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Exercise sheet 7

EXERCISE 7.1:
Recall the following two definitions (where L denotes the set of all the possible preferences of the players
over the set of alternatives A).

i) A social choice function f : Ln → L is truthful if it cannot be strategically manipulated.
A player i can strategically manipulate a social choice function f : Ln → L if there is a strategy profile
s := (�1, . . . ,�n) ∈ Ln and some alternate strategy �′i∈ L, such that player i already preferred a′ to
a in his original strategy �i, but by changing some of his preferences he achieves that a′ is getting
elected, i.e. a′ �i a, where a = f(s) and a′ = f(�′i, s−i).

ii) A social choice function f is monotone if the strategic change from �i to �′i of a player i, which is
causing the outcome of f to change from a to a′, implies that this player changed his preference from
a �i a

′ to a′ �′i a, i.e.

∀ preference profiles s := (�1 . . . ,�i, . . . ,�n),∀ �′i s.t. f(s) = a, f(�′i, s−i) = a′ =⇒ a �i a
′, a′ �′i a.

Prove that a social choice function is truthful if and only if it is monotone.

EXERCISE 7.2:
Consider the following questions regarding social welfare and social choice functions.

a) If F is a dictatorship, how many dictators can it have?

b) Consider elections in which there are only two candidates a and b, i.e. |A| = 2. Thus the preference
of every player i is either a �i b or b �i a. The majority vote between two candidates chooses the
candidate that is preferred by the majority of the players. In case of a tie, a is chosen. Show that
the majority vote, considered as a social choice function, is truthful, i.e. no player can strategically
manipulate this voting system.

c) Can you devise for the case of b) a social welfare function F which satisfies unanimity, consistency,
and which is not a dictatorship?

d) Can you devise a truthful social choice function f for the case when |A| ≥ 3, which is not onto (that
is, at least a candidate can never be elected)?

e) How many different social welfare functions that satisfy unanimity and consistency are there for the
setting with n voters and |A| ≥ 3?

f) What can you say in e) if |A| = 2?

g) Consider the following social choice function on |A| ≥ 3: Take a pair of candidates, check which
candidate is preferred by the majority and discard the other candidate. Iterate until only one candidate
is left. Is this election scheme truthful?



EXERCISE 7.3:
In the proof of Arrow’s theorem, we use the following auxiliary lemma, which generalizes the consistency
property (also known as the independence of irrelevant alternatives) of a social welfare function.

Lemma (Pairwise Neutrality): Every social welfare function F that satisfies unanimity and consistency
also satisfies pairwise neutrality, i.e.

∀a, b, c, d ∈ A,∀(�1, . . . ,�n) ∈ Ln,∀(�′1, . . . ,�′n) ∈ Ln : If ∀i(a �i b⇔ c �′i b) then a � b⇔ c �′ b.

Prove the lemma for the special case where c, d are different from a, b.
Hint: Try to “merge” preferences.

EXERCISE 7.4:
Finish the proof of the Gibbard-Satterthwaite theorem from the lecture, i.e., prove that the social welfare
function F defined from the social choice function f : Ln → A (which is onto, and satisfies unanimity,
consistency, and is not a dictatorship), is not a dictatorship.

Recall that F has been defined by setting a � b iff f(�{a,b}1 ,�{a,b}2 , . . . ,�{a,b}n ) = a.


