
Database Seminar Report - Similarity Search in High
Dimensions via Hashing[1]

Timothy Pescatore

April 21, 2018

1 Introduction
Problem: There are many applications which need to run a similarity search in order to find a
nearest neighbor. For example if one must search for a similar image in a database, based on its
content and not metadata like tags or descriptions. Such a search will end in comparing points
which have several dimensions. Indexing structures which solve this problem well in low dimension,
like a k-d tree, will lose their efficiency quickly as soon as the dimension increases. This is the
reason, why they often do not have better performance than a brute force linear search. However,
often it is sufficient to just find an approximate nearest neighbor. The paper [1] offers an algorithm
to find an approximate nearest neighbor through indexing the data set.

Overview: The paper [1] uses s hashing approach for the indexing. This is done in two stages.
The first hashing function is responsible for the indexing structure of the similarity search, the
second one is a basic hash into a smaller table, so space will not be wasted. The difference from
the first hash to a basic hash is that, the similarity of two points is closely related to the prob-
ability that they will be hashed into a same bucket. The technique is based on randomness and
will therefore not always return the exact nearest neighbor but an approximate one, which for
us, is good enough. We will do this hashing several times to increase the probability that a near
neighbor will be in the same bucket as the query point. This way we will still have a set of points
over which we need to do a linear search, but much smaller than the original set.

2 Preliminaries
We use ldp to denote the Euclidean space <d under the lp norm, i.e., when the length of a vector
(x1, ..., xd) is defined as (|x1|p + ... + |xd|p)1/p. Further, denote dp(p, q) = ||p − q||p the distance
between the points p and q om ldp. Hd is used to denote the Hamming metric space of dimension
d, which is the set of all binary strings of length d. The distance function dH(p, q) denotes the
Hamming distance, i.e., the number of bits on which p and q differ.

The nearest neighbor search problem is defined as follows:

Definition 1 (Nearest Neighbor Search(NNS)) Given a set P of n objects represented as
points in a normed space ldp, preprocess P so as to efficiently answer queries by finding the point
in P closest to a query point q.

The definition generalizes naturally to the case where we want to return K > 1 points. Specifically,
in the K −NearestNeighborsSearch(K −NNS), we wish to return the k points in the database
that are closest to the query point.
With the hash function discussed in this report, we will not solve the NNS-problem, but we want
to find an approximate nearest neighbor with a small variance ε ≥ 0:

Definition 2 (ε-Nearest Neighbor Search (ε-NNS)) Given a set P of points in a normed
space ldp, preprocess P so as to efficiently return a point p ∈ P for any given query point q, such
that d(q, p) ≤ (1 + ε)d(q, P), where d(q, P) is the distance of q to its closest point in P .

1

3 The Algorithm
In this section we present locality-sensitive hashing (LSH). This technique was originally intro-
duced by Indyk and Motwani [2]. The new algorithm is an improved version, because it is more
natural and guarantees a better running time.

For the data are two assumptions made:

1. the distance is defined by the l1 norm,

2. all coordinates of points in P are positive integers.

The first assumption is not very restrictive, since they observed in the experiments that a nearest
neighbor of an average query point computed under the l1 norm was also an ε-approximate neigh-
bor under the l2 norm with an average value of ε less than 3%. As for the second assumption, the
rounding error can be made arbitrarily small.

Now we can start with the algorithm:
Let C be the largest coordinate in all points in P . We can embed P into the Hamming cube Hd′

with d′ = Cd, by transforming each point p = (x1, ..., xd) into a binary vector v(p), which means
that that a transformed x is a sequence of x ones followed by C − x zeroes.

Example:

We chose P =
{
(1, 1), (5, 4), (1, 2)

}
Here d = 2, C = 5, hence d′ = Cd = 10

The transformation of p1 into a binary vector is:

v(p1) = 10000, 10000→ 1000010000
v(p2) = 11111, 11110→ 1111111110
v(p3) = 10000, 10000→ 1000011000

Each coordinate becomes a string with 5 digits, let us call them bits since they are either 1s or
0s. These strings are always ordered, starting with x ones followed by C - x 0s. Afterwards we
concatenate all coordinates from each point and get 10 bit strings. Keep in mind that the first to
the 5th bits correspond to the first coordinate, and the 6th to the 10th bits correspond to the second
coordinate.

To measure the distance between two points in the Hamming space we count the bits which dif-
fer when comparing both strings.

Fact 1: For any pair of points p, q with coordinates in the set
{
1...C

}
, d1(p, q) = dH(v(p), v(q))

This means that the actual distance from the l1-norm is preserved in the Hamming space, so
we can still identify a nearest neighbor. In the actual implementation it will not be actually nec-
essary to convert the data into binary string. It could be expensive when C is large. But we use
the transformation to illustrate how the hashing works.

3.1 The Hashing
First we chose l subsets I1, ..., Il of

{
1, ..., d′

}
. Each subset contains k < d′ elements which are

sampled uniformly at random with replacement. The proper choice of l and k will be discussed
later. Let p|I denote the projection of vector p on the coordinate set I, i.e. we compute p|I by
selecting the ith bit from the transformation of p, where i ∈ I .

2

For the sake of example we chose k = 3 and l = 2; We get two subsets with 4 random num-
bers of

{
1...10

}
recall d′ = 10

I1 =
{
2, 4, 5

}
, I2 =

{
3, 6, 10

}
.

Let us take p1(1, 1) and project it on the coordinate sets I1 and I2:

Transformed point v(p1) 1 0 0 0 0 1 0 0 0 0
Position in string 1 2 3 4 5 6 7 8 9 10

p1|I1 = 020405 : 000

p1|I2 = 0316010 : 010

Let gj(p) = p|Ij for j = 1, ..., l be the bucket we store the hashed point in. For the preprocessing,
we store each p ∈ P in the bucket gj(p) = p|Ij for j = 1, ..., l. As the total number of buckets
may be large, we compress the buckets by resorting to standard hashing. For the sake of exam-
ple we will not do this second step of hashing, since it is not essential for the illustration of the LSH.

Algorithm 1: Preprocessing
Input: A set of points P , l(number of hash tables)
Output: Hash tables Ti, i = 1, ..., l
Foreach i = 1,...,l
Initialize hash table Ti by generating a random hash function gi() using the subset Ii
Foreach i = 1,...,l
Foreach j = 1,...,n
Store point pj on bucket gi(pj) of hash table Ti

As mentioned before, the transformation of each point into the Hamming space could be expensive
when C is large. To avoid this transformation there exists an auxiliary step.
Let the elements of I corresponding to the ith coordinate of p, I|i for i = 1...d, be in sorted order.
When projecting p on I|i, one will get monotone strings of say oi ones followed by C − oi zeroes.
Here oi is equal to the number of elements in a subset which are smaller or equal to the ith co-
ordinate of p. To represent the projection of p, it is sufficient to compute oi for i = 1...d. Let us
demonstrate it on an example:

Looking at I2 there are 2 subsets each corresponding to one of the coordinates. Remember that
the first 5 bits correspond to the first coordinate, while the 6th to the 10th bits correspond to
the second coordinate.

I2

{
I|1 =

{
3
}
, I|2 =

{
6, 10

}}
Now keep in mind, that the subsets are ordered and the bits corresponding to a specific
coordinate are ordered as well, since they are x 1s , x equals the corresponding coordinate,
followed by C − x 0s. Counting the elements smaller than x from the subset, we know how
many elements point to a "1"-bit and how many points to a "0"-bit. With the point p1(1, 1)
we get:

3

I|1
{
1 < 3

}
→ 0: Both elements are bigger than the corresponding coordinate

I|2
{
6,≤ (1+ 5) <, 10

}
→ 10: We add 5 to the value of the coordinate, since the corresponding

bits start after the 5th bit

This results in finding the last element in subset which is smaller or equal to the corresponding
coordinate and then counting the elements.

This auxiliary step can be done with a binary search in logC, since we only need to split the
subsets into two parts. So the total time needed to compute the hash function is O(d logC).

Finally to query for a point, one does the exact same hash, but instead of storing the point
into the resulted buckets, we give back all points found in these buckets or stop when we found 2l
points. The reason why exactly 2l will be discussed in the analysis. The last step is to do a linear
search over the encountered points.

Algorithm 2: Approximate Nearest Neighbor Query
Input: A query point q, K (number of approximate nearest neighbors)
Access To hash tables Ti, i = 1, ..., l generated by the preprocessing algorithm
Output: K (or less) appr. nearest neighbors
S ← ∅
Foreach i = 1,...,l
S ← S ∪

{
points found in gi(q) = bucket of table Ti

}
Return the K nearest neighbors of q found in set S /*Can be found with linear search*/

Now let’s look at a complete example to illustrate the procedure which is needed to do this locality
sensitive hash. Let us query for the point q(2, 1).

Since we have a very small data set for the sake of example we will hash only in two buckets
per table. Each table has 1 bucket B1 for hashes, smaller than 1002 and another one B2 for all
hashes greater or equal to 1002.

Recall that I1
{
2, 4, 5

}
, I2
{
3, 6, 10

}
, P =

{
p1(1, 1), p2(5, 4), (1, 2)

}
Preprocessing:
g1(p1) = 000→ I1B1

, g2(p1) = 010→ I2B1

g1(p2) = 111→ I1B2 , g2(p2) = 110→ I2B2

g1(p3) = 000→ I1B1 , g2(p1) = 010→ I2B1

After preprocessing we get the following buckets filled with points

Bucket I1B1
I1B2

I2B1
I2B2

Points stored p1 p2 p1 p2
p3 p3

Query:
g1(q) = 100→ I1B2 , g2(q) = 010→ I2B1

So the query would return I1B2
and I2B1

which contain p1, p2 and p3. This is a good result,
because the near neighbors p1 and p3 are both contained in the result set. The point p2 is also
in the result set, but just because we hashed only into two buckets. Even though this point is far
away, it is not bad, since we do a linear search as a next step, to find the K nearest neighbor from
the result set.

4

The data from the example is strongly reduced since the number of points is very small, the
dimension is low and the value of k and l were adapted for illustration reasons. Now let us look
at the analysis to answer open questions, like why this actually works or how many points will be
returned.

4 Analysis of LHS
The principle behind the LSH is that the probability of collision of two points p and q is closely
related to the distance between them. Thus the bigger the distance between a point and another
one, the lower the probability they will be hashed into the same bucket.

Definition 3
A Family H of functions from S to U is called (r1, r2, p1, p2)−sensitive for D(·,·) if for any q, p ∈ S

• if p ∈ B(q, r1) the PrH[h(q) = h(p)] ≥ p1,

• if p 6∈ B(q, r2) the PrH[h(q) = h(p)] ≤ p2

In order for a locality-sensitive family to be useful, it has to satisfy the inequalities p1 > p2
and r1 < r2.

This means, that we want a higher probability (p1) if a point is near to our query point and
it will have the same hash result as the query point than, when (p2) it is out of our "query area"
and the hash result would be the same.

Fact 2 Let S be Hd′ (the d’-dimensional Hamming cube) and D(p, q) = dH(p, q) for p,q ∈
Hd′ . Then for any r, ε > 0, the family Hd′ =

{
hi : hi((b1, ..., bd′))

}
= bi, for i = 1, ..., d′ is

(r, r(1 + ε), 1− r
d′ , 1−

r(1+ε)
d′)-sensitive

Hence, r, ε and d give p1 and p2 it is guaranteed that p1 > p2 and also r1 < r2.

We can now show that the LSH algorithm can be used to solve what is called the (r, ε)-Neighbor
problem: determine whether there exists a point p within a fixed distance r1 = r of q, or whether
all points in the database are at least a distance r2 = r(r, ε) away from q. Denote the set of all
points p′ 6∈ B(q, r2) by P ′. The algorithm solves this problem correctly when the following two
properties hold:

P1 If there exists p∗ such that p∗ ∈ B(q, r1), then gj(p∗) = gj(q) for some j = 1, ..., l.

P2 The total number of blocks pointed to by q and containing only points from P ′ is less than cl.

Assume that H is a (r1, r2, p1, p2)-sensitive family; define ρ = ln 1/p1
ln 1/p2

. The correctness of the
LSH algorithm follows from the following theorem.

Theorem 1 Setting k = log1/p2(n/B) and l = (n/B)ρ guarantees that properties P1 and P2
hold with probability at least 1

2 −
1
e ≥ 0.132.

Remark 1 Note that by repeating the LSH algorithm O(1/δ) times, we can amplify the proba-
bility of success in at least one trial to 1− δ, for any δ > 0.

Proof: Let property P1 hold with probability P1, and property P2 hold with probability P2.
We will show that both P1 and P2 are large. Assume that there exists a point p∗ within distance
r1 of q. Set k = log1/p2(n/B). The probability that g(p′) = g(q) for p′ ∈ P − B(q, r2) is at most
B
n . Since,

pk2 = p
log1/p2

(n/B)

2 = (1/p2)
− log1/p2

(n/B) = (1/p2)
log1/p2

(B/n) = B
n

The expected number of blocks allocated for all gj which contain exclusively points from P ′ does

5

not exceed 1. The expected number of such blocks allocated for all gj is at most l. Thus, by the
Markov inequality [3], the probability that this number exceeds 2l is less than 1/2. If we choose
c = 2, the probability that the property P2 holds is P2 > 1/2. Consider now the probability of
gj(p

∗) = gj(q). Clearly, it is bounded from below by

pk1 = p
log1/p2

n/B

1 = (n/B)
− log1/p1
log1/p2 = (n/B)−ρ.

By setting l = (nB)ρ, we bound from above the probability that gj(p∗) 6= gj(q) for all j = 1, ..., l by
1/e. Thus the probability that one such gj exists is at least P1 ≥ 1−1/e. Therefore, the probability
that both properties P1 and P2 hold is at least 1 − [(1 − P1) + (1 − P2)] = P1 + P2 − 1 ≥ 1

2 −
1
e .

The theorem follows. �

In the following we consider the LSH family for the Hamming metric of dimension d′ as speci-
fied in Fact 2. For this case, we show that ρ ≤ 1

1+ε assuming that r < d′

lnn ; the latter assumption
can be easily satisfied by increasing the dimensionality by padding a sufficiently long string of 0s
at the end of each point’s representation.

Fact 3 Let r < d′

lnn . if p1 = 1− r
d′ and p2 = 1− r(1+ε)

d′ , then ρ = ln 1/p1
ln 1/p2

≤ 1
1+ε .

Proof: Observe that

ρ = ln 1/p1
ln 1/p2

=
ln 1

1−r/d′

ln 1
1−(1+ε)r/d′

= ln(1−r/d′)
ln(1−(1+ε)r/d′) .

Multiplying both the numerator and the denominator by d′

r , we obtain:

ρ =
d′
r ln(1−r/d′)

d′
r ln(1−1(1+ε)r/d′)

= ln(1−r/d′)d
′/r

ln(1−/1+ε)r/d′)d′/r = U
L

In order to upper bound ρ, we need to bound U from below and L from above; note that both U
and L are negative. To this end we use the following inequality[3]:

(1− (1 + ε)r/d′)d
′/r < e−(1+ε)

and

(1− r
d′)

d′/r > e−1(1− 1
d′/r).

Therefore,

U
L <

ln(e−1(1− 1
d′/r))

ln e(1+ε)
=
−1+ln(1− 1

d′/r)

−(1+ε) = 1/(1 + ε)−
ln(1− 1

d′/r
1+ε < 1/(1 + ε)− ln(1− 1/ lnn)

where the last step uses the assumption that ε > 0 and r < d′

lnn . We conclude that,

nρ < n1/(1+ε)n− ln(1−1/ lnn) = n1/(1+ε)(1− 1/ lnn)− lnn = O(n1/(1+ε)) �

5 Conclusion
In this paper [1] a significant improvement of the time is achieved. So the new LSH algorithm
guarantees sublinearity with O(dn1/(1+ε)). This algorithm can be used in many applications, be-
cause the approximate-nearest neighbor search might provide a higher quality-efficiency trade-off.
The improvement is achieved through a simple hashing technique, which is based on randomness
to achieve locality-sensitivity. Additionally the hashing function is nicely illustrated in the paper
by an interim step, which eventually is avoided in the implementation through an auxiliary step.

6

References
[1] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via

hashing. In Vldb, volume 99, pages 518–529, 1999.

[2] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards
removing the curse of dimensionality. Theory of computing, 8(1):321–350, 2012.

[3] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman & Hall/CRC,
2010.

7

	Introduction
	Preliminaries
	The Algorithm
	The Hashing

	Analysis of LHS
	Conclusion

