
Manuscript on Stable Distributions,

Pseudorandom Generators,

Embeddings, and Data Stream

Computation

Introduction

One problem with big data streams is that any computation, which uses the entire data set, would
need a large amount of bits and could not be handles by a single computer within reasonable time.
On solution would be to let multiple computers work on the same calculation at the same time and
then put together the calculations of each computation. We could also try to use only a part of the
data set, that represents the data well enough or ad additional calculations to make sure the partial
data is representative of the entire data set. But how can we manipulate the partial data so that
it will represent the complete data set well? And how much bits would the calculation still need?
If we do nothing and always use the entirety of the data, we have a linear relationship between the
number of tuples and bits needed for the computation and for the storage. The ultimate (so far
unattainable) goal would be a logarithmic correlation. Thus, we are in search of an algorithm that
allows us to build a satisfactory approximation of a desired calculations, which uses less bits than
without the algorithm.

In this paper Indyk finds an algorithm that satisfies these terms for p ∈ (0, 2]. His proposed
computation only uses O(log n/ε2) words of storage. Previous scholars have also come up with
algorithms for this problem, but not for all p ∈ (0, 2]. To do so Indyk picks up on Feigenbaum’s
usage of sketches to approximate the sum of all attributes of all integers and generalizes an earlier
algorithm of Wasserman and Blum, 1997, which worked for the case p=2. Before that we take a
quick detour and have a look at the algorithm for p = 2 that Alon et al., 1996, came up with. First,
I will give you a few definitions and some background on Alon et al. and Feigenbaum et al. and
then dig into the main arguments of Indyk’s paper.

Definition 1. A distribution is p-stable if for all X,Y,Z random variable drawn from this distribu-
tion, aX + bY and (|a|p + |b|p)1/pZ are identically distributed.

Example 2. Gaussian (normal) distribution is p-stable. To show this, let a ∈ R
n, and X1, ...,Xn be

i.i.d. samples from N (0, 1). Then
∑n

i=1 aiXi is a linear combination of the i.i.d. Gaussian variables
and is itself Gaussian. As a sum of independent Gaussians is a Gaussian as well. To proof that the

1

Luise Arn Databased Systems FS2018

Gaussian distribution is 2-stable, we will look at the calculation of the mean and the variance.

E

[

n
∑

i=1

aiXi

]

=
∑

viE[gi] = 0,

E





(

n
∑

i=1

aiXi

)2


 =
∑

i 6=j

E [aiajXiXj] +
n
∑

i=1

E
[

a2iX
2
i

]

=
∑

i 6=j

aiajE[Xi]E[Xj] +
∑

i

a2i = 0 + ‖a‖22.

Thus the linear combination
∑n

i=1 aiXi is N (0, ‖a‖22) and therefore identically distributed as a
standard Gaussian random variable multiplied by the square root of the variance, i.e. by ‖a‖2 =
(
∑n

i=1 a
2
i

)1/2
.

The main object of the stream computations consists of the data stream itself, which we could
map in a form of a matrix with two columns for better understanding. In reality the algorithm sees
it as a sequence of pairs < coordinate, update >.

Definition 3. A stream S of data consists of pairs (i, a), where i is the “identifier” and a is the
“attribute”; i ∈ [n] = {0, . . . , n− 1}, a ∈ {−M,−M + 1, . . . , 0, . . . ,M − 1,M}.

Example 4. An example of a stream is the following object:

S =









1 10
1 20
2 12
2 23









,

where i represents a specific person and a this person’s bank account balance(s). Here we would see
person 1 and person 2, where person 1 has 10 CHF on their daily allowance account and 20 CHF
savings account and person 2 has 12 CHF and 23 CHF.

Definition 5. The lp-norm
1 of the stream S is defined by Lp(S) = ‖V (S)‖p, where V (S)i =

∑

(i,a)∈S a.

Example 6. Referring to Example 4, the l1-norm of the stream can be computed as follows:

V (S)1 = 10 + 20 = 30

V (S)2 = 12 + 23 = 35

L1(S) = 30 + 35 = 65,

The problem is that the exact computation of Lp(S) is expensive in space needed (O(M)). Are
there more efficient ways? Or even simple algorithms to approximate the quantity? The idea is to
generate a random vector r that follows a p-stable distribution. It is then known that for a vector
u ∈ R

n, r · u ∼ ‖u‖p such that we can approximate Lp(S) = ‖V (S)‖p by r · V (S).
As in sub-linear space finding a deterministic and/or exact algorithm to solve this problem is

proven to be impossible, we will have to settle a randomized approximation algorithm with δ, ε > 0.
Where we want to keep the decrease in the likelihood of our approximation being close to the real
value, 1 − δ, and the multiplicative approximation, 1 + ε, as small as possible. But keep in mind
that, the smaller δ and ε are, the bigger k will get and so will the computing effort.

1The function ‖ · ‖ is a norm if the following three conditions are satisfied. (1) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if
x = 0; (2) ‖αx‖ = |α|‖x‖; (3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

2

Luise Arn Databased Systems FS2018

Previous Findings

Alon et al. 1996, proposed a randomized scheme for approximating L2(S) using O(1/ε2) integers,
each O(log(n+M))-bits long.

Feigenbaum et al. 1999, proposed a different algorithm for estimating L1(S). Their algorithm
works in a restricted setting, where for each i (identifier), the stream contains at most two pairs
(i, a), i.e. only two attributes to i where one is positve and one negative. This should be overcome
by the algorithm presented in this paper. There are two ways to view their result:

• Assume two streams Sr (red) and Sb (blue) containing at most one attribute to each index
(else they are separated in red and blue).

• Compute sketches C(Sr) and C(Sb) of small size such that Lp(Sr, Sb) =
∑n

i=1

∣

∣

∣

∑

(i,a)∈Sr
a−∑(i,a)∈Sb

a
∣

∣

∣

can be quickly evaluated from C(Sr) and C(Sb) by applying some function F .

In Alon et al., they proceed the following way:

• Draw a random vector r from a 4-wise independent family.
• Compute s = V (S) · r (determinant product).
• They showed that the second moment of s is equal to L2(S)

2 = ‖V (S)‖22.
• Advantage: 4-wise independent family
• Disadvantage: Only works for p = 2 and it is not clear how to generalize to Lp(S), p < 2.

In Feigenbaum et al. (Dimension Reduction), the streams Sr and Sb can be viewed as points in
n-dimensional space and Lp(Sr, Sb) is the lp-distance between the points. Then the sketch operator
C is C : lnp → Ci maps the points into the “sketch space” such that

• each point in Ci can be described using only m numbers,
• Lp(Sr, Sb) ≈ F (C(Sr), C(Sb)), for a function F.

But (Ci, F) is not a normed space, i.e. F not a norm. E.g. for l1, F ((x1, ..., xm), (y1, ..., ym)) =
median(|x1 − y1|, ..., |xm − ym|). To overcome this, we observe that for l2, that if we modify our
algorithm by replacing the median by ‖ · ‖2, the accuracy of the estimation does not change.

Preliminaries

Definition 7. A distribution D (e.g. Gaussian/Cauchy) over R is p-stable if for all random
variables X1, ...,Xn drawn from D, the linear combination

∑n
i=1 aiXi is identically distributed as

(
∑n

i=1 |ai|p)
1/pX, where X is also drawn from D.

Lemma 8. For all p ∈]0, 2], there exists a p-stable distribution D.

Example 9. The Cauchy distribution DC defined by the density fC(x) = 1/π1/(1+x2) is 1-stable.
The Gaussian (normal) distribution DG defined by the density fG(x) = 1/

√
2πe−x2/2 is 2-stable.

Generally, a random variable of a p-stable distribution can be generated by

X =
sin(pΘ)

cos(Θ)1/p

(

cos(Θ(1− p))

− log(r)

)
1−p

p

,

where Θ and r follow an uniform distribution over the intervals [−π/2, π/2] and r over [0, 1], respec-
tively.

3

Luise Arn Databased Systems FS2018

Approximation of the Lp-Norm for data streams

Let S be a data stream containing pairs (i, a), i ∈ [n] and a ∈ {−M, ...,M}. An algorithm for
approximating L1(S) with restrictions:

• Assumes infinite precision of the calculations, i.e. uses arithmetic operations on R and not on
computed numbers.

• Although it uses only O(1/ε2) words of storage, it performs random access to as many as
Θ(n) random numbers. Thus, a natural implementation of the algorithm would request Θ(n)
storage!

For these restrictions ways to remove them will be proposed and proven by Indyk later in the
Paper. So, let as take a look at an ideal algorithm, where l = c/ε2 log(1/δ) for a constant c, which
will be specified later. The algorithm proceeds as follows:

1. Initialize n · l independent random variables Xj
i , i ∈ [n] and j ∈ [l], drawn from the Cauchy

distribution. Set Sj = 0, for j ∈ [l].
2. For each new pair (i, a) ∈ S, perform Sj = Sj + aXj

i , for all j ∈ [l].
3. Return the median of (|S0|, ..., |Sl−1|) as result A(S) of the algorithm A.

The correctness of the algorithm is given by the following. Let ci =
∑

(i,a)∈S a such that L1(S) =

C =
∑n

i=1 |ci|.
Claim 10. Each Sj has the same distribution as CX, where X is a random variable drawn from
the Cauchy distribution (because the Cauchy distribution is 1-stable).

Lemma 11. Let X be Cauchy distributed. Then, median(|X|) = 1. Therefore, median(|X|) = a,
a > 0 (calculate on basis of Cauchy density).

Claim 12. For all distributionsD on R with cumulative distribution function F , take l = c/ε2 log(1/δ)
independent samples X0, ...,Xl−1 of D, and also let X = median(X0, ...,Xl−1). Then, for suitable
C,

P [F (X) ∈ [1/2 − ε, 1/2 + ε]] > 1− δ,

which is called the Chernoff-bound.

Lemma 13. Let F be the cumulative distribution function of |X|, where X is Cauchy distributed.
Let z > 0 such that F (z) ∈ [1/2 − ε, 1/2 + ε], then for ε small enough, z ∈ [1 − 4ε, 1 + 4ε]. (This
follows from the boundedness of F−1(x) = tan(xπ/2) around point 1/2).

Theorem 14. The “ideal” algorithm correctly estimates L1(S) up to the factor 1±ε with probability
of at least 1− δ, i.e.

P [A(S) ≥ (1− ε)L1(S)] ≥ 1− δ

P [A(S) ≤ (1 + ε)L1(S)] ≥ 1− δ

Bounded Precision

So far we worked under the assumption that our numbers have infinite precision. But we know that
computer generated and computer stored numbers are limited in their precision. Since the attributes
in data streams are integers, we only have to take a closer look at the random variables Xj

i . We
need to show that the computed numbers are precise enough to represent O(log(n +M)) bits.

Indyk shows that ∀i, j a general approximation X̃j
i to each Xj

i exists so that for each of them

|X̃j
i −Xj

i | ≤ α with probability 1− p applies, only using O
(

log
(

1
p +

1
α

))

bits.

4

Luise Arn Databased Systems FS2018

Randomness Reduction

The remaining issue is that we still need O(n) memory words to make sure that if we access a
specific Xj

i multiple times, its value is always the same. Indyk suggest the employing the following
algorithm to avoid this.

As R0 is a seed2, we can use it to generate the matrix to access a specific Xj
i multiple times. For

example, if we wanted to generate it column by column we could set the first few entries of the first
column according to R0 and the next few entries according to R1 and so on. Given i and j, we can
easily find which bit of which Rt is used to generate the entry aij. Hence, we are able to re-compute
the ith column of the matrix simply by starting the pseudorandom generator all over from R0 and
compute the appropriate Rt ’s for the desired column. This as described, maybe need a lot of time,
as we need to make about nk steps of the pseudorandom generator for a typical column, but this
algorithm needs practically no extra memory.

Computing L2(S)

So far, we tried to estimate L1(S). Now, we try to compute L2(S), where p = 2. Sketch of the stream
computed by y = AV (S), with an implicitly defined matrix A and L2(S) = ‖V (S)‖2 is estimated
by ‖y‖2. In other words, the algorithm provides a streaming version of the dimensionality theorem
by Johnson and Lindenstrauss. The first algorithm is obtained by replacing the Cauchy distribution
by the Gaussian distribution. As before, the final estimator is a median of |S0|, ..., |Sl−1|. Lemma
13 still holds since Gaussian density is differentiable around the median and therefore bounded.
Moreover, Gaussian random variable can be generated from uniform distribution. Then, one can
verify that claim 12 holds with B = 1/pO(1).

Theorem 15. There exists an algorithm such that for all 0 < ε, δ < 1, L1(S) or L2(S) is estimated
correctly up to the factor (1± ε) with probability of at least 1− δ − 1/n and uses

• O(log(Mn/δε) log(1/δ)/ε2) bits of random access storage,
• O(log(Mn/δε) log(n/δε) log(1/δ))/ε2) random bits,
• O(log(n/δε) log(1/δ))/ε2) arithmetic operations per pair (i, a) ∈ S.

For a more elegant approach, we estimate L2(S) by the 2-norm ‖ · ‖2 instead of the median. The
modified algorithm returns ‖(S0, ..., Sl−1‖2 as estimation of L2(S). The correctness of the algorithm
is given by the following two contributions. Indyk et al., for truly independent Xj

i , the algorithm is
correct. And on the other hand, if the random variables are generated using Nisan (as previously
done), the resulting different in the probability of correctness is negligible (can be shown in the same
way as for the median-based algorithm).

Theorem 16. There exists an algorithm such that for all 0 < ε, δ < 1, an implicit representation
of the k×n-matrix A, where k = O(log(1/δ)/ε2) can be obtained satisfying the following properties.

• For each (i, j), the algorithm returns A[i, j] in O(log(n)) arithmetic operations.
• The algorithm uses O(log(Mn/δε) log(n/δε) log(1/δ))/ε2) bits of space (same as before).
• Each entry of A can be represented using O(log(n/δε)) bits.
• For all x ∈ R

n, P [‖Ax‖2 − ‖x‖2 > ε‖x‖2] ≤ δ.

2The ”random” numbers used in actual computations are not random but pseudorandom. One starts with an
integer R0 in range from 0 to M − 1, where M is a large number. This R0 is called the seed and we may think of it
as truly random.

5

Luise Arn Databased Systems FS2018

This means that the dimensional reduction is contingent on the chosen ε and δ.

For general p ∈]0, 2], the algorithm becomes more involved mainly because no explicit formulas
are known for the densities and the distribution functions. However, one can generate p-stable
random variables as in Example 9 in the Preliminaries.

Lemma 17. Let F be a cumulative distribution function of a random variable |Z|, where Z is drawn
from a p-stable distribution. Then, for some constants c1, c2, c3 > 0 and for all p, ε > 0, there exists
t ∈ [c1, c2] such that

∣

∣

∣

∣

F−1

(

t− ε

c3

)

− F−1

(

t+
ε

c3

)∣

∣

∣

∣

≤ ε

Given the Lemma, we can estimate Lp(S) by taking the t-quantile (instead of the median) of
|S0|, ..., |Sl−1|. Note that, unlike for p = 1, 2, the value of t depends on ε.

Theorem 18. For all p ∈]0, 2[and for all 0 < ε, δ < 1, there exists a non-uniform algorithm that
estimates Lp(S) up to a factor 1± ε with probability 1− δ and uses

• O(log(Mn/δε) log(1/δ)/ε2) bits of random access storage,
• O(log(Mn/δε) log(n/δε) log(1/δ))/ε2) random bits,
• O(log(n/δε)) arithmetic operations per pair (i, a) ∈ S, compared to O(log(n/δε) log(1/δ))/ε2)
operations for p = 1, 2.

Dimensionality Reduction For L1

We show how to obtain the sketch function C. We describe C in terms of dimensionality reduction
of ln1 , the adaption to the stream model can be done as in the previous section.

Theorem 19. For all 1/2 ≥ ε, δ > 0, with ε > γ > 0, there exists a probability space over linear
mappings f : ln1 → l1k, where k = log(1/δ)1/(ε−γ)/c(γ), for a function c(γ) > 0 depending only on γ,
such that for all p, q ∈ ln1 ,

P [‖f(p)− f(q)‖1 ≤ (1 + ε)‖p − q‖1] ≤ δ,

P [‖f(p)− f(q)‖1 ≥ (1− ε)‖p − q‖1] ≤
1 + γ

1 + ε
.

6

