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Exercise sheet 5

EXERCISE 5.1:
In the last exercise sheet we considered singleton congestion games and showed that a Nash equilibrium can
always be reached in a polynomial number of steps. In this exercise we want to look at a generalization to
congestion games where we identify a subset Ri ⊆ R of the resources with each player i. She then chooses
an arbitrary subset of size exactly ki of Ri as her strategy, i.e. Si = {s|s ⊆ Ri and |s| = ki}. There are n
players, m resources, and the cost function of each resource takes positive natural numbers.

a) Show that there exist games of this type for which a better -response dynamics may need an exponential
number of steps to reach a Nash equilibrium.

Hint. Consider a game with only one player.

b) Explain where the proof with the rank function cr(i) from the last exercise sheet breaks down. Recall
the definition of cr(i):

cr(i) = |{cp(j)|∃p ∈ R and ∃j ∈ {1, . . . , n} s.t. cp(j) ≤ cr(i)}|.

EXERCISE 5.2:
The so called Pigou example (depicted below) is the famous simple example that shows that the price of
anarchy in routing games is at least 4/3. We achieve this by setting the lower link to have a constant
latency function 1 and the upper link to have a linear latency x. Consider a situation where no constant
function can be used as a latency function, but only the identity function lIDe (x) = x and some continuous
non-decreasing function le, for which we know that le(0) = 1. Given some arbitrary such function le and
the identity function lIDe , can you modify Pigou’s example (by changing the topology and using only the two
types of functions) and come arbitrarily close to the ratio 4/3?
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EXERCISE 5.3:
Consider the routing game from the lecture and the proof showing that the price of anarchy is at most 4/3.
Prove the following, not-presented part of the proof.

Given a Nash flow f (i.e., a flow that is Nash equilibrium) and an arbitrary flow f ′ (feasible for the problem),
show that ∑

e∈E
le(fe) · fe ≤

∑
e∈E

le(fe) · f ′e.

EXERCISE 5.4:
Recall the Load Balancing Game presented in the lecture, where we have m machines M1, . . . ,Mm and n
jobs with execution times w1, . . . , wn, respectively. Our purpose is to provide a schedule for the jobs that
minimizes the time at which every job is finished (the so called makespan).

a) We want to prove that the game is a potential game. Recall the definition of

Φ: S −→ X

s 7−→ Φ(s) := (α1, α2, . . . , αm),

where (α1, α2, . . . , αm) is the ordered sequence of {l1(s), . . . , lm(s)} with α1 ≥ α2 ≥ . . . ≥ αm. Then
X is totally ordered (by the lexicographical ordering). Complete the proof by showing that Φ is a
potential function, i.e. prove that:

s is not a NE ⇒ ∀ better-responses s′i we have Φ(s′) < Φ(s), s′ = (s′i, s−i).

Hint: Look at the load vector of s and a player i who wants to switch his job wi from x to y:
(. . . , x+ wi, . . . , y, . . .). Argue that then s′ comes lexicographically before s.

b) Show that even in the Generalized Load Balancing Game, where every machine M1, . . . ,Mm has a
different speed, the load balancing game is still a potential game. The speed of a machine Mj is a
constant factor sj such that every job of weight wi on machine j takes wi

sj
time.


