
Seminar on Advanced Algorithms and Data Structures - Student Report

Witnesses for Boolean Matrix Multiplication and for

Shortest Paths

Matteo Signer

April 1, 2018

1 Introduction

Consider the product C of two n × n boolean matrices, A and B. To be more precise, the
multiplication is over the semiring ({0, 1},∨,∧), so we have Cij =

∨n
k=1Aik∧Bkj . The witnesses

of such a multiplication is an index k for each i, j where Cij = 1 such that Aik = 1 = Bkj . These
witnesses can be considered a proof or example of Cij = 1.

The utility of boolean matrix multiplication is clear, for example the transitive closure of a graph
with n vertices can be computed using O(log n) matrix multiplications. The witnesses come into
play where one wants to find some k for all pairs (i, j) with Aik = 1 = Bkj .

Of course, straightforward boolean without witnesses can be computed as fast as an integer
matrix multiplication by selecting the entries that are non-zero in the result. This is known to
be computable faster than the O(n3) running time of naive multiplication. Strassen was the first
to produce such an algorithm that runs in O(nω) for ω = 2.807[4], and at the time of the original
paper, Coppersmith and Winograd had discovered an algorithm for ω = 2.376[5].

More recent results provide algorithms for even smaller values of ω, such as Le Gall’s algorithm
which achieves ω = 2.373[6].

These subcubic algorithms don’t produce witnesses. We will construct an algorithm for comput-
ing the witnesses that runs in O(nω(log n)O(1)).

2 Algorithm

We first look at a simpler, randomized algorithm called BPWM, as described by R. Seidel[2].
The algorithm shares many of the concepts and ideas we use in our final deterministic algorithm.

2.1 BPWM

The algorithm relies on one key observation.

For the boolean matrices A and B and their product C over the integers, we can find the witnesses
for the entries with Cij = 1 easily with the following method:

1

Take the matrix B′ defined as B′ij = i · Bij , i.e. multiply each row by its index. The product
C ′ = A · B′ contains witnesses for the entries where Cij = 1. This is obvious, since if Cij = 1,
then there exists exactly one k where both Aik and Bkj , and B′kj = k is the only contributor to
C ′ij since for all other k, either Aik or B′ik are zero (as they were in the original matrices A and
B).

Lets look at an example:

B =

1 0 1 1
1 0 0 1
0 1 1 1
1 0 0 1

B′ =

1 0 1 1
2 0 0 2
0 3 3 3
4 0 0 4

A =

1 1 1 0
0 1 0 0
1 0 0 1
0 0 0 0

C =

2 1

¯
2 3

1
¯

0 0 1
¯

2 0 1
¯

2
0 0 0 0

C ′ =

3 3

¯
4 6

2
¯

0 0 2
¯

5 0 1
¯

5
0 0 0 0

The highlighted entries take the value 1 in C, so they are witnesses for A · B, which can easily
be seen.

We also don’t need to compute the matrix C, as it suffices to just check if Aik and Bkj are both
1 to check if k = C ′ij is a witness.

So we can compute the witnesses for the 1-entries efficiently. The idea now is to select a random
subset of d of the columns of A and rows of B, say s1, . . . , sd. This gives us two n × d/d × n
matrices X and Y with Xij = Aisi , Yij = Bsij . The entries that are non-zero in Z = X · Y are
also non-zero in A ·B.

Using the above example with d = 2 columns/rows and s1 = 2, s2 = 3:

Y =

[
1 0 0 1
0 1 1 1

]
Y ′ =

[
1 0 0 1
0 2 2 2

]

X =

1 1
1 0
0 0
0 0

Z =

1
¯

1
¯

1
¯

2
1
¯

0 0 1
¯

0 0 0 0
0 0 0 0

Z ′ =

1
¯

2
¯

2
¯

3
1
¯

0 0 1
¯

0 0 0 0
0 0 0 0

Because we got rid of some columns and rows, the entries of the product matrix are generally
smaller and we find witnesses we didn’t have before.

The witnesses in Z ′ are for the matrices X and Y , so we need to transform the witness k = Z ′ij
into sk to be a witness for the product A ·B.

We want to maximize the chance that an entry of X · Y becomes 1. Intuitively, for a large Cij ,
this should happen when we select few columns/rows, and for smaller entries of C we should
take more. To put it crudely, the chance is maximized when Cij · d ≈ n.

We thus pick d = 1, 2, 4, . . . , 2dlog2 ne−1, so we are at most a factor 2 away.

For each entry c = Cij (i.e. with c potential witnesses), c·d
n is between 1

2 and 1 in one of these
values of d.

Now we determine a lower bound on the probability that this entry in the X-Y -product becomes
one in that iteration, and thus also for the entire loop.

2

Claim 1. An iteration with n/2 ≤ c · d ≤ n finds a witness for an entry where Cij = c with at
least probability 1

2e .

Proof. There are c potential witnesses where Aik = 1 = Bkj . The probability of hitting one of
them is c

n .

The number of potential witnesses we hit with d columns is thus X ∼ B(d, cn), and we are
successful if X = 1. Plugging in the probability distribution of the Binomial distribution gives
us

P[X = 1] = d
c

n
(1− c

n
)d−1.

Using our constraits d cn ≥
1
2 and − c

n ≥ −
1
d , we find

P[X = 1] ≥ 1

2
(1− 1

d
)d−1 ≥ 1

2
e−1.

The probability is small, but larger than a constant. We can repeat the algorithm m times so
the probability that a certain witness is not found is at most (1− 1

2e)m. We can find all witnesses
we didn’t find in O(n) time per witness, so as to not influence our total running time, we want
to find all but n witnesses. This is the expected case when the probability is at most 1

n .

Solving for m gives m ≥ log1− 1
2e

1
n = − log n/ log(1 − 1

2e) which is satisfied for example by

m = d3.42 log2 ne.
Concluding, we only have to spend O(nω log2 n+ w · n) where w denotes the number of entries
for which we haven’t found a witness. This is O(nω log2 n) in the expected case.

2.2 Deterministic algorithm

Now let’s look at the final algorithm that takes Õ(nω) 1 in the worst case. In this algorithm, we
can find the witnesses for entries between 1 and c = dlog log n+ 9e in one go, and α = 8

2c is the
fraction of witnesses we are willing to compute by hand.

L denotes the set of positive entries of C for which we haven’t found a witness yet
while L 6= ∅ do

R← (rij = 1)ni,j=1

for d1 + 3 log4/3 ne iterations do
D ← A · (B ∧R) . Matrix multiplication over the integers
L′ ← {(i, j) ∈ L | Dij ≤ c}
Find witnesses for the entries in L′ . And remove L′ from L
R← good matrix

end for
end while

The matrix R is defined to be good if two conditions hold:

• The sum of the entries of D in L is at most 3/4 of what it was in the previous iteration, so
it drops by at least 3/4 each iteration. This guarantees that D = 0 after the d1+3 log4/3 ne
iterations.

• The fraction of entries of D in L that go from a value bigger than c to 0 it at most α.

1Õ(f(n)) := O(f(n)(log f(n))O(1))

3

The way this works is similar to the idea of BPWM: we still select a subset of entries to multiply
and hope we will get entries small enough to find witnesses for them. It is just that we can find
witnesses for entries between 1 and c, instead of entries that are exactly 1.

The steps that are not immediately clear in the algorithm is how to actually find the witnesses
for the suitable entries in L′ and how to generate the good matrix R. It turns out that we can
find a suitable R in Õ(nω).

First we look at what happens when we remove a random set of entries from R in each step:

Lemma 1. The choice R ← R ∧ S where S is a uniformly random boolean matrix is good with
probability at least 1/6.

Proof. The lemma will follow from these claims:

Claim 2. The sum of entries of D in L goes down by at least 3/4 with probability at least 1/3.

Proof. The expected factor X the sum of entries of D in L shrinks by is 1/2 (as is true of any
subset of entries).

We have P
[
X < 3

4

]
= 1 − P

[
X ≥ 3

4

]
≥ 1 − E[X]/ 3

4 = 1 − 2
3 = 1

3 where we used Markov’s
inequality. �

Claim 3. The probability that a fixed entry of D which is at least c drops down to 0 is at most
1/2c.

Proof. There are at least c 1-entries in the corresponding column of B ∧ R which have a 1 in
the respective entry of the row of A. All these entries have to become zero, which happens with
probability at most 1/2c. �

Claim 4. The probability that more than a fraction α of the entries of D in L goes down from
at least c to 0 is at most 1

2c
1
α = 1

8 .

Proof. The expected value of that fraction is obviously less than 1/2c by Claim 2. Applying
Markov’s inequality again, we immediately obtain the desired result. �

Combining these results, the probability of the sum of entries of D in L going down by 3/4 and
at most α fraction of the values going from at least c to 0 is at least 1/3 − 1/8 > 1/6. The
subtraction is motivated in the fact that the events are not independent, and in the worst case
all the outcomes where more than α fraction of the values go from at least c to 0 are contained
in those where the sum of entries goes down by 3/4.

It turns out we can switch the uniform distribution for S to a low-size probability space that
retains many of the aspects of the uniform distribution, but is small enough that we can iterate
over all possible outputs in polylogarithmic time.

Such a probability space is the c-wise ε-dependent random sample space as described in [3] where
ε = 1

2c+1 will fit our use case.

A distribution is c-wise ε-dependant if for every subset of size ≤ c of the variables, the probability
density function constrained on it deviates at most ε in the L1-Norm.

We will not go into detail into the construction of such a sample space, because it is quite
complicated.

4

Instead, we only use the fact that there exists a construction for such a sample space that only
takes O(c+ log log n+ log 1

ε) random bits to sample. It follows that the size of the sample space

is only O((log n)O(1)).

We now want to prove that the probability of finding a good matrix by choosing S from this
c-wise ε-dependent sample space is larger than zero, so it is guaranteed that we find a suitable
matrix when looking at all possible outputs of the sample space.

Lemma 2. The choice R← R∧S where S is a matrix of n2 c-wise ε-dependant random variables
is good with probability at least 1/12− 2ε.

Proof.

Claim 5. The sum of entries of D in L goes down by at least 3/4 with probability at least
1/3− 2ε.

Proof. The expected factor X the sum of entries of D in L shrinks by is ≤ 1/2 + ε. This is
obvious since X is 1

n2 times the sum of n2 Bernoulli variables. Since summing commutes with
the expected value, it is also less than the largest of the expected values of any of these variables,
which is at most 1/2 + ε.

Applying Markov’s inequality again: P
[
X < 3

4

]
= 1− P

[
X ≥ 3

4

]
≥ 1− E[X]/ 3

4 = 1− 4
3 E[X] ≥

1/3− 2ε �

Claim 6. The probability that a fixed entry of D which is at least c drops down to 0 is at most
1/2c + ε.

Proof. This is obvious, because our c-wise ε-dependent distribution deviates at most ε from the
uniform one when constrained on a subset of size ≤ c, in particular the event that some c entries
of S that contribute to D all drop to 0. �

Claim 7. The probability that more than a fraction α of the entries of D drop from at least c to
0 is at most 1/4.

Proof. The number of entries dropping from c to 0 is the sum of n Bernoulli variables with
p ≤ 1/2c + ε each, so the expected fraction Y of “thrown” entries is also ≤ 1/2c + ε.

We apply Markov’s law once again: P[Y ≥ α] ≤ E[Y]/α ≤ (2
2c)/α = 1

4 . �

Thus, analogously to the case of the uniform distribution, we have obtained P[R is “good”] ≥
1
3 − 2ε− 1

4 = 1
12 − 2ε.

This probability is greater than zero for ε < 1
24 . This is always the case, as c ≥ 9, so ε = 1

2c+1 ≤
1

210 <
1
24 .

We now know that we still have a chance of finding a “good” matrix even when sampling from our
low-size sample space. We only make use of this result indirectly, as it implies that in principle
we can and will obtain a suitable S for some inputs.

As noted before, our sample space only needs O(c + log log n + log 1
ε) random bits to produce

a result. This means that the size of the sample space (the set of all possible results) is only
O(2c log n 2c+1)O(1), which is polylogarithmic in n.

Checking if a matrix is “good” requires only O(nω + n2) time, so we find a good matrix R in
Õ(nω).

5

The only part that we have not covered is actually finding the witnesses for L′. This turns out
to be doable in much the same way as finding R.

Lemma 3. By iterating over all possible “random” input bits of a c-wise ε-dependant random
sample space D with ε < 1

2c , every subset S of size m ≤ c of the random variables will assume
all 2m possible values.

Proof. Suppose not, i.e. there exist some subset S = {xi1 , . . . , xim} of the variables that doesn’t
assume the values yi1 , . . . , yim .

Then obviously PD [xi1 = yi1 , . . . , xim = yim] = 0, while the uniform distribution has a proba-
bility of 1

2m ≥
1
2c of generating these values. This however violates the c-wise ε-dependence of

D, because the probability function on a subset should differ at most ε < 1
2c from the uniform

distribution.

This guarantees that every entry of L′ drops to 1 for some of the matrices S, because for every
entry of value at most c, all but one of the contributing entries will be filtered out by S. In fact,
every contributor will be the only one left in S for some S, as per the above lemma.

Checking this for a fixed S only takes O(nω + n2) time. We can do this at the same time as
searching for a “good” R, where we also calculate the same matrix A · (B ∧Rold ∧S), so we only
have an overhead of O(n2).

In each iteration of the inner loop, at most α fraction of the entries greater than c of D will
vanish (i.e. their witnesses cannot be found). So after the inner loop completes, we will have
found the witnesses for at least (1− α)d1+3 log4/3 ne fraction of L.

Claim 8. (1− α)d1+3 log3/3 ne > 0.85

Proof. We have α = 8
2c ≤

8
2log log n+9 = 1

64 logn . Because 3/ log2(4/3) < 8, we have d1 +

3 log4/3 ne ≤ 2 + 8 log2 n.

Thus we have an lower bound of (1 − α)2+8 log2 n = (1 − α)2((1 − α)log2 n)8 ≥ (1 − 1
64)2((1 −

1
64 logn)logn)8 ≥ (1− 1

64)10 > 0.85.

The last step is because (1− a
x)x is monotonically growing (as base and exponent both are) and

starts at 1− a for x = 1.

Thus, we find witnesses for at least 85% of the entries L, so we only need to execute the outer
loop at most log0.85

1
n2 times, which is O(log n).

Because finding a “good” matrix takes Õ(nω) and each of the loops is executed at most O(log n)
times, the entire algorithm only takes Õ(nω) time.

3 Applications

The algorithm for the boolean product witness problem is most useful for fast algorithms for
all-pair-style graph problems, e.g. the all-pair shortest paths problem.

In general, algorithms that provide some paths (e.g. shortest ones) between all vertices cannot
be faster than O(n3) because the output for some graphs is Θ(n3). This is made clear by the
following graph:

6

n/3 vertices

It is clear that the distance between any pair of nodes from both the left and the right subgraph
is Θ(n), because any path must pass through the n

3 connecting nodes. There are n
3 nodes in the

left and n
3 nodes in the right subgraph, so there are n2

9 pairs with shortest paths of length at

least n
3 , so the output is at least of size n3

27 .

Instead, we consider these problems in a form where we only need to provide a witness or
successor between all vertices, which is the first vertex on the path. In most cases, this is
equivalent, because a subpath is also a solution for its end points. The path can be extracted
quickly by following the witnesses.

3.1 Witnesses for transitive closure of a directed graph

Consider a directed unweighted graph given by its adjacency matrix A. The adjacency matrix
of its transitive closure can be easily computed as T = A∞ = An, which only takes O(nω log n).
But can we also produce witnesses for the connected vertices such that we can construct a path
from all vertices to all reachable vertices?

An initial idea is to compute the witnesses for T = A · T , which we can do in Õ(nω) using our
algorithm. This accurately gives us the next vertex on a path. But it is not enough to reconstruct
the full paths, because such a path can contain a cycle and it is possible that we would just go
in a loop.

We could also just use the shortest paths in A, but that can only be done in O(n(ω+3)/2) for
(dense) directed graphs.

Instead, we transform the graph into one that doesn’t contain cycles. Find all the strongly
connected components in G = (V,E) and build a new graph G′ = (V ′, E′). Each vertex v′i of G′

is a strongly connected component in G with the vertices vi1, . . . , viri , and an edge is placed if
there was a edge between two vertices of the components, i.e. E′ = {(v′i, v′j) | ∃(vix, vjy) ∈ E}.
The edge (vix, vjy) is called the associated edge to (v′i, v

′
j).

The graph G′ doesn’t contain any cycles, so our naive algorithm gives a correct result for it. If
we can now find the witnesses within each strongly connected component, we can join the results
to get the final witnesses.

We can calculate the witnesses Ŵ within a strongly connected graph as follows:

Run a BFS from any vertex v0, giving a BFS tree T . For any edge (u, v) in T , we set Ŵ (u,w)
to v for any descendant w of v. These are obviously correct witnesses.

Now run a BFS from v0 on the same graph but with reversed edges. When visiting a node u
coming from v, then set Ŵ (u,w) to v for all w if it isn’t set yet.

This can be thought of as follows:

For the witness for u, v: if v is a descendant of u in T , then we have the witness from the first
(forward) BFS.

7

If not, then we go up one level in the second tree and try again. In the worst case, we go all the
way up to v0, but we have witnesses for all targets for v0 because we started the first BFS there.

We have the witnesses Ŵ within each SCC and W ′ for G′ to combine.

To calculate the witness from vik1 to vjk2 :

If i = j, i.e. the vertices are in the same strongly connected component, then we alread have
found the witness in Ŵ .

Otherwise, we need to traverse the components. Let k = W ′(v′i, v
′
j) be the next SCC on our

path. By definition of the witnesses, we know that (v′i, v
′
k) ∈ V ′, so there exists some associated

edge (vix, vjy) ∈ V . We then set

W (vik1 , vjk2) =

{
vky k1 = x

Ŵ (vik1 , vix) otherwise

This means that if we are at the associated edge to the next SCC, we will take it. Otherwise,
we move towards “our” vertex of the edge.

The algorithm takes O(n2) for calculating the strongly connected components, Õ(nω) for the
witnesses between them and O(n2) for merging the solutions, so Õ(nω) in total.

3.2 APSP for undirected unweighted graph

Seidel produced a subcubic algorithm that produces these witnesses from the adjacency matrix
and the distance matrix of a graph [2]. The principle is that for the first vertex on a shortest
path, it is a necessary and sufficient condition that the distance to the target decreases by exactly
one.

So given the adjacency matrix A and the distance matrix D of our graph, for the path between
i and j we want to find some successor k such that Aik = 1 and Dkj = Dij − 1.

We can determine the witness for all pairs i, j by computing the witness matrices W (d) for the

products A ·B(d) where B
(d)
ij = 1⇔ Dij = d− 1. Then Sij = W

(Dij)
ij .

The problem with this approach is that we need to solve the witness problem n times, which
already takes Ω(n3) time. The realization needed is that because the distances the distances to
a target j for the neighbours of i can only differ by at most 1, it suffices to find a k such that
Aik = 1 and Dkj ≡ Dij − 1 (mod 3).

Thus we redefine the witness matrices W (d) for the same product, but with B
(d)
ij = 1 ⇔ Dij ≡

d− 1 (mod 3). Now we have Sij = W
(Dij mod 3)
ij and only need to calculate the witnesses for the

three products with B(0), B(1), B(2).

Seidel also found a O(nω log n) algorithm for computing the distance matrix D given A.

Originally, the use of BPWM was proposed, giving an running time of O(nω log2 n) only in
the expected case. Using our deterministic algorithm for the boolean product witness problem
we can achieve almost the same complexity in all cases, only replacing the log2 n with some
polylogarithmic factor.

8

References

[1] Noga Alon et al. “Witnesses for boolean matrix multiplication and for shortest paths”. In:
Foundations of Computer Science, 1992. Proceedings., 33rd Annual Symposium on. IEEE.
1992, pp. 417–426.

[2] Raimund Seidel. “On the all-pairs-shortest-path problem”. In: Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing. ACM. 1992, pp. 745–749.

[3] J Naor and M Naor. “Small-bias probability spaces: efficient constructions and applications”.
In: Proceedings of the twenty-second annual ACM symposium on Theory of computing. ACM.
1990, pp. 213–223.

[4] Volker Strassen. “Gaussian elimination is not optimal”. In: Numerische mathematik 13.4
(1969), pp. 354–356.

[5] Don Coppersmith and Shmuel Winograd. “Matrix multiplication via arithmetic progres-
sions”. In: Proceedings of the nineteenth annual ACM symposium on Theory of computing.
ACM. 1987, pp. 1–6.

[6] François Le Gall. “Powers of tensors and fast matrix multiplication”. In: Proceedings of the
39th international symposium on symbolic and algebraic computation. ACM. 2014, pp. 296–
303.

9

