

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich

Institute of Theoretical Computer Science Peter Widmayer Matúš Mihalák Andreas Bärtschi

Algorithmic Game Theory HS 2013

Exercise sheet 7

EXERCISE 7.1:

Recall the following two definitions (where L denotes the set of all the possible preferences of the players over the set of alternatives A).

- i) A social choice function $f: L^n \to L$ is *truthful* if it cannot be *strategically manipulated*. A player *i* can strategically manipulate a social choice function $f: L^n \to L$ if there is a strategy profile $s := (\succ_1, \ldots, \succ_n) \in L^n$ and some alternate strategy $\succ'_i \in L$, such that player *i* already preferred *a'* to *a* in his original strategy \succ_i , but by changing some of his preferences he achieves that *a'* is getting elected, i.e. $a' \succ_i a$, where a = f(s) and $a' = f(\succ'_i, s_{-i})$.
- ii) A social choice function f is monotone if the strategic change from \succ_i to \succ'_i of a player i, which is causing the outcome of f to change from a to a', implies that this player changed his preference from $a \succ_i a'$ to $a' \succ'_i a$, i.e.

 \forall preference profiles $s := (\succ_1 \ldots, \succ_i, \ldots, \succ_n), \forall \succ'_i$ s.t. $f(s) = a, f(\succ'_i, s_{-i}) = a' \Longrightarrow a \succ_i a', a' \succ'_i a$.

Prove that a social choice function is truthful if and only if it is monotone.

EXERCISE 7.2:

Consider the following questions regarding social welfare and social choice functions.

- a) If F is a dictatorship, how many dictators can it have?
- b) Consider elections in which there are only two candidates a and b, i.e. |A| = 2. Thus the preference of every player i is either $a \succ_i b$ or $b \succ_i a$. The *majority* vote between two candidates chooses the candidate that is preferred by the majority of the players. In case of a tie, a is chosen. Show that the majority vote, considered as a social choice function, is truthful, i.e. no player can strategically manipulate this voting system.
- c) Can you devise for the case of b) a social welfare function F which satisfies unanimity, consistency, and which is not a dictatorship?
- d) Can you devise a truthful social choice function f for the case when $|A| \ge 3$, which is not onto (that is, at least a candidate can never be elected)?
- e) How many different social welfare functions that satisfy unanimity and consistency are there for the setting with n voters and $|A| \ge 3$?
- f) What can you say in e) if |A| = 2?
- g) Consider the following social choice function on $|A| \ge 3$: Take a pair of candidates, check which candidate is preferred by the majority and discard the other candidate. Iterate until only one candidate is left. Is this election scheme truthful?

EXERCISE 7.3:

In the proof of Arrow's theorem, we use the following auxiliary lemma, which generalizes the consistency property (also known as the independence of irrelevant alternatives) of a social welfare function.

Lemma (Pairwise Neutrality): Every social welfare function F that satisfies unanimity and consistency also satisfies pairwise neutrality, i.e.

 $\forall a, b, c, d \in A, \forall (\succ_1, \ldots, \succ_n) \in L^n, \forall (\succ'_1, \ldots, \succ'_n) \in L^n: \text{ If } \forall i (a \succ_i b \Leftrightarrow c \succ'_i b) \text{ then } a \succ b \Leftrightarrow c \succ' b.$

Prove the lemma for the special case where c, d are different from a, b. *Hint:* Try to "merge" preferences.

EXERCISE 7.4:

Finish the proof of the Gibbard-Satterthwaite theorem from the lecture, i.e., prove that the social welfare function F defined from the social choice function $f: L^n \to A$ (which is onto, and satisfies unanimity, consistency, and is not a dictatorship), is not a dictatorship. Recall that F has been defined by setting $a \succ b$ iff $f(\succ_1^{\{a,b\}}, \succ_2^{\{a,b\}}, \ldots, \succ_n^{\{a,b\}}) = a$.