
Seminar on Algorithms for Database Systems - Student Report

Dimensionality Reduction Techniques for Proximity Problems [1]

Dhivyabharathi Ramasamy

1 Introduction

In the paper “Dimensionality Reduction Techniques for Proximity Problems” [1], Dr. Piotr Indyk* has

proposed approximation algorithms for several proximity problems in high dimensional spaces. Here,

we will discuss two proximity problems. First, I will explain what a proximity problem is and then, the

need for them. Then, we will look at the technique of dimensionality reduction using hashing in

Hamming spaces as proposed by Indyk et. al. and proceed to discuss the theorem for reduction of

Furthest Neighbour Search which improves in time complexity when reduced to Nearest Neighbour

Search problem along with the proof.

Hereafter, the term “the author” is used to refer to Dr. Piotr Indyk.

Proximity Problems:

Proximity problems is a class of computational geometric problems which involve estimation

of distances between geometric objects(in our case, points in a d-dimensional space). Closest pair

problems, furthest neighbour search(FNS) and nearest neighbour search(NNS) problems are all a

subset of these problems. They are used in similarity search or clustering in high dimensional spaces.

These have high relevance in our work today for applications in areas like Information retrieval, image

and video databases, data mining and pattern recognition.

Focus of the seminar:

The topics that we will discuss here are: Nearest Neighbour Search(NNS) – Approximate Nearest
Neighbour Search(c-NNS) – Locality Sensitive Hashing(LSH) – Furthest Neighbour Search(FNS)

2 Nearest neighbor problem:

First, let’s think of a simple case of nearest neighbour application.

Application:

One of the most important real-world application of nearest neighbour search is recommender
systems. In online-commerce, it is widely used for user convenience and to bring the store, benefits.
The aim of recommender systems is to find the most accurate item the user would show higher
preference to.

Let’s consider a simple example containing few users and items. In the Figure 0[4], we see that user1-
user3 have similar likes. This means, those items rated highly by user3 could be the interesting item
that can be recommended to user1. The strategy is “The friend of my friend is my friend”. This brings
multiple benefits for both the user and the store.

user1 item1

user2 item2 user4

user3 item3

Figure 0: Recommender Universe

Let’s look at the definitions of NNS, c-NNS and FNS.

Definition 1 (Nearest Neighbour Search Problem(NNS))

Given a set of points 𝑃 = {𝑝1, … 𝑝𝑛} from some metric space (𝑋, 𝑑), we have to construct a data

structure, which given a query point 𝑞 ∈ 𝑋, finds the nearest neighbour of 𝑞 ∈ 𝑋 in 𝑝 ∈ 𝑃 based on

some distance metric (here, we follow Hamming metric).

The quality and usefulness of the algorithms are determined by the time complexity of queries as well
as the space complexity of any search data structures that must be maintained. As the dimensions
grow, it is difficult to achieve such an efficient data structure and search time. This is in general
expressed as Curse of dimensionality. We can deal with this in an alternative way, by solving an
approximate problem. It is always not necessary to solve exact NNS. It is sometimes enough to find an
approximate nearest neighbour if the notion of distance is somehow accurately captured.

Definition 2 (c-Nearest Neighbour Search Problem(c-NNS))

Given a set 𝑃 = {𝑝1, … 𝑝𝑛} of points from some metric space (𝑋, 𝑑), devise a data structure which,

given any query 𝑞 ∈ 𝑋, produces a point 𝑝 ∈ 𝑃 such that 𝑑(𝑞, 𝑝) ≤ 𝑐 𝑚𝑖𝑛𝑝′∈𝑃𝑑(𝑞, 𝑝′).

Definition 3 (c-Furthest Neighbour Search Problem(c-FNS))

Given a set 𝑃 = {𝑝1, … 𝑝𝑛} of points from some metric space (𝑋, 𝑑), devise a data structure which,

given any 𝑞 ∈ 𝑋, produces a point 𝑝 ∈ 𝑃 such that 𝑑(𝑞, 𝑝) ≥ 1/𝑐 𝑚𝑎𝑥𝑝′∈𝑃𝑑(𝑞, 𝑝′).

Figure 1: Approximate Neighbour Search Visualization

 (Left: c-Approximate NN, Right: 1/c-Approximate FN)

r
r/c

cr
r

q q

3 Locality Sensitive Hashing(LSH)

One of the main technique used in approximation methods is LSH. The main idea here is to use hash

functions such that probability of collision is much higher for points close to each other than the points

that are far apart. Algorithms that support the approximate nearest neighbor search include locality-

sensitive hashing. Next, we will see the definition and a small proof of LSH with a focus on time and

space complexity.

Definition 4([2]) (Locality Sensitive Hashing)

A family ℋof d hash functions of the form ℎ: 𝑃 → 𝑈 is called {𝑟1, 𝑟2, 𝑝1, 𝑝2}-sensitive for 𝐻𝑑 if for any

𝑞, 𝑝 ∈ 𝑆

• If 𝑑𝐻(𝑝, 𝑞) ≤ 𝑟1 then Prℋ[ℎ(𝑞) = ℎ(𝑝)] ≥ 𝑝1.

• If 𝑑𝐻(𝑝, 𝑞) > 𝑟2 then Prℋ[ℎ(𝑞) = ℎ(𝑝)] ≤ 𝑝2.

Where 𝑑𝐻 is Hamming Distance, 𝑟1 is 𝑟 and 𝑟2 is 𝑐𝑟.

Let’s define 𝑐 = (1 + 𝜀) for a c-NNS problem, where 𝜀 is the approximation factor.

Fact 1: Let 𝑃 = 𝐻𝑑and d(𝑝, 𝑞) be the Hamming metric for 𝑝, 𝑞 ∈ 𝐻. Then for any 𝑟, 𝜀 > 0, the family

ℋ = {ℎ𝑖: ℎ𝑖((𝑏1, 𝑏2, … 𝑏𝑑)) = 𝑏𝑖, 𝑖 = 1,2, … 𝑛} is (𝑟, 𝑟(1 + 𝜀), 1 −
𝑟

𝑑
, 1 −

𝑟(1+𝜀)

𝑑
)-sensitive.

Let’s define a family of d hash function ℋ𝑑. Each hash function is of the form ℎ(𝑖): 𝑃 → 𝑈

Lemma: For 𝑝, 𝑞 ∈ 𝐻𝑑, Prℋ𝑑
[ℎ(𝑝) = ℎ(𝑞)] = 1 −

𝑑𝐻(𝑝,𝑞)

𝑑
.

Proof: Let 𝑑𝐻(𝑝, 𝑞) = 𝛿. 𝛿 gives the distance between point p and q as defined by Hamming metric.
That is, the positions where p and q differ. This means, for an 𝑖 uniformly chosen at random, probability

of 𝑝𝑖 being not equal to 𝑞𝑖 is
𝛿

𝑑
.

This implies Prℋ𝑑
[ℎ𝑖(𝑝) = ℎ𝑖(𝑞)] = 1 −

𝛿

𝑑
. So, we get Prℋ𝑑

[ℎ(𝑝) = ℎ(𝑞)] = 1 −
𝑑𝐻(𝑝,𝑞)

𝑑
.

Corollary: Since we know 1 > 𝑝1 > 𝑝2 > 0, 𝜌:
𝑙𝑜𝑔 𝑝1

log 𝑝2
< 1.

Hashing by Dimension Reduction:

Using ℋ𝑑, we build a family of hash function 𝒢𝐾 of the form 𝑔: 𝐻𝑑 → {0,1}𝐾. g is picked uniformly at

random from 𝒢𝐾. That is, 𝑔 ≔ (ℎ𝑘)𝑘 ∈ [𝐾] be the concatenation of ℎ𝑘
′ 𝑠, where ℎ𝑘 is picked uniformly

at random from ℋ𝑑.

Thus, for every 𝑝 ∈ 𝐻𝑑, 𝑔(𝑝): = (ℎ0(𝑝), ℎ1(𝑝), … ℎ𝐾−1(𝑝))

Hash Table:

For every 𝑝 ∈ 𝐻𝑑, a pointer to the point p is stored in the hash table 𝑇 with key 𝑔(𝑝) ∈ {0,1}𝐾.

Set 𝐾 ≔ log1/𝑝2
𝑛, 𝐿 ≔ 𝑛𝜌 , 𝑟 > 0 and (1 + 𝜀) > 1. We will now construct a data structure for

approximate range search. For above value of 𝐾 and 𝐿, the algorithm succeeds with constant

probability [2].

Constructing data structure:

Now, we will construct a data structure such that a hash table 𝑇𝑙 is constructed for every 𝑙 ∈ [𝐿] which

stores pointers to points in 𝑃.

• First, we pick a function 𝑔𝑙 from 𝒢𝐾 uniformly at random.

• Then, for each 𝑝 ∈ 𝐻𝑑, a pointer to the point p is stored in the hash table 𝑇𝑙 with key 𝑔𝑙(𝑝) ∈

{0,1}𝐾

Time and Space Complexity([3]):

Since we have 𝐿 hash tables now, time to construct the hashing table is Ο(𝐿𝑛𝐾) and space used for

the 𝐿 hash tables is given by Ο(𝐿𝑛) while space used for original 𝑃 is given by Ο(𝑛𝑑). Total storage is

given by Ο(𝐿𝑛 + 𝑛𝑑).

Substituting values for 𝐿, Ο(𝐿𝑛 + 𝑛𝑑) = 𝚶(𝒅𝒏 + 𝒏𝟏+𝝆) is the total storage for the data structure.

For construction time, Ο(𝐿𝑛𝐾) = 𝚶(𝒏𝟏+𝝆 𝐥𝐨𝐠𝟏/𝒑𝟐
𝒏) is the construction time for the data structure.

For a given query point 𝑞, computation time for 𝑔𝑙(𝑞) is Ο(𝐾) and distance computation (𝑑𝐻(𝑝, 𝑞)) is

given by Ο(𝑑) giving total computation time as Ο(𝐾 + 𝑑) for one hash table. So, the total time of

algorithm for a given query is Ο(𝐿(𝐾 + 𝑑)). By substituting values, the running time for a query is

𝚶 (𝒏𝝆(𝐥𝐨𝐠 𝟏

𝒑𝟐

𝒏 + 𝒅)). Now that we derived the time and space complexity for approximate nearest

neighbour search using hashing, let’s see how furthest neighbour search can be solved efficiently.

4 Furthest Neighbour Search:

Application:

While the problem of recommender systems is to find the most accurate item the user would show
higher preference to, there are also other aspects that are important. One such aspect is diversity. In
recommender systems, the recommended items are familiar to the user, but simply have not been
rated by them yet. In such case, there is no diversity of recommendations which would provide a
value-addition or unexpected-ness.

Let’s consider the same example we had for nearest neighbour recommender systems. In our Figure
0, we see that user1-user2 and user1-user3 have similar tastes. We also see that user4 has different
taste. This mismatch can also be used to suggest interesting and diverse items. For example, instead
of suggesting albums of the artist user4 likes(NNS), one could also suggest albums of artists user1-
user2 dislikes(FNS). The strategy is “The enemy of my enemy is my friend”.

Furthest to nearest neighbour reduction:

Consider 𝜀′ and 𝜀 being the approximation factors of FNS and NNS problem. Now, can we solve (1 +

𝜀′)-FNS as (1 + 𝜀)-NNS? Yes. Dimensional hashing can be applied to reduce (1 + 𝜀′)-FNS to (1 + 𝜀)-

NNS in Hamming spaces. This is interesting, because, using the same computational resources, it is

possible to solve (1 + 𝜀)-NNS efficiently than (1 + 𝜀′)-FNS for some limit of approximation. We will

see how. First, let’s state the theorem.

Theorem 1: There is a (randomized Monte Carlo) reduction of (1 + 𝜀′)-FNS problem for n points in

{0,1}𝑑 to (1 + 𝜀/6)-NNS problem for n points in {0,1}𝑝𝑜𝑙𝑦(𝐷,log 𝑛,1/𝜀) for 𝜀 ∈ [0,2].

Proof:

For reducing from exact-FNS to exact-NNS, author use a simple idea. Let 𝑝, 𝑞 ∈ {0,1}𝑑; then 𝑑(𝑝, 𝑞) =

𝑑 − 𝑑(𝑝, �̅�), where �̅� denotes the complement of 𝑞. This means, if 𝑃 is a set of points in {0,1}𝑑 , 𝑞 ∈

{0,1}𝑑 and 𝑝 ∈ 𝑃 is a nearest neighbour of 𝑞 in 𝑃, then 𝑝 is also a furthest neighbour of �̅� in 𝑃.

This shows a furthest neighbour of a point is a nearest neighbour of its complement. So, the exact

versions of furthest and nearest neighbour are essentially equivalent.

Since we are interested in solving approximate problem of FNS, we would like to reduce approximate-

FNS to approximate-NNS. We can write this problem as reduction of (1 + 𝜀′)-FNS to (1 + 𝜀)-NNS

where (1 + 𝜀′) and (1 + 𝜀) are constant approximation factors for FNS and NNS respectively.

It is easy to see this reduction may not preserve approximation. So, to reduce the approximate-FNS to

approximate-NNS, we must find out the relationship between 𝜀 and 𝜀′.

Let’s say, the furthest neighbour of our query point 𝑞 in 𝑃 is 𝑝 and the furthest distance is 𝑅 (𝑑(𝑞, 𝑝) =

𝑅) and 𝑝′ is 𝐸′-approximate FN of 𝑞 (𝑑(𝑞, 𝑝′) ≥ (
1

𝐸′) 𝑑(𝑞, 𝑝)). Using the notion 𝑑(𝑞, 𝑝′) = 𝑑 −

𝑑(�̅�, 𝑝′). So, 𝐸′-approximate FNS to ANS gives us

𝐸′ ≥
𝑑(𝑞,𝑝)

𝑑−𝑑(�̅�,𝑝′)
 --- (1)

We find an 𝐸-approximate NN of �̅� in 𝑃 and we call that 𝑝′. Implying 𝑑(�̅�, 𝑝′) ≤ 𝐸𝑑(�̅�, 𝑝). Substituting

known values, we get 𝑑(�̅�, 𝑝′) ≤ 𝐸(𝑑 − 𝑅). Now, equation (1) becomes

 𝐸′ ≥
𝑅

(𝑑−𝐸(𝑑−𝑅))

We can write this as,

𝐸 ≤
𝑑−𝑅′

𝑑−𝑅
=

1−𝜌′

1−𝜌
 --- (2)

where, 𝑅 = 𝐸′𝑅′, 𝑅 = 𝜌𝑑, 𝑅′ = 𝜌′𝑑.

(The paper has a typo that 𝑅′ = 𝐸′𝑅, but this doesn’t lead the proof further. It must be 𝑅 = 𝐸′𝑅′ to

derive further steps and derivations correctly.)

Equation (2) shows, the relation between E and E’ depends on the ratio of d to R. Reduction is more

efficient when the ratio is smaller.

To reduce this ratio, we apply dimensional hashing technique:

Hashing technique: for any 𝑝 ∈ {0,1}𝐷 and dimension 𝑖 = 1, … 𝐷 the 𝑖𝑡ℎ coordinate of 𝑓(𝑝) is

obtained by:

 𝑓𝑖(𝑝) ≔ 𝑝𝑖1
𝑝𝑖2

… 𝑝𝑖𝑘

where 𝑖1 … 𝑖𝑘 are chosen independently and uniformly at random with replacement.

Using the hashing technique, it is easy to see that for given points 𝑝, 𝑞 if 𝑑(𝑝, 𝑞) = 𝜌𝑑, the expected

value

𝐸[𝑑(𝑓(𝑝), 𝑓(𝑞))] = (1 − (1 − 𝜌)𝑘)𝐷 --- (3)

By Chernoff bound, the expected value and the actual value differs only by (1 ± 𝛼) when 𝐷 =

Ω(log 𝑛/𝛼2). For simplicity, we assume 𝛼 = 0. For small 𝜌, without loss of generality, we can write

1 − (1 − 𝜌)𝑘 = (1 − 𝑒−𝜌𝑘). So, we get, 𝑑(𝑓(𝑝), 𝑓(𝑞)) = (1 − 𝑒−𝜌𝑘)𝐷. By applying error correcting

codes, the value can be reduced to
(1−𝑒−𝜌𝑘)

2
𝐷’.

Let
(1−𝑒−𝜌𝑘)

2
= 𝛾𝑘(𝜌). Function 𝛾 defines the probability in dimension D. From equation (2), we can

deduce that 𝜌′ = 𝜌/𝐸′. 𝑅 = 𝜌𝑑 in the space 𝐻𝑑 is equivalent to R = 𝛾𝑘(𝜌)𝐷 in the new space. Hence,

𝜌 in Eq. 2 can be replaced with the value of 𝛾𝑘(𝜌). Now, we get

 𝐸 ≤
1+𝑒−𝜌′𝑘

 1+𝑒−𝜌′𝐸′𝑘
 --- (4)

The above equation defines the upper bound for 𝐸.

Let 𝛿 = 𝜌′𝑘. To derive the approximation factor of NNS with respect to given FNS problem, we pick

values of 𝛿 as a function of 𝐸′. That is, 𝛿(𝐸′). For 𝜀′ = 2, the value of 𝛿 can be solved for the upper

bound of 𝐸.

Differentiating for the upper bound using chain rule and solving the resulting equation 𝐸 ≤
1+𝑒−𝛿

 1+𝑒−3𝛿,

we get 𝑒𝛿 = 2, 𝛿 = 𝑙𝑛2 ≈ 0.693. Substituting the value of 𝛿 in (4), 𝐸 = 1.3333 and 𝜀 = 0.3333. This

gives, (
𝜀

𝜀′) = (
1

6
) ≈ 0.167. Thus, we prove the Theorem 1. The problem now can be efficiently solved

as approximate nearest neighbour search using Locality Sensitive Hashing method we discussed

before. But we should check, does the reduction really improve efficiency? Now, note that the ratio

𝜀/𝜀′ decreases with 𝜀′.

Time and Space Complexity:

Using above reduction, we can get our storage, computation time and query time as a function of
approximation factor 𝜀′. Here, as probability 𝛾𝑘 is a function of 𝜀′, we get the following:

For (1 + 𝜀′)-FNS problem, the running time for a query is Ο̃(𝐷𝑛𝛾(𝜀′)) and data structure construction

time is Ο̃(𝑛1+𝛾(𝜀′)) while Ο(𝐷𝑛 + 𝑛1+𝛾(𝜀′)) is the total storage for the data structure for dimension

𝐷.

Based on our reduction, in NNS, 𝑐 = (1 + 𝜀/6)

𝑝2 = 1 −
𝑟(1 + 𝜀′)

𝑑
< 1 −

𝑟(1 + 𝜀/6)

𝑑

The probability 𝑝2 increases while remaining lower than 𝑝1. Implying, 𝐾 ≔ log1/𝑝2
𝑛 decreases for

(1 + 𝜀/6)-NNS problem. So, the running time for a query, 𝚶 (𝒏𝝆(𝐥𝐨𝐠 𝟏

𝒑𝟐

𝒏 + 𝒅)) and data structure

construction time, 𝚶(𝒏𝟏+𝝆 𝐥𝐨𝐠𝟏/𝒑𝟐
𝒏) becomes more efficient for solving (1 + 𝜀/6)-NNS problem

than (1 + 𝜀′)-FNS problem. Ο(𝐷𝑛 + 𝑛1+𝑛𝜌
) is the total storage for the data structure for dimension

𝐷. With decreasing ratio of 𝜀/𝜀′, it is very clear that with this reduction, we can solve the problem

more efficiently.

5 Conclusion:

The paper presents Dimensionality Reduction Techniques for several proximity problems. While

approximation problems for nearest neighbour search has been discussed extensively in many papers,

this paper provides a new way of approaching furthest neighbour problem using a simple reduction

of the problem to nearest neighbour search. With improvement in time complexity, this is clearly a

better algorithm to use but only when 𝜀 ∈ [0,2] and the metric is hamming distance. For 𝜀 > 2, there

are other general metric space that provide efficient algorithms.

To conclude, the author has provided an efficient and fascinating derivation of the theorem that shows

the relation between approximation factors in furthest neighbour problem and nearest neighbour

problem when 𝜀 ∈ [0,2].

6 References

[1] Piotr Indyk. Dimensionality Reduction Techniques for Proximity Problems. In SODA ’00 Proceedings

of the eleventh annual ACM-SIAM symposium on Discrete Algorithms Pages 371-378.

[2] Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing the Curse

of Dimensionality. In STOC ’98 Proceedings of the thirtieth annual ACM symposium on Theory of

computing Pages 604-613.

[3] A. Gionis, Piotr Indyk and Rajeev Motwani. Similarity Search in High Dimensions via Hashing. In

VLDB ’99 Proceedings of the 25th International Conference on Very Large Data Bases Pages 518-529.

[4] Alan Said, Benjamin Kille, Brijnesh J. Jain, Sahin Albayra. Increasing Diversity Through Furthest

Neighbour-Based Recommendation.

http://www.dcs.gla.ac.uk/workshops/ddr2012/papers/p3said.pdf

https://www.google.ch/search?q=Approximate+Nearest+Neighbors:+Towards+Removing+the+Curse+of+Dimensionality&spell=1&sa=X&ved=0ahUKEwjap6aq5aPaAhWIxxQKHfoxA4sQBQgpKAA
https://www.google.ch/search?q=Approximate+Nearest+Neighbors:+Towards+Removing+the+Curse+of+Dimensionality&spell=1&sa=X&ved=0ahUKEwjap6aq5aPaAhWIxxQKHfoxA4sQBQgpKAA
http://www.dcs.gla.ac.uk/workshops/ddr2012/papers/p3said.pdf

