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1 Introduction

1.1 Overview

In this report we present and discuss the results of the paper [1]. First we introduce some definitions and notions
which are often used in the paper together with the main goal, which was reached by the paper. Afterwards
we present the main algorithm, which the paper is all about. In section 3 we show an analysis of the algorithm
showing his practicality by providing and proving two important theorems. In section 4 and 5 we then show further
interesting results gained with the presented algorithm and conclude by giving some critical thoughts about the
paper.

In the associated talk to this report, only sections 1, 2 and 3 will be covered, where proofs in section 3 will sometimes
only be sketched and subsection 3.3 will only be mentioned briefly. Section 4 will be omitted in the talk, since they
don’t seem to be the main focus of the paper.

1.2 Definitions

We begin by providing a few definitions which will be used further on.

Definition 1 (weight). The weight of a graph G, denoted by Weight(G), indicates the sum of all edge weights of
G.

Definition 2 (length). The weight of a path P is called the length of P and is denoted by Length(P ). The weight
of a single edge e can also be denoted by Length(e).

Definition 3 (size). The size of a graph G = (V,E), denoted by Size(G), indicates the number of edges |E| of G

Definition 4 (t-spanner). Let G = (V,E) be a connected graph with positive weighted edges. A subgraph
G′ = (V,E′) is called a t-spanner, if for every pair of vertices [u, v], the shortest path between u and v in G′ is at
most t times longer, than the shortest path in G. The parameter t is then called the stretch factor of G′.

Figure 1 shows an example of a 3-spanner of a graph. To recognize that it is indeed a 3-spanner, remark that every
thin edge is representable by a path of fat edges, which is at most 3 times longer than the thin edge.
A graph G is said to be sparse in weight, if Weight(G) is small, and sparse in size accordingly.
Also we will further on use the common abbrevation of m as the number of edges, and n as the number of vertices
of a graph.
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Figure 1: A graph where the fat edges indicate a possible 3-spanner of the full graph.

1.3 Goal

Our goal is to provide an algorithm which is able to generate a t-spanner out of a graph G, whose sparseness
in weight comes arbitrarily close to the sparseness of its minimum spanning tree. In addition we would like the
algorithm to produce a result that is sparse in size as well. This means, that we would like the algorithm to provide
a spanner whose size is arbitrarily close to the size of a spanning tree of G, which is n− 1.

A valid question is now, what could we use such an algorithm for?
For certain use-cases, general graphs can provide way more information than actually needed, or even contain a lot
of redundancy. Such an algorithm can then eliminate the additional, useless information for a small price. Let’s
consider, as an example, a computer network, for which we can assume that nodes won’t fail.
Let’s now say we have a routing algorithm, which requires a full graph representation of the network to be stored
on every node. For routing, a node then has to calculate the shortest path from the source to the destination.
In this scenario we will then most probably store edges, which are never or very rarely used, or which could be
replaced with a path with a similarly small length. This means that we store edges, which we don’t really need
for this use case. An algorithm as described above could eliminate such edges at low cost (i.e. the routing results
won’t be much worse than before). This means, that routing could be more performant, by for example extending
Dijkstra’s algorithm [3] with Fibonacci heaps [4] to improve time complexity from O(n2) to O(m+ n log n) (which
for a standard graph might not be better, since m ∈ O(n2) in general). Also we would need less storage, indeed
close to storage linear in n.

2 Algorithm

We now provide an algorithm, which reaches the required goal. The next section will then provide an analysis of the
algorithm, which shows, that the goal is really reached. The following algorithm takes as input a weighted graph
G and a positive parameter r and outputs a graph G′ ⊆ G, where G′ is a r-spanner of G.

The above algorithm is slightly different than the one provided in the paper, because it has a different condition in
the if statement. This is, because in the paper it is not mentioned what would happen in the case, if there is no
shortest path between the two selected nodes in G′. However further on in the paper it gets pretty clear, what is
meant to happen (especially during the comparison with Kruskal’s algorithm [5]).

If we compare algorithm 1 to Kruskal’s minimum spanning tree algorithm [5], we recognize, that it is basically a
generalized minimum spanning tree algorithm, since for infinite r it behaves exactly as Kruskal’s algorithm. We
will later use this observation when comparing G′ to the minimum spanning tree of G (MST (G)).
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Algorithm 1 Spanner

function spanner(G = (V, E), r)
Sort E by nondecreasing weight
G′ ← (V, ∅)
for e = [u, v] ∈ E do

Compute P (u, v), the shortest path from u to v in G′

if P (u, v) does not exist or r · Length(e) < Length(P (u, v)) then
G′ ← G′ ∪ {e}

end if
end for
return G′

end function

3 Analysis

3.1 Useful Lemmas

For our analysis of the above algorithm, we first provide some useful lemmas, which are easy to prove and which
already show the direction we will go. We will from now on use G′ to refer to the output of the algorithm.

First we prove, that algorithm 1 indeed outputs what we want, i.e. a r-spanner of G.

Lemma 3.1. G’ is a r-spanner of G

Proof. Let e = [u, v] ∈ G − G′ be an arbitrary edge, which is in G, but not in G′. When e is examined by the
algorithm, the if condition must fail, this means, that there exists a path P (u, v) from u to v, whose length is at
most r times longer than e. Since the algorithm does not remove edges from G′, the resulting graph also includes
P (u, v).
Now consider an arbitrary shortest path in G. From the above result we see, that we can substitute every edge in
this path that is missing in G′ by a path that is at most r times longer, and therefore the full path is at most r
times longer.

Now we show, that there is a lower bound for the size of a cycle in G′, which is already a step in the direction of
showing sparseness in size of G′.

Lemma 3.2. Let C be any simple cycle in G′, then Size(C) > r + 1

Proof. Assume that G′ contains a cycle with Size(C) ≤ r+ 1. Let e = [u, v] be the last edge (one of the largest) of
C, that was examined by algorithm 1. When e is examined by the algorithm, there is already a path P (u, v) in G′

from u to v with a size of at most r, e.g. the remainder of C. Since every edge in P (u, v) is smaller or equal to e, we
know, that Length(P (u, v)) ≤ r ·Length(e), hence e should not have been added to G′, which is a contradiction.

The next lemma comes very straight forward from the if condition in algorithm 1.

Lemma 3.3. Let C be any simple cycle in G′ and e be an arbitrary edge in C, then Length(C − e) > r ·Length(e).

Proof. Assume that G′ contains a cycle C for which there exists an edge e in C, such that Length(C − {e}) ≤
r ·Length(e), i.e. it violates the above condition. Clearly the largest edge em in C applies now for e. When em was
examined by algorithm 1, again all other edges of C must already have been added to G′, which means that there
is a path P (u, v) = C − {e} with Length(P (u, v)) ≤ r · Length(em). Hence em should not have been added to G′,
which is a contradiction.

To later compare G′ with MST (G), we now prove the following lemma:
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Lemma 3.4. MST (G) ⊆ G′

Proof. Let’s indicate by G′i the graph G′ after the i’th iteration of the loop of the algorithm, where G′0 = ∅ and
G′m = G′.
Now let’s indicate by Mi the graph after the i’th iteration of Kruskal’s algorithm, where M0 = ∅ and Mm =
MST (G). By induction we now can show, that for any n, Mn ⊆ G′n, hence Mn ⊆ G′n.
Base case: We obviously have M0 = ∅ ⊆ ∅ = G′0.
Induction hypothesis: We can assume, that for n fixed: Mn ⊆ G′n.
Step case (n → n + 1): We can assume without loss of generality, that an edge e = [u, v] was added to Mn after
the next iteration (otherwise we trivially get our result via the induction hypothesis, since Mn = Mn+1). If we now
take a look at the if condition of the algorithm, we see that for e to be added, there must not be any path between
u and v in Mn. This obviously also has to be the case for G′n. Hence e is also added to G′n after the next iteration.
With our induction hypothesis we therefore get Mn+1 = Mn ∪ {e} ⊆ G′n ∪ {e} = G′n+1.

3.2 Main Theorems

Now we come to the main part of the analysis. The paper provides two main theorems which summarize the
sparseness in weight and in size of the t-spanner resulting from the algorithm:

Theorem 3.5. Given a n-vertex graph G and a t ≥ 1, there is a polynomially constructible (2t + 1)-spanner G′

such that

1. Size(G′) < n · dn1/te

2. Weight(G′) <Weight(MST (G)) · (1 + n/2t)

Theorem 3.6. Given a n-vertex planar graph G and a t ≥ 1/2, there is a polynomially constructible (2t+1)-spanner
G′ such that

1. Size(G′) ≤ (n− 2) · (1 + 2/b2tc)

2. Weight(G′) <Weight(MST (G)) · (1 + 1/t)

3.2.1 Further Lemmas

For proving our two theorems from above, we need a few additional Lemmas where we will use some properties of
planar graphs. For completion we therefore provide the following two definitions:

Definition 5 (face). After drawing a planar graph G in a plane, we call a subset of the plane, which is disjoint
from G and only bounded by edges in G a face of G.

Definition 6 (face size). The size of a face is the number of encountered edges while traversing the face, where
repetitions of edges are allowed while traversing.

We might now ask, when do we need to repeat edges? Figure 2 shows an example of such a graph.

The first Lemma gives a bound on the size of a planar graph, given a lower bound on the face size of the graph.
This will help us in proving the size bound of Theorem 3.6.

Lemma 3.7. If all faces of a planar graph G have sizes ≥ r, then Size(G) ≤ (n− 2) · (1 + 2/(r − 2)).

Proof. Euler’s formula for planar graphs states that n −m + f = 2, where f is the number of faces in the graph.
If we traverse every face in the graph and mark the edges encountered, every edge gets marked twice. Since the
number of marked edges during the traversal of one face is at least r, we get r · f ≤ 2m. With Euler’s formula we
hence get m ≤ (n− 2) · (1 + 2/(r − 2)).
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Figure 2: An example of a planar graph, where an edge has to be counted twice when traversing the bounded face

For the next lemma we need another definition:

Definition 7 (girth). The girth of a graph is the size of its smallest simple cycle.

From extremal graph theory ([2] Theorem 3.7, Chapter III) we can derive the following lemma, which provides a
upper bound on the size of a graph, which will be helpful when proving theorem 3.5.

Lemma 3.8. Let G be a graph with girth > r. Then Size(G) < n · dn2/(r−2)e.

3.2.2 Proofs

We now can finally prove the two theorems. In the paper there are some typos, especially in the proof of theorem
3.6, which might confuse the reader. One typo even makes the size bound of the two theorems slightly worse.

Corollary 3.8.1 (polynomial time). Algorithm 1 has a polynomial runtime.

Proof. First of all recognize, that the algorithm takes time O(m logm) to sort its edges in the first step. Afterwards
it iterates the loop m times, each time executing a shortest path algorithm which takes O(m+n log n) time. Hence
we get a total runtime of O(m logm+m · (m+ n log n)) which is clearly polynomial.

Proof of theorem 3.6. Let t ≥ 1/2. We run algorithm 1 on a planar graph G and r = 2t+1 and receive output G′. By
lemma 3.1, G′ has a stretch factor of 2t+1. By lemma 3.2, the girth of G′ is > 2t+2 ≥ b2t+3c. Hence the minimum
face size is also ≥ b2t+ 3c. By lemma 3.7 we now get: Size(G′) ≤ (n− 2) · (1 + 2/b2t+ 1c) ≤ (n− 2) · (1 + 2/b2tc),
which proves the size bound of theorem 3.6.

For our weight bound let’s describe the following polygon emerging by MST (G): The polygon contains the same
vertices as MST (G). Its border consists of edges of MST (G) (every edge is included twice on the border) and
results by traversing MST (G). This polygon has no area and a perimeter of 2 · Weight(MST (G)). Now we
will ”grow” this polygon in iterations, such that it finally includes the full graph G′ by adding a new edge from
G′−MST (G) in every iteration. One iteration now consists of selecting an edge e = [u, v] from G′−MST (G) that
wasn’t already added and which builds a face with P (u, v) that is adjacent to the current polygon, where P (u, v)
is part of the current polygon. We then remove P (u, v) from the polygon and instead add e. Figure 3 shows an
example of such a polygon after the 4th iteration. Let now the length of the polygon at iteration i be Wi with
W0 = 2 ·Weight(MST (G)) and Ti be the total length of edges in G′ −MST (G) that were added until iteration i
with T0 = 0. By lemma 3.3 we now get:

Length(e) · (2t+ 1) < Length(P (u, v))

This means that:

Wi+1 = Wi − Length(P (u, v)) + Length(e) < Wi − Length(e) · (2t+ 1) + Length(e) = Wi − 2t · Length(e)
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Figure 3: An example for the polygon descibed in the proof of theorem 3.6 after 4 iterations. The fat edges indicate
the polygon, while the dashed edges mark the edges that were once part of the polygon (and are now inside the
polygon) and the normal edges mark the edges that will be added to the polygon in further iterations.

and Ti+1 = Ti + Length(e).
Let’s denote by ei the edge added to the polygon at iteration i. We therefore get:

Wi < W0 − 2t ·
i∑

j=1

Length(ej) = W0 − 2t · Ti

By reformulating we get:

Ti < (W0 −Wi)/2t = (2 ·Weight(MST (G))−Wi)/2t <Weight(MST (G))/t

So every Ti, especially also the last one, is smaller than Weight(MST (G))/t. Thus

Weight(G′) <Weight(MST (G)) + Weight(MST (G))/t = Weight(MST (G)) · (1 + 1/t)

.

Proof of theorem 3.5. Let t ≥ 1. We run algorithm 1 on a graph G = (V,E) and r = 2t+ 1 and receive output G′.
By lemma 3.1, G′ = (V,E′) has a stretch factor of ≤ 2t+ 1. And by lemma 3.2, the girth of the output is > 2t+ 2.
Thus, by lemma 3.8, Size(G′) < n · n · dn1/te

For the weight bound we may proceed somehow similarly as above. By lemma 3.4, MST (G) is contained in G′.
For each vertex v, consider the graph Gv = MST (G) ∪ Ev where Ev = {[u, v] ∈ E′;u ∈ V ∧ [u, v] 6∈ MST (G)}
(the edges in E′ incident to v, but not in MST (G). Obviously Gv cannot contain a subdivision of the complete
graph K5, nor the complete bipartite graph K3,3 and thus must be planar. If we apply a similar method as in
the previous proof, we can show, that Weight(Ev) < Weight(MST (G))/t. Therefore we get

∑
v∈V Weight(Ev) <

Weight(MST (G)) · n/t, where each edge in G′ −MST (G) has now been counted twice in the sum. We hence get
Weight(G′) <Weight(MST (G)) · (1 + n/2t).

3.3 How good is this?

In the previous subsection we have provided upper bounds for weight and size, for general and planar graphs, which
can be achieved by algorithm 1. The question now arises, how optimal these results are, i.e. what are lower bounds
for weight and size of a t-spanner?

Let’s now consider graphs with arbitrary positive weights. From [6] we get the following theorem:

Theorem 3.9. For every t ≥ 1, there exist infinitely many graphs with unit edge weights, such that every (2t+ 1)-
spanner requires Ω(n1+1/(2t+3)) edges.
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This means, that the size bound in theorem 3.5 is tight up to a constant factor. Since during the proof of theorem
3.5 there was a small mistake in the paper, there is even a tighter bound of n · dn2/(2t+1)e ≤ for the algorithm (see
above), which however still ”only” is tight up to a constant factor in the exponent.

With theorem 3.9 we can get a lower bound on the weights of spanners:

Theorem 3.10. For every t ≥ 1, there exist infinitely many graphs G such that every (2t+ 1)-spanner has weight
Ω(Weight(MST (G)) · n1/(2t+3)).

Therefore the weight bound in theorem 3.5 is not as tight as maybe wished.

Now let’s consider planar graphs with arbitrary positive weights.

Theorem 3.11. For infinitely many n and t, there exists a planar graph G with unit edge weights, such that every
(2t+ 1)-spanner requires Ω(n · (1 + 1/t)) edges, and has weight Ω(Weight(MST (G)) · (1 + 1/t)).

Proof. For infinitely many n and t it is possible to construct a planar n-vertex graph with unit edge weights, such
that

1. each face is a regular (2t+ 4)-gon

2. the girth is ≥ 2t+ 4

as follows:
Let k ≥ 2 and n = k(t + 1) + 2). Select 2 nodes u and v and create k chains containing t + 1 nodes out of the
remaining k(t+ 1) nodes. Now connect u to one end of every chain and v to the other end and we get our graph.
With Euler’s formula we can now derive, that the size of such a graph must be Ω(n · (1 + 1/t)). It is easy to see,
that every proper subgraph will have a stretch factor of at least 2t+ 3. This means, that a (2t+ 1)-spanner must
be equal to the previous graph and has therefore the same size. We can also see, that the weight condition holds,
since a minimum spanning tree has at least n− 1 edges. So with unit weights we get the same result for the weight
of a (2t+ 1)-spanner: Ω(n · (1 + 1/t)) = Ω(Weight(MST (G)) · (1 + 1/t))

This shows, that the results of theorem 3.6 are tight.

4 Further graph theoretical results

The paper now provides further results for (generalized) spanners, especially further lower bounds. We will here
present these results, but not always provide details about the proofs, since it doesn’t seem as if those results are
the main focus of the paper and this report should be a summary of it. Also even in the paper some theorems are
provided without proofs, so there we obviously also won’t state any.

First we again provide some definitions:

Definition 8 (distance). The length of the shortest path between two vertices u and v in a graph G is called
distance and is denoted by Dist(u, v,G).

Definition 9 (compressor). Let g be a function that assigns a string of s bits to each unweighted graph (with n
vertices). g is called a (n, t, s)-compressor, if the following is true:
For all pairs of graphs G1, G2, if g(G1) = g(G2), then for all pairs of vertices u, v: Dist(u, v,G1) ≤ t ·Dist(u, v,G2).

We can understand a compressor as a function that maps graphs to (named) groups. Such a group only contains
graphs, which are similar, i.e. the distance between two arbitrary vertices are similar up to a certain parameter in
two graphs of the same group.
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Definition 10 (generalized t-spanner). Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ⊆ V2. G2 is a
generalized t-spanner of G1, if for all u, v ∈ V1, Dist(u, v,G1) ≤ Dist(u, v,G2) ≤ t ·Dist(u, v,G1).

So a generalized t-spanner might add new vertices and edges to a graph, but may not shorten any path. This
ability allows, that the size (and weight) of certain graphs can be reduced drastically. In the general case however,
generalized spanners sometimes cannot be much smaller than normal (simple) spanners, which is stated in the next
theorem.

An other approach for generalizing spanners works as follows:

Definition 11 (t-approximators). Let t ≥ 1. G′ = (V,E′) is called a t-approximator of G = (V,E) if, for all
u, v ∈ V, 1/t ·Dist(u, v,G) ≤ Dist(u, v,G′) ≤ t ·Dist(u, v,G).

Theorem 4.1. For infinitely many n and t, there exists a graph G with unit edge weights such that every generalized
t-spanner has size Ω(1/(log n) · n1+1/(t+2)).

To prove this theorem we first provide some lemmas and corollaries:

Given a t, the following lemma provides a lower bound on the number of groups of a compressor.

Lemma 4.2. For a (n, t, s)-compressor to exist, s ≥ 1/4 · n1+1/(t+2).

Proof. From [2] we know, that for infinitely many n and t, there exist graphs with girth ≥ t + 2 and size ≥
1/4 ·n1+1/(t+2). Let G = (V,E) be such a graph, and let G1 and G2 be two different subgraphs of G. Now consider
two vertices u, v ∈ V , which don’t have the same distance in G1 and G2 and are adjacent to each other in either
G1 or G2. Note that such vertices must exist, since G1 is different to G2. Because the girth is ≥ t+ 2, the distance
from u to v must be t+ 1 in one of the two subgraphs, and 1 in the other one. Therefore G1 and G2 are in different
groups and the number of groups is ≥ 2m, thus s ≥ m (m as always being the edge count of G).

Corollary 4.2.1. If there exists a collection of t-spanners, one for each graph, of size k, then there exists a
(n, t, dlog ke)-compressor.

Corollary 4.2.2. Every graph can be encoded by 2 · dlog ne ·m bits.

Proof (sketch) of theorem 4.1. Let’s first prove the theorem for unweighted spanners:
Since we are interested in sparse generalized spanners, we require, that a spanner has at most n+2 ·n(n−1)/2 = n2

vertices, i.e. they should introduce not more vertices than twice the number of edges of a complete graph. Now
consider any collection of t-spanners where every graph has a t-spanner of this collection. Let m be the size of the
largest spanner in this set. Each spanner can be encoded in ≤ 4 · dlog ne ·m bits. By corollary 4.2.1, there exists
a (n, t, 4 · dlog ne ·m)-compressor. With lemma 4.2 we get 4 · dlog ne ·m ≥ 1/4 · n1+1/(t+2) and when solving for m
we get our result.
For weighted spanners we try to encode the edge weights, which obviously might in general not be possible, since
they can be arbitrarily large or require arbitrarily many precision bits. It however can be shown, that by ignoring
large weights and rounding off other weights, we can encode spanners with slightly larger stretch factors.

Now follow some theorems without proofs, which the paper provides as well:

Theorem 4.3. For infinitely many n and t, there exists a graph G with unit edge weights, such that every
t-approximator has size Ω(1/(log n) · n1+1/(t+2)).

Definition 12 (proper edge). A edge is called proper, if it is never longer than any path between its end vertices.

Theorem 4.4. For infinitely many n and t, there exists a complete graph G with proper edge weights, such that
every (2t− 1)-spanner has size Ω(1/t · n1+1/(2t+1)).

Theorem 4.5. Denote by K(V ) the complete euclidean graph. Let t ≥ 1/2 Let G′ be the output of algorithm 1
for the Delaunay triangulation over V in the || · ||2 norm and for r = 2t+ 1. Then G′ is a 2.42 · (2t+ 1)-spanner of
K(V ), such that
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1. Size(G′) ≤ (n− 2) · (1 + 2/b2tc)

2. Weight(G′) <Weight(MST (K(V ))) · (1 + 1/t).

Now we provide a new way to construct a spanner in a multidimensional euclidean graph.
Let G = (V,E) with points in V being in Rd with norm || · ||.
Let G′ = (V, ∅) be the spanner to be constructed.
Let δ > 0 be a fixed angle and Ci a open cone with angle δ and fixed focus (same for every cone), where C1, . . . , Cs(δ)
provides a covering of Rd.
For every v ∈ V , consider the covering of Rd by the open cones C1 + v, . . . , Cs(δ) + v, where C + v represents a
translation of the open cone C to the new origin v, i.e. the focus of C + v is v. For every Ci + v, let u be the vertex
in the cone such that ||u− v|| is minimized. Add [u, v] to G′ and call u the ith neighbor of v.

Lemma 4.6. For every ε < 1/(2+
√

2, there is an angle δ(ε) > 0 such that Dist(v, u,G′) < ||v−u||/(1− ε(2+
√

2)).

Theorem 4.7. For every t > 0, dimension d, and norm || · || of Rd, there exists a constant c(t, d, || · ||) such that
every finite set V has a t-spanner with size of at most c · n.

5 Conclusion

The paper provides a very simple algorithm to construct sparse t-spanners in both weight and size. The results
look very promising, as the sparseness is very tight to the lower bounds.

The paper only very briefly mentions runtime, probably because it is very straightforward. Therefore we provided
some runtime analysis in this report.

Some errors in the paper resulted in wrong proofs, especially for the proofs of the main theorems, which can be
very confusing to the reader.
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