined as (1000d)3 and designed to
prevent interference between the different sections of the vector gadget.

The lengths of the vector gadgets V G1 and V G2 are in O(poly(d) ·
max(|CG|, g)).

If a and b are orthogonal, we can show the upper bound

EDIT (V G1(a), V G2(b)) ≤ Es

by showing how to transform one into the other: Z1 and L are deleted from
V G1(a) (l2 + |L| operations), then R is transformed into D by transforming
each coordinate independently (d·l0 operations). To finish, Z2 is transformed
into V2 (l2 operations). This costs Es := 2l2 + |L|+ dl0 in total.

If a and b are not orthogonal, the edit distance is exactly

EDIT (V G1(a), V G2(b)) = Eu := Es + d.

We will first show that EDIT (V G1(a), V G2(b)) ≤ Eu using a concrete trans-
formation: We delete R and Z2 from V G1(a) (l2+ |R| = l2+ |L| operations).
Then we transform L into D, which takes at most (l0 + 1) · d operations.
Lastly, Z1 is transformed into V1 (l2 operations). In total, this amounts to
Eu = 2l2 + |L|+ dl0 + d = Es + d operations. The proof that this is also a
lower bound is once again very tedious and we will omit it here.

6

Figure 2: The editing process if the vectors are orthogonal

free d · l0 l2
l2 d · |L|

Z1 L =©i∈[d]g V0 R =©i∈[d]CG1(ai) Z2

V1 D =©i∈[d]CG2(bi) V2

Figure 3: The editing process if the vectors are not orthogonal

free
d · |L| l2l2 d · (l0 + 1)

Z1 L =©i∈[d]g V0 R =©i∈[d]CG1(ai) Z2

V2D =©i∈[d]CG2(bi)V1

4.3 Constructing our coordinate gadgets

Now it only remains to construct the coordinate gadgets used in the previous
section. This isn’t too complicated:

CG1(x) :=

{
0l10l01l01l01l00l1 if x = 0
0l10l00l00l01l00l1 if x = 1

CG2(x) :=

{
0l10l00l01l01l00l1 if x = 0
0l11l01l01l01l00l1 if x = 1

g = 0
l1
2
−110

l1
2 0l01l01l01l00l1

where l0 = 1000 · d and l1 = (1000 · d)2. When writing these gadgets
aligned above each other, it should be obvious that they have the desired
edit distances to each other.

These coordinate gadgets and g once again have lengths in O(poly(d)).
Piecing it all together, we thus know that our final strings have the desired
lengths in O(n · poly(d) ·O(poly(d) ·O(poly(d)))), which is O(n · poly(d)).

5 Conclusion

We have shown that from an instance of the Orthogonal Vectors Problem, we
can construct an instance of EDIT, such that the strings have lengths linear
in the number of vectors and polynomial in the vector dimension. By looking
at the result of EDIT, we can decide whether there are orthogonal vectors or

7

not. We can produce the strings in O(n·poly(d)) and we can check the result
in constant time. Therefore we have proven that a strongly subquadratic
algorithm for EDIT would induce a strongly subquadratic (O(n2−ε ·poly(d)),
to be exact) algorithm for OVP, which assuming d = m = ω(logn) would in
turn contradict SETH.

5.1 SETH

It remains to be discussed whether SETH is a reasonable assumption.
On one hand, compared to P 6= NP , which is accepted by almost every-

one as a valid assumption, the much stronger SETH is believed to be false
by way more researchers. This stems partly from the large complexity gap
between poly(n) and 2n. SAT could be anywhere in between, for example
Ω(2n/2), which is strongly subexponential, but still not in P .

On the other hand, many problems have been reduced onto SETH, pro-
viding us with lower bounds that match the current state of research. These
include other types of string distances, graph problems like Dominating Set
and connectivity, and matrix problems. [BI15] even calls this set of prob-
lems “SETH-hard”. All of this seems to support SETH as a valid root for
complexity arguments.

References

[BI15] Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Com-
puted in Strongly Subquadratic Time (unless SETH is false). ACM
Symposium on Theory of Computing, 2015.

[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional
lower bounds for string problems and dynamic time warping. Foun-
dations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 79–97, 2015.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity
of k-sat. Journal of Computer and System Sciences, 62(2):367–375,
2001.

[Wil05] Ryan Williams. A new alorithm for optimal 2-constraint satisfaction
and its implications. Theoretical Computer Science, 348(2):357–365,
2005.

[Wil18] Ryan Williams. On the difference between closest, furthest, and or-
thogonal pairs: Nearly-linear vs barely-subquadratic complexity in
computational geometry. Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1207–1215,
2018.

8

