
Information Systems University of Zurich
Seminar: Database Systems Alphonse Mariyagnanaseelan, 15–712–698

Locality-Sensitive Hashing Scheme Based on p-Stable
Distributions [1]

1 Introduction

Generally, hashing algorithms, that are for example used for cryptographic purposes, are
not locality sensitive. That means the probability for a collision is not dependent on the
difference between the values that are being hashed. When we want to make a query
using an approximate value, what we want to receive is the nearest neighbors of that
query point. So what we want is a hashing algorithm that collides (or in other words:
Maps to the same hash value) with a high probability, if the input values are close to
each other (or similar), and collides only with a small probability if the input values
are far apart. Hashing schemes that have these properties are called locality sensitive
hashing schemes.

There already exist locality sensitive hashing schemes, one of them [2] uses mappings
into the Hamming space. Roughly, there you split the space using hyperplanes and then
map the points depending on which side of the hyperplanes they were located. In this
paper [1] the authors propose a new method for a locality sensitive hashing scheme, that
does not use mappings to the Hamming space, but is based on p-stable distributions.

We will start with an example. Assume we have phone numbers consisting of one digit.
If we want to see how many phone calls were made from one phone number to another,
we could make a matrix as shown in figure 1. The y-axis contains the caller’s phone
numbers and the x-axis contains the receiver’s numbers.

Let’s say we are searching for a person who made one phone call to the number 1 and
six calls to the number 3. We could formulate this query as q = (0, 1, 0, 6, 0, 0, 0, 0, 0, 0).
As we can see in the matrix (figure 1), there is no such person, but the person with the
number 5 had a similar behavior to what we were searching. So the problem we want to
solve now is a nearest neighbor problem.

To formalize the conditions of our search, we first have to choose a distance metric. We
can calculate the distance (or difference) between two points using norms. Norms that
are commonly used as distance metrics are for example:

• The Euclidean norm l2(v) for a d dimensional vector v is
√∑d

i=1|vi|2

• The Manhattan norm l1(v) for a d dimensional vector v is
∑d

i=1 vi

1

0 1 2 3 4 5 6 7 8 9
0 4 6 1
1 2
2 6
3 5
4 2
5 1 5
6
7 9 1
8 2 8
9 5 3

Figure 1: Cellphone calling behavior - Caller on y-axis and receiver on x-axis

These norms can be formulated as:

lp(v) =

(
d∑
i=1

|vi|p
)1/p

First we will take a look at the different Near Neighbor problems to better define which
points we expect as result to our query point.

2 Near Neighbor Problems

The classical Nearest Neighbor problem is to find the closest point v for a query point
q. The distance between those two points we can measure using any norm ‖·‖p, the p
depends on the application.

The Near Neighbor problem is to find all (or most) points v for a query q around a fixed
radius R. Thus a point v is a near neighbor of q if ‖q − v‖p ≤ R.

Because the problem of finding the exact nearest neighbor is a difficult problem, we
will look at the approximation versions of those problems. The Approximate Nearest
Neighbor problem is defined as:

Definition 1 If q is a query on the set V and vq ∈ V is the nearest neighbor of q, then a
point v ∈ V is an ε-Approximate Nearest Neighbor (ε-NN) if ‖q−v‖p ≤ (1+ε) ·‖q−vq‖p.

If the distance between the query point and the true nearest neighbor is c, then any
point that has a distance of at most (1 + ε)c to the query point is called an approximate

2

nearest neighbor. The problem with this definition is that we still first have to find the
nearest neighbor. We can look at an easier problem, the Approximate Near Neighbor:

Definition 2 If q is a query on the set V and there is any point v ∈ V such that
‖q− v‖p ≤ R, then any point within the radius (1+ ε)R around q is called an (R, ε)-near
neighbor of q.

The difference here is that we search in a fixed radius R. We have to note though, that
a (R, ε)-NN is only guaranteed to be an ε-NN if R equals to the distance between q and
the true near neighbor (R = ‖q − vq‖p).

In [2], it is shown that the ε-NN can be reduced to the (R, ε)-NN problem. So if we can
find an efficient solution to the (R, ε)-NN problem, then we have an efficient solution
to the ε-NN problem too. Therefore the paper [1] focuses on solving the (R, ε)-Near
Neighbor problem.

3 Locality Sensitive Hashing

We have now decided that we will be solving the (R, ε)-Near Neighbor problem. We want
to have a hashing algorithm that helps solving this problem efficiently. The requirements
can so far be formulated as:

• If point v is an (R, ε)-NN of query q, then h(q) = h(v)

• If point v is not an (R, ε)-NN of query q, then h(q) 6= h(v) (as much as possible)

As mentioned before, common hashing algorithms are not locality sensitive, so for our
purpose a hashing algorithm has to fulfill some additional requirements. The (R, ε)-
Near Neighbor definition can be nicely transformed to the definition of locality sensitive
hashing. Let r1 = R and r2 = (1 + ε)R. We can formulate the requirements more
concretely, by using probabilities:

• If two points are close (the distance is smaller than r1) then they must collide with
a high probability (at least p1)

• If two points are far apart (the distance is greater than r2) then they must collide
with a low probability (at most p2)

If a hashing algorithm fulfills the above conditions for given r1, r2, p1 and p2 then the
hashing algorithm is part of the (r1, r2, p1, p2)-sensitive hashing family H.

3

0

s

ω ω ω ω ω

Figure 2: Split into buckets with a random shift

3.1 Locality Sensitive Hashing based on p-Stable Distributions

The proposed hashing algorithm [1] first projects the input data point onto the 1-
dimensional line R. We first create a vector a, where every element is chosen randomly.
The vector a must have the same dimensionality as an input vector v. The dot product
a · v will be the projection of v onto the 1-dimensional line.

Now the projection will be randomly distributed, depending on how we chose the elements
of the vector a. We assume there exists a distribution, such that if we chose the elements
of the vector a randomly from that distribution, then the projections of two vectors v1
and v2 will be close together if they are close together in reality, and the projections will
be far apart if they are far apart in reality.

We cut the 1-dimensional line with the projections into equally sized segments of size ω.
Each segment will define a bucket for the hashing algorithm, thus every vector that is
projected into the same segment will be placed in the same bucket. We allow the buckets
to be shifted, so that they don’t necessarily have to begin at 0 (see figure 2).

As hash function, we will use h(v) = ba·v+sω c, where a is like before a vector with random
elements. Like mentioned, we allow a random shift s, thus we pick s uniformly and at
random from [0, ω].

We can amplify the gap between p1 and p2 by using multiple hash functions from the cho-
sen LSH family H. For that, we randomly select k such hash functions and concatenate
them to a function g(v):

g(v) =

h1(v)
h2(v)

...
hk(v)

For the final hashing scheme, we will use L different composed hashing functions gL(v).
Now we can optimize bucket size ω, number of hash functions k and number of composed
hash functions L depending on the data. We will take a look at some optimal values
provided by [1] and [2] and explain why those values are valid choices.

4

Our index structure is ready now, and we can generate the index for a set of points V .
For every point v ∈ V we do:

1. Evaluate g1(v), . . . , gL(v)

2. For every resulting bucket gi, insert reference to v

After that, to process a query q we do:

1. Evaluate the hash functions g1(q), . . . , gL(q)

2. For every bucket gi(q), retrieve all resulting points

3. Calculate distance between q and the retrieved points

4. If we find a near neighbor (‖q − v‖p ≤ R) we return it, otherwise we stop after
trying 3L points

4 p-Stable Distributions

Before, we assumed that there exists a distribution D, such that for a vector a where
each element is chosen from D:

• If two vectors v1 and v2 are close together, then their projection on the 1-dimensional
line is close together

• If two vectors v1 and v2 are far apart, then their projection on the 1-dimensional
line is far apart (as much as possible)

Stable distributions are a family of probability distributions that share a few character-
istics, one of which is the probability density function, that looks like a bell curve. Thus
values, that are near the peak of the probability density function are drawn with a higher
probability than values that are far away from that peak. Two well-known examples of
p-stable distributions are:

• The standard Cauchy distribution, that is 1-stable and has a probability density
function of f1(x) = 1

π
1

1+x2

• The standard Gaussian distribution, that is 2-stable and has a probability density
function of f2(x) = 1√

2π
e−

x2

2

The most interesting characteristic for us is (from [1]):

Definition 3 A distribution D is called p-stable, if there exists p ≥ 0 such that for any n
real numbers b1, . . . , bn and independent identically distributed variables X1, . . . , Xn with
distribution D, the random variable

∑
i biXi has the same distribution as the random

variable (
∑

i|bi|p)
1/pX, where X is a random variable with distribution D.

5

0

Figure 3: Multiple projections of a vector v

In our case, the numbers bi can be associated with the elements of a vector v. For the
random vector a we could chose the elements the way we chose the random variables Xi.
The dot product a · v is then the sum of products of corresponding vector elements, like
in definition 3.

Recall the definition of norms:

lp(v) = ‖v‖p =

(
d∑
i=1

|vi|p
)1/p

The distance between the projections of two vectors v1 and v2 is:

v1 · a− v2 · a = (v1 − v2) · a ∼ ‖v1 − v2‖p ·X

If we repeat this for a few random vectors a, we will receive some points on the 1-
dimensional line. The projected points will have the same distribution as the distribution
D where we chose the elements of a from, which was a p-stable distribution. Consid-
ering the probability density function, we can see intuitively that if we produce a few
projections of a vector using different random vectors, the projections may look similar
to figure 3.

The proposed method works for any p-stable distribution, since no other constraints
were made regarding that aspect. It is known that p-stable distributions exist for all
p ∈ (0, 2] (see [3]). The probability density function cannot be formulated for every
p-stable distribution, in fact only for a few special cases this is possible (a few of which
we mentioned before). But it is still possible to generate p-stable random variables by
sampling (see [4]).

5 Analysis

In this part, we try to verify some claims of the paper by using the proposed values for
k and L. In the first part we check if the hashing functions itself are indeed locality
sensitive. In the second part, we check if the composed, final hashing function holds the
conditions given by locality sensitivity.

6

5.1 Single-Component Hashing Algorithm

For this part, we will consider a hashing function g(v) consisting of only one component,
thus k = 1. For that reason, in this section we will only look at functions h(v) as we
defined before.

The hashing algorithm was defined as h(v) = ba·v+sω c, with a random vector a and a
random shift s. We want to calculate the probability that for a given random vector a,
the query point q and a vector v will be mapped to the same bucket. Let c = ‖q − v‖p
be the distance between q and v, and f(x) be the probability density function of the
absolute value of the p-stable distribution. We consider the probability density function
of the absolute value, because we’re only interested in the distance, not the direction.

We can define the probability of a collision as follows:

Pr =

[⌊
a · q + s

ω

⌋
=

⌊
a · v + s

ω

⌋]
A collision can only occur if both of these conditions are hold:

1. The distance between q and v is smaller than the bucket size (|q · a− v · a| < ω)

2. The points do not get inserted into neighboring buckets (thus there is no boundary
between q · a and v · a)

Let c = ‖q − v‖p. Due to p-stability, we can rewrite the first condition as

|(q − v) · a| < ω ⇐⇒ |cX| < ω

where X has the same distribution like the chosen p-stable distribution. Assume c is
positive. We can formulate this as an integral:

X <
ω

c
=⇒ p(c) =

∫ ω/c

0
f(u) du

The probability that the boundary lies between q · a and v · a is

|(q − v) · a|
ω

=
|cX|
ω

We can formulate this as integral again, using the upper bound given by the first condi-
tion:

1− |cX|
ω

=⇒ p(c) =

∫ ω/c

0
1− c · u

ω
du

7

We can now combine those probabilities and we receive the probability of a collision

p(c) =

∫ ω/c

0
f(u)

(
1− c · u

ω

)
du

If we now substitute the equation with t = c · u we receive

p(c) =

∫ ω

0

1

c
f

(
t

c

)(
1− t

ω

)
dt

For a fixed bucket size ω, the probability only depends on the distance c between the
points q and v. As we can see, this probability decreases monotonically with the distance.
Thus, for any p-stable distribution with absolute probability density function f(x) this
hashing algorithm is (r1, r2, p1, p2)-sensitive, for any r1 and r2 where r1 < r2.

5.2 Composed Hashing Algorithm

We want to show that for the proposed values (see [1] and [2])

k = log1/p2 (n)

and

L = nρ with ρ =
ln (1/p1)

ln (1/p2)

that the following two conditions hold:

• If there is a (R,ω)-Near Neighbor v ∈ V for a query q (thus ‖q − v‖p = c ≤ R),
then with constant probability it must hold that for some i ∈ 1, . . . , L the hash
values should collide (gi(q) = gi(v)).

• The total number of collisions with points v ∈ V such that ‖q− v‖p = c > (1+ ε)R
is less than 3L.

We can provide a lower bound for the probability defined in the first condition. For a
fixed i we get:

Pr [gi(q) = gi(v)] ≥ pk1

We use k = log1/p2(n):

8

pk1 = p
log1/p2 (n)

1 = nlog1/p2 (p1) = n
log(p1)

log(1/p2) = n
− log(1/p1)

log(1/p2) = n
− ln(1/p1)

ln(1/p2)

We use ρ = ln(1/p1)
ln(1/p2)

, where 0 < ρ < 1 due to p1 > p2. The probability of a collision now
for at least one i is:

Pr [∃i : gi(q) = gi(v)] ≥ 1− (1− n−ρ)L

We use L = nρ and limm→∞ (1−m−1)m = 1
e :

1− (1− n−ρ)n
ρ

≥ 1− 1

e
> 63%

For the second condition, we assume there is u ∈ V with ‖q − u‖p > (1− ε)R:

Pr [gi(q) = gi(u)] ≤ pk2 = p
log1/p2 (n)

2 = nlog1/p2 (p2) = n
− log(1/p2)

log(1/p2) =
1

n

For a set V of size n, the probability of a “bad” collision is thus at most 1. For L different
hashing functions the number of collisions is then at most L. Let C be the number of
collisions where ‖q − u‖p > (1− ε)R. By using Markov’s inequality, we can show:

Pr [C ≥ 3L] ≤ E(C)

3L
=

L

3L
=

1

3

6 Conclusion

The proofs mentioned in the paper [1] are replicable, but some of them are not carried
out explicitly. However, the authors documented the empirical evaluation thoroughly
and comprehensible.

The paper presented a new locality sensitive hashing scheme that is based on p-stable
distributions and works for all corresponding distance metrics lp, where 0 < p ≤ 2, and
it is also the first algorithm for p < 1.

The algorithm is easy to implement, as it only requires dot product calculations, drawing
random values and trivial operations. Since it is a hashing index, it can be efficiently
used in dynamic setups with lots of insert and update operations.

9

References

[1] M. Datar, et al., Locality-sensitive hashing scheme based on p-stable distributions,
Proceedings of the twentieth annual symposium on Computational geometry, ACM,
2004.

[2] P. Indyk and R. Motwani., Approximate nearest neighbor: towards removing the curse
of dimensionality, Proceedings of the thirtieth annual ACM symposium on Theory
of computing, ACM, 1998.

[3] V. M. Zolotarev, One-Dimensional Stable Distributions, Vol. 65 of Translations of
Mathematical Monographs, American Mathematical Society, 1986.

[4] J. M. Chambers, C. L. Mallows and B. W. Stuck, A method for simulating stable
random variables, Journal of the American Statistical Association, 71 (354), 340-344,
JSTOR, 1976.

10

