

Seminar Database Systems
Syntactic Clustering of The Web

Report

Amos Madalin Neculau

1. Introduction

Due to the exponential growth of the World Wide Web, Broder et al. propose a mechanism
of clustering of documents that are the same or “roughly the same” in order to solve the problem of
URLs instability and the proliferation of documents that are identical or almost the same.

The mechanism proposed by Broder et al. is an alternative to Uniform Resource Names
(URNs). URNs are generalized forms of Uniform Resource Locators (URLs) which do not point to
a resource directly, as URLs do, but indirectly through a Name Server. As a consequence, a name
server is able to “translate” the URN to the best URL based on some criteria. Moreover, the
advantage of a URN over a URL is that they are location independent and can track a resource that
is renamed or moves its location, the URN being able to redirect the user to the nearest mirror of
the desired resource.

To get a better insight of the topic, I consider that starting with a few concept definitions will
help getting a better understanding.

Shingle(Grams): A contiguous subsequence of tokens, e.g. words, in a given document.

W-shingle(N-Grams): Given a document 𝐷, W-shingle 𝑆(𝐷,𝑤) is the set of all unique
shingles of size 𝑤.

We can define the resemblance, also known as Jacard similarity, as follows:

Resemblance: Given two documents 𝐴 and 𝐵, the resemblance 𝑟 ∈ ℝ, 0 ≤ 𝑟(𝐴,𝐵) ≤ 1 is
close to 1 when the documents are “roughly the same”, and close to 0 when they are different.

𝑟(𝐴, 𝐵) = 	 |2(3)∩2(5)|
|2(3)∪2(5)|

, where |𝐴| is the size of the set 𝐴, and 𝑟(𝐴, 𝐴) = 1.

Containment: Similar to resemblance, given two documents 𝐴	and 𝐵, the containment 𝑐 ∈

ℝ, 0 ≤ 𝑐(𝐴,𝐵) ≤ 1 is close to 1 when the document 𝐴 is “roughly contained” within the document
𝐵, and 0 otherwise.

The containment is defined by the following equation:

𝑐(𝐴, 𝐵) = 	
|𝑆(𝐴) ∩ 𝑆(𝐵)|

|𝑆(𝐴)|

A B

1

𝑐(𝐴, 𝐵) = 1	 ⟺ 𝐴	 ⊆ 𝐵

Sketch: An effective method for estimating resemblance of two documents because they are

easily compared, canonical representations of the documents.

In order to compute the resemblance and containment of two documents it is sufficient to
keep a sketch of a few hundred bytes for each document, which can be efficiently computed (in
time linear in the size of the document). Given two sketches, the resemblance and containment can
be computed in the linear time in the size of the sketches.

Example 1

𝐴	 = 	 (𝑎, 𝑟𝑜𝑠𝑒, 𝑖𝑠, 𝑎, 𝑟𝑜𝑠𝑒, 𝑖𝑠, 𝑎, 𝑟𝑜𝑠𝑒)	

𝐵	 = 	 (𝑎, 𝑟𝑜𝑠𝑒, 𝑖𝑠, 𝑎, 𝑓𝑙𝑜𝑤𝑒𝑟, 𝑤ℎ𝑖𝑐ℎ, 𝑖𝑠, 𝑎, 𝑟𝑜𝑠𝑒)	

Shingle size 1 (1-Shingle)

𝑆(𝐴, 1) ∩ 𝑆(𝐵, 1) =	{a, rose, is}

𝑆(𝐴, 1) ∪ 𝑆(𝐵, 1) =	{a, rose, is, flower,
which}

𝑟B(𝐴, 𝐵) = 	
|2(3,B)∩2(5,B)|
|2(3,B)∪2(5,B)|

= 	 C
D
= 0.6

Shingle size 2 (2-Shingle)

𝑆(𝐴, 2) ∩ 𝑆(𝐵, 2) =	{(a, rose), (rose, is),
(is, a)}

𝑆(𝐴, 2) ∪ 𝑆(𝐵, 2) =	{(a, rose), (rose, is),
(is, a), (a, flower), (flower, which),
(which, is)}

𝑟H(𝐴, 𝐵) = 	
|2(3,H)∩2(5,H)|
|2(3,H)∪2(5,H)|

= 	 C
I
= 0.5

Shingle size 3 (3-Shingle)

𝑆(𝐴, 3) ∩ 𝑆(𝐵, 3) =	{(a, rose, is), (rose,
is, a), (is, a, rose)}

𝑆(𝐴, 3) ∪ 𝑆(𝐵, 3) =	{(a, rose, is), (rose,
is, a), (is, a, rose), (is, a, flower), (a,
flower, which), (flower, which,
is),(which, is, a)}

𝑟C(𝐴, 𝐵) = 	
|2(3,C)∩2(5,C)|
|2(3,C)∪2(5,C)|

= 	 C
L
= 0.4285

B

A

2

Shingle Size Resemblance
1 60%
2 50%
3 42.85%

Note: Resemblance is not transitive. Given a set of versioned documents that are “roughly the
same”, set size n=100. 𝑟(𝑑𝑜𝑐B, 𝑑𝑜𝑐H) > 𝑟(𝑑𝑜𝑐B, 𝑑𝑜𝑐DQ) > 𝑟(𝑑𝑜𝑐B, 𝑑𝑜𝑐BQQ), i.e. even if the
versions of the papers are “roughly the same”, the first version might be significantly different from
version 100.

The resemblance has the additional property that 𝑑(𝐴, 𝐵) 	= 	1	 − 	𝑟(𝐴, 𝐵), is a metric (obeys
the triangle inequality), which is useful for the design of algorithms intended to cluster a collection
of documents into sets of closely resembling documents.

2. How to estimate the resemblance and containment

• For a fixed shingle size 𝑤, 𝑈 is the set of all shingles of size 𝑤.
• 𝑊 is a set, 𝑊 ⊆ 𝑈.
• 𝑠 is a parameter
• 𝑀𝐼𝑁X(𝑊) = 	 Y

𝑡ℎ𝑒	𝑠𝑒𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡	𝑠	𝑖𝑛	𝑊, 𝑖𝑓	|𝑊| ≥ 𝑠
𝑊, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , where “smallest” refer to the

numerical order on 𝑈

Fix a single size 𝑤 and let 𝑈 be the set of all shingles of size w. The next section discusses in detail
how to estimate the resemblance and containment. The word estimate is important; this is a
technique based on probability and randomness, so it's not trying to compute this metric exactly.
Broder starts with two definitions. First, it is defined 𝑈, which is the set of all shingles of size 𝑤. As
we'll see later the method doesn't really enumerate all possible shingles, but it's important for the
descriptions below.

Second, the function 𝑀𝐼𝑁X(𝑊) is defined, which the smallest s elements in the set	𝑊. This implies

that 𝑈 is totally ordered.

Theorem 1.

𝐹(𝐴) = 	𝑀𝐼𝑁X(𝜋(𝑆(𝐴,𝑤))

The paper then proceeds to the main theorem of the paper. First, they define a permutation
𝜋	over the set of shingles, and then they define 𝐹(𝐴), which is the minimum 𝑠 elements of the
permutation of the set of shingles for document A. This function 𝐹(𝐴) is what would later be
called MinHash. Given these preliminaries, theorem 1 states:

• The value
|`abcde(3)∪e(5)f	∩	e(3)	∩	e(5)|	

|`abc(e(3)∪e(5))|
 is an unbiased estimate of the resemblance of 𝐴	and

𝐵.

This is the key idea in the paper. First, for completeness let's define unbiased estimator. This is
a term from statistics that means that the expected value of this estimator, i.e. the average, will
approach the true population value as the number of cases gets large. This estimator is entirely in
terms of the document "sketches".

To get a better sense of this, let’s look in depth on the parts of the expression above. First, we'll
look at the union term which can be found in both the numerator and denominator.

3

𝑀𝐼𝑁Xd𝐹(𝐴) ∪ 𝐹(𝐵)f = 	𝑀𝐼𝑁X(𝑀𝐼𝑁𝑠(𝜋(𝑆(𝐴, 𝑤)) ∪ 𝑀𝐼𝑁𝑠(𝜋(𝑆(𝐵, 𝑤))) =

= 𝑀𝐼𝑁𝑠(𝑀𝐼𝑁𝑠 g𝜋d𝑆(𝐴,𝑤)f ∪ 𝜋d𝑆(𝐵,𝑤)fh =

= 𝑀𝐼𝑁𝑠 g𝜋d𝑆(𝐴,𝑤)f ∪ 𝜋d𝑆(𝐵,𝑤)fh =

= 𝑀𝐼𝑁X g𝜋d𝑆(𝐴, 𝑤) ∪ 𝑆(𝐵, 𝑤)fh.

This is a result which is used in the proof of Theorem 1, although some steps were added in
order to make it clearer. This might still not be obvious, so a simple example that shows the
equivalence in one case was introduced:

𝐴	 = 	 {𝑥,𝑚, 𝑡, 𝑟}	

𝐵	 = 	 {𝑥,𝑚, 𝑒, 𝑟}	

𝑀𝐼𝑁C(𝐴) = {𝑚, 𝑟, 𝑡}

𝑀𝐼𝑁C(𝐵) = {𝑒,𝑚, 𝑟}

𝑀𝐼𝑁C(𝐴 ∪ 𝐵) = 𝑀𝐼𝑁C({𝑥,𝑚, 𝑡, 𝑟} ∪ {𝑥,𝑚, 𝑒, 𝑟}) = 	𝑀𝐼𝑁C({𝑥,𝑚, 𝑡, 𝑟, 𝑒}) = {𝑒,𝑚, 𝑟}

𝑀𝐼𝑁Cd𝑀𝐼𝑁C(𝐴) ∪ 𝑀𝐼𝑁C(𝐵)f = 𝑀𝐼𝑁C({m, r, t} ∪ {𝑒,𝑚, 𝑟}) = 𝑀𝐼𝑁C({m, r, t, e})
= {𝑒,𝑚, 𝑟}

Suppose there are 10 elements in the union of 𝑆(𝐴,𝑤) and 𝑆(𝐵, 𝑤), and 6 elements in
the intersection, i.e. the resemblance is 0.6. Another way to think of this is that if you choose
an element at random from the union, there's a 60% chance it's also in the intersection:

𝐹(𝐴) ∩ 𝐹(𝐵)
Let α be the smallest element in 𝜋(𝑆(𝐴,𝑤)	∪ 	𝑆(𝐵, 𝑤)). Then

Pr	(𝛼 ∈ 𝐹(𝐴)⋂𝐹(𝐵) = Prd𝜋sB(𝛼) ∈ 𝑆(𝐴,𝑤) ∩ 𝑆(𝐵, 𝑤)f (1)

=	 |𝑆
(𝐴,𝑤) ∩ 𝑆(𝐵,𝑤)|

|𝑆(𝐴,𝑤) ∪ 𝑆(𝐵,𝑤)| = 𝑟t(𝐴,𝐵).			(2)

Now we look at the second part, the intersection of 𝐹(𝐴) and 𝐹(𝐵). We choose the minimum
element from the previous term and call it α (actually, we can choose any element of the previous
term and this still applies). What is the probability that α is in the intersection of 𝐹(𝐴) and 𝐹(𝐵)?

If an item is in the intersection, then it must be in 𝐹(𝐴) and 𝐹(𝐵). That implies that the element
before the permutation was in both 𝑆(𝐴, 𝑤) and 𝑆(𝐵, 𝑤). Here's the important leap in logic: this
probability is the same as the set resemblance.

For example, as before, suppose there are 10 elements in the unions of 𝑆(𝐴) and S(𝐵). After
permuting the union, every element in the union has an equal chance of being the minimum
element. If the resemblance is 0.6 there's 60% chance that the minimum element in the permuted
union is also the minimum element in the permuted intersection. If it's the minimum element in
the permuted intersection, it's the minimum element in both 𝐹(𝐴) and 𝐹(𝐵).

Again, the important things to note are (1) this is an estimate not an exact value for the

resemblance, and (2) we compute the estimate entirely from the document sketches.

4

Taking the minimum s elements is effectively like taking a random sample of size s. The
larger s is, the closer we get to the true value of the resemblance.

The system proposed by Broder et al. implement the sketches by sanitizing the web documents,
take a shingle document size 𝑤	 = 	10, use a 40bit fingerprint function enhanced to behave as a
random permutation, and use a modulus permutation for selecting shingles with an 𝑚 of 25.

Rabin Fingerprints

A fingerprint represents strings as a polynomial. It is basically a hash function but with lower
collision probability. It can be computed in a rolling/windowed fashion, which works well for the
shingles. The mechanism uses the Rabin fingerprint for f, both because the collision probablity is
well understoond and because they can be computed efficiently for the shingles.

The fingerprint function uses an irreducible polynomial 𝑝(𝑡) ∈ 	𝑍H[𝑡] of an appropriate small
degree 𝑘 applied to a string in order to facilitate the creation of efficient and highly reliable real-
time string matching algorithms.

The Permutation
To produce the sample we need a random permutation 𝜋: {0, 1,… , 2|} → {0, 1,… , 2|}. The

paper is a bit vague on how to generate the permutation, other than to say we need random one, or
that we can basically treat the application of the Rabin fingerprint function to each shingle as the
permutation. However, he does cover this in detail in a later paper on generating what he calls min-
wise independent permutations, which means any element in the original set has an equal
probability of being the minimum element in the permutation.

3. Applying the resemblance algorithm to web pages

The following diagram shows how the way the resemblance algorithm was applied on several

web pages:

 Retrieve the
document from the
web (Alta Vista
spider)

Calculate the sketch
for the document

Compare the
sketches for each
pair of documents to
see if they exceed a
threshold of
resemblance

Make clusters by
combining pairs of
similar documents

5

Despite the fact that the algorithm is simple, a trivial implementation will not inefficient.
Hence the divide, compute merge approach was preferred over the trivial implementation.

Algorithm 1: Applying resemblance algorithm to the retrieved documents

Retrieve the 𝒅𝒂𝒕𝒂	(𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔) from the web

Initialize 𝒕 with the threshold desired

Create an empty 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔 list

For each 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕 in 𝒅𝒂𝒕𝒂:

Calculate the 𝒔𝒌𝒆𝒕𝒄𝒉

For each pair < 𝑨,𝑩 > of documents:

𝐴𝑏𝑠 ∶= 𝑆𝑘𝑒𝑡𝑐ℎ3 − 𝑆𝑘𝑒𝑡𝑐ℎ5 //Abs is the absolute value of the diference

If 𝑨𝒃𝒔	 ≥ 	𝒕

For each 𝒄𝒍𝒖𝒔𝒕𝒆𝒓 in 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔

If	𝑨	 ∉ 	𝒄𝒍𝒖𝒔𝒕𝒆𝒓	AND	𝑩	 ∉ 	𝒄𝒍𝒖𝒔𝒕𝒆𝒓

create new 𝒄𝒍𝒖𝒔𝒕𝒆𝒓 and append 𝑨 and 𝑩 to it

append the new 𝒄𝒍𝒖𝒔𝒕𝒆𝒓 to 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒔

Else If 𝑨	 ∉ 	𝒄𝒍𝒖𝒔𝒕𝒆𝒓 𝑩	 ∈ 	𝒄𝒍𝒖𝒔𝒕𝒆𝒓

append 𝑨 to the cluster

Else append 𝑩 to the cluster

The algorithm above describes how the resemblance between two documents retrieved from
the web can be calculated. Firstly, a desired threshold t must be set. This threshold will be used to
decide if we add a given document to a specific cluster. The second step is to calculate the sketch for
each document retrieved. Then, for each pair of documents <A,B> the sketches are compared to
see if the threshold is reached. If so, we combine the pairs of similar documents in order to create
clusters.

Algorithm 2: Divide Compute Merge (example)

Retrieve the data from the web

Initialize m with the desired size

Divide the data retrieved in pieces of size m and append it to a list

A set of results, initially empty

For each piece i in the list

Compute resemblance for the piece i

Merge resemblance with the results*

 The Divide, Compute, Merge algorithm is used in different places in the mechanism’s
implementation, e.g. sorting the list composed of < 𝒔𝒉𝒊𝒏𝒈𝒍𝒆	𝒗𝒂𝒍𝒖𝒆, 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝑰𝑫 > pair. This is a
generic algorithm and its’ goal is to deal with the massive amount of data that cannot be computed

6

in memory. Its’ scope is to take pieces of defined size m, so the computation can be done entirely in
the memory. The overall performance of it is (𝑂(𝑛	𝑙𝑜𝑔(𝑛/𝑚))). The complexity of the algorithm is
due to the merge sorting (note: the list must be , which in the worst case takes 𝑂(𝑛	𝑙𝑜𝑔	(𝑛)). The
example stated above computes the resemblance of a document.

A summary of Divide Compute Merge algorithm:

1. Start with the pairs <shingleId, docId>.

2. Sort by shingleId.
3. In a sequential scan, generate triplets <docId1, docId2, 1> for pairs of docs that share a

shingle.
4. Sort on <docId1, docId2>.
5. Merge triplets with common docIds to generate triplets of the form <docId1,docId2,count>.
6. Output document pairs with count > threshold.

Algorithm 3: The clustering algorithm

For each 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕 in	𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔

Calculate the 𝒔𝒌𝒆𝒕𝒄𝒉

For 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕 in 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔

For each	𝒔𝒉𝒊𝒏𝒈𝒍𝒆 in the document

If < 𝒔𝒉𝒊𝒏𝒈𝒍𝒆, 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝑰𝑫 > ∉ 𝒔𝒉𝒊𝒏𝒈𝒍𝒆𝑫𝒐𝒄𝑰𝑫𝑳𝒊𝒔𝒕

Append < 𝒔𝒉𝒊𝒏𝒈𝒍𝒆, 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝑰𝑫 > to	𝒔𝒉𝒊𝒏𝒈𝒍𝒆𝑫𝒐𝒄𝑰𝑫𝑳𝒊𝒔𝒕

Sort the 𝒔𝒉𝒊𝒏𝒈𝒍𝒆𝑫𝒐𝒄𝑰𝑫𝑳𝒊𝒔𝒕 using Divide Compute Merge Algorithm

For < 𝒔𝒉𝒊𝒏𝒈𝒍𝒆	𝒗𝒂𝒍𝒖𝒆	𝑽𝒊, 𝒅𝒐𝒄𝑰𝑫𝒊 > in 𝒔𝒉𝒊𝒏𝒈𝒍𝒆𝑫𝒐𝒄𝑰𝒅𝑳𝒊𝒔𝒕

If ∀< 𝒔𝒉𝒊𝒏𝒈𝒍𝒆	𝒗𝒂𝒍𝒖𝒆	𝑽𝒋, 𝒅𝒐𝒄𝑰𝑫𝒋 >	∈ 	𝒔𝒉𝒊𝒏𝒈𝒍𝒆𝑫𝒐𝒄𝑰𝒅𝑳𝒊𝒔𝒕, 𝑖 ≠ 𝑗, 𝑉¢ = 	𝑉£

For each pair < 𝑨,𝑩 > in 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔, using Divide, Compute, Merge

If ∃	< 𝒅𝒐𝒄𝑰𝑫𝑨, 𝒅𝒐𝒄𝑰𝑫𝑩, 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 > 𝒊𝒏	𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔𝑺𝒉𝒊𝒏𝒈𝒍𝒆𝒔

< 𝒅𝒐𝒄𝑰𝑫𝑨, 𝒅𝒐𝒄𝑰𝑫𝑩, 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 + 𝟏 >

Else append < 𝒅𝒐𝒄𝑰𝑫𝑨, 𝒅𝒐𝒄𝑰𝑫𝑩, 𝟏 > to	𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔𝑺𝒉𝒊𝒏𝒈𝒍𝒆𝒔

Create Clusters using the resemblance algorithm to the retrieved documents
(Algorithm 1)

 The clustering algorithm is done in four phases. Firstly, for each document in the collection,
the sketch is calculated. Then, a list of pairs of all shingles in the collection is created, along with
documents they appear in. The third phase of the algorithm generates a list of all pairs of algorithms
that share at least one shingle. For this, a triple is used < 𝒅𝒐𝒄𝑰𝑫𝑨, 𝒅𝒐𝒄𝑰𝑫𝑩, 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 >, where the
integer is the number of shingles the documents shares. As this step requires a great amount of
memory, the algorithm Divide, Compute, Merge is used to produce a single file of all
<𝒅𝒐𝒄𝑰𝑫𝑨, 𝒅𝒐𝒄𝑰𝑫𝑩, 𝒊𝒏𝒕𝒆𝒈𝒆𝒓> triplets sorted by the first document ID. In the final phase, the clusters
are created using the Algorithm 1.

7

4. Clustering overheads
4.1 Common shingles

Very common shingles cause problems during the clustering phase because the number of
document ID pairs is quadratic. Furthermore, overly common shingles will have no effect on the
overall resemblance of the documents or will create a false resemblance between two dissimilar
documents. Hence, the very common shingles are ignored.

4.2 Identical documents

For each document, a fingerprint is generated. If there are found more than one document
with the same fingerprint, all but one are eliminated from the clustering algorithm. Identical
documents are found with the fingerprint of the entire original contents.

4.3 Super shingles

An alternative to estimate the resemblance of two sketches is to compute a meta-sketch. In
order to compute a super shingle, it is required to sort the sketch’s shingles, and then shingling the
shingles. As a consequence, the document’s meta-sketch is then determined by its set of super
shingles. If two documents have even one super shingle in common, then that means their sketches
have a sequence of shingles in common. In addition, the existence of a single common super shingle
means it is likely that two documents resemble each other. To detect resemblance with super
shingles, we only need to find a single common super shingle. Hence, super shingles are a simpler
and more efficient method of computing resemblance.

However, there are negative parts on using super shingles. Some negative aspects are: super
shingles are not as flexible or as accurate as computing resemblance with regular sketches.
Furthermore, shingling of small documents is very inefficient. Hence, super shingles makes this
problem worse. Another bad aspect is that shingles cannot detect containment.

5. Conclusion
The mechanism presented by Broder et al. allows the user to syntactically relate and cluster

documents. Furthermore, a plus for this is the fact that the granularity of the shingles can be
adjusted. The techniques presented can be generalized, as the resemblance and containment can be
calculated on any set of objects.

6. APPENDIX:

1. How to estimate the resemblance and containment [2]:

• For a fixed shingle size 𝑤, 𝑈 is the set of all shingles of size 𝑤.
• 𝑊 is a set, 𝑊 ⊆ 𝑈.
• 𝑠 is a parameter

𝑀𝐼𝑁X(𝑊) = 	 Y
𝑡ℎ𝑒	𝑠𝑒𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡	𝑠	𝑖𝑛	𝑊, 𝑖𝑓	|𝑊| ≥ 𝑠

𝑊, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , where “smallest” refer to the numerical
order on 𝑈, and define:

𝑀𝑂𝐷¨(𝑊) = 𝑡ℎ𝑒	𝑠𝑒𝑡	𝑜𝑓	𝑎𝑙𝑙	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠	𝑜𝑓	𝑊	𝑡ℎ𝑎𝑡	𝑎𝑟𝑒	0	𝑚𝑜𝑑	𝑚

8

Theorem. Let 𝑔: 𝑈 → 𝑁 .Let 𝜋:𝑈 → 𝑈	be a permutation of 𝑈chosen uniformly at random. Let
𝐹(𝐴) = 	𝑀𝐼𝑁X(𝜋(𝑆(𝐴))	and 𝑉(𝐴) = 	𝑀𝑂𝐷¨(𝜋(𝑆(𝐴)). Define 𝐹(𝐵) and 𝑉(𝐵) analogously. Then

• The value
|`abcde(3)∪e(5)f	∩	e(3)	∩	e(5)|	

|`abc(e(3)∪e(5))|
 is an unbiased estimate of the resemblance of 𝐴	and

𝐵.
• The value

|©(3)∩©(5)|
|©(3)∪©(5)|

 is an unbiased estimate of the resemblance of 𝐴 and 𝐵.

• The value |©(3)∩©(5)|
|©(3)|

 is an unbiased estimate of the containment of 𝐴 and	𝐵.

Proof:

𝑀𝐼𝑁𝑠(𝐹(𝐴)	∪ 	𝐹(𝐵)) 	= 	𝑀𝐼𝑁𝑠	(𝜋(𝑆(𝐴, 𝑤)) 	∪ 	𝜋(𝑆(𝐵,𝑤))) = 	𝑀𝐼𝑁𝑠	(𝜋	𝑆(𝐴, 𝑤) ∪ 𝑆(𝐵, 𝑤))

Let α be the smallest element in 𝜋(𝑆(𝐴,𝑤)	∪ 	𝑆(𝐵, 𝑤)). Then

Pr	(𝛼 ∈ 𝐹(𝐴)⋂𝐹(𝐵) = Prd𝜋sB(𝛼) ∈ 𝑆(𝐴, 𝑤) ∩ 𝑆(𝐵,𝑤)f

=	 |𝑆
(𝐴,𝑤) ∩ 𝑆(𝐵,𝑤)|

|𝑆(𝐴,𝑤) ∪ 𝑆(𝐵,𝑤)| = 𝑟t(𝐴,𝐵)

Since we can repeat this argument for every element of 𝑀𝐼𝑁𝑠(𝜋(𝑆(𝐴, 𝑤) 	∪ 	𝑆(𝐵,𝑤))) this
proves the first claim. The proof of the other two claims is straightforward.

The theorem above is roughly describing the fact that is enough to choose a random permutation
and keep a sketch formed by 𝐹(𝐷) and/or 𝑉(𝐷) for a given document 𝐷 in order to estimate the
resemblance and containment of two documents without any need for the original files.

𝐹(𝐷) – fixed in size, but it allows only the estimation of resemblance.

𝑉(𝐷) – direct proportional with D’s size, but it allows the estimation of both resemblance and
containment.

To limit the size of 𝑉(𝐷) we can proceed as follows: for documents that have size between (say)
100 ∗ 2¢ and 100 ∗ 2¢«B, we store the set 𝑉¢(𝐷)= 𝑀𝑂𝐷H¢(𝑔(𝜋(𝑆(𝐷)))).	The expected size of 𝑉¢(𝐷) is
always between 50 and 100. On the other hand, we can easily compute 𝑉¢«B(𝐷) from 𝑉¢(𝐷). (We
simply keep only those elements divisible by 2i+1.) Thus, if we are given two documents, A and B,
and 2i was the modulus used by the longer document, we use 𝑉¢(𝐴) and 𝑉¢(𝐵) for our estimates. The
disadvantage of this approach is that the estimation of the containment of very short documents
into substantially larger ones is rather error prone due to the paucity of samples.

7. References
 [1] Broder, Andrei & C. Glassman, Steven & Manasse, Mark & Zweig, Geoffrey. (1997). Syntactic
Clustering of the Web. Computer Networks and ISDN Systems. 29. 1157-1166. 10.1016/S0169-
7552(97)00031-7.

[2] Andrei Z. Broder. On the resemblance and containment of documents.

[3] URN resource names, IETF Working Group.

 [4] M.O. Rabin. Fingerprinting by random polynomials, center of research in. computer
technology, Harvard University, Report TR-15-81. 1981

9

