

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich

Institute of Theoretical Computer Science Peter Widmayer Matúš Mihalák Andreas Bärtschi

Algorithmic Game Theory HS 2013

Exercise sheet 11

In the Generalized Second-Price (GSP) Auction, n advertisement slots with click-through rates $r_1 \ge r_2 \ge \ldots \ge r_n \ge 0$, are auctioned off to n buyers with per-click valuations $v_1 \ge v_2 \ge \ldots \ge v_n > 0$. In GSP, each buyer i casts a bid b_i , the mechanism sorts the bids in a decreasing order, assigns the k-th highest bidder the corresponding slot k, $k = 1, \ldots, n$, and charges it the price-per-click equal to the bid b_{k+1} (with the convention that $b_{n+1} := 0$). Let $\pi(j)$ denote the player that is assigned to slot $j, j = 1, 2, \ldots, n$. (Observe that π is a permutation of $(1, 2, \ldots, n)$.) Then, the valuation of player $\pi(j)$ of the slot j is $v_{\pi(j)} \cdot r_j$, and the payment of the player is $b_{\pi(j+1)} \cdot r_j$. Thus, the player's payoff is $v_{\pi(j)} \cdot r_j - b_{\pi(j+1)} \cdot r_j$.

EXERCISE 11.1:

Consider the GSP auction as a strategic game, where the strategies of players are the bids b_i , and the payoffs are given by the result of the GSP auction. The *social welfare* of a strategic profile $b = (b_1, \ldots, b_n)$ is the total valuation of the slots assigned to players, i.e., $SW(b) := \sum_{j=1}^{n} v_{\pi(j)} \cdot r_j$. An assignment of slots to bidders that maximizes this sum is called a *social optimum*, and denoted by OPT. We are interested in price of anarchy (PoA), which is now defined as the ratio

$$\frac{\text{SW(OPT)}}{\text{SW(worst NE)}} = \frac{\sum_{j=1}^{n} v_j \cdot r_j}{\sum_{j=1}^{n} v_{\pi^*(j)} \cdot r_j}$$

where $\pi^*(j)$, j = 1, ..., n is the assignment of buyers to slots in a pure-strategy Nash equilibrium of largest social welfare.

- a) Show that an assignment where $\pi(j) = j$ is a social optimum, having social welfare $\sum_{j=1}^{n} v_j \cdot r_j$.
- b) Show that PoA can be arbitrary bad, i.e., show that for any α > 1 there exists a setting in which the PoA is larger than α.
 (Hint: You may consider a Vickrey auction translated into GSP.)

- c) Consider the *restriction* of GSP game in which every player *i* can only bid $b_i \leq v_i$ (i.e., the set of strategies S_i is equal to $\{x : x \leq v_i\}$.
 - i) Consider a pure Nash equilibrium, and let $\pi(j)$ be the buyer assigned to slot j in this Nash equilibrium. Prove that for every j and j', the following holds:

$$v_{\pi(j')} \cdot r_{j'} + v_{\pi(j)} \cdot r_j \ge v_{\pi(j')} \cdot r_j,$$

or, equivalently,

$$\frac{r_{j'}}{r_j} + \frac{v_{\pi(j)}}{v_{\pi(j')}} \ge 1.$$

(Hint: Use the fact that in NE no player wants to change its strategy to obtain a different slot.)

ii) Using the above inequality, prove that in any restricted GSP game, the price of anarchy is at most two.