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Exercise sheet 11

In the Generalized Second-Price (GSP) Auction, n advertisement slots with click-through rates r1 ≥ r2 ≥
. . . ≥ rn ≥ 0, are auctioned off to n buyers with per-click valuations v1 ≥ v2 ≥ . . . ≥ vn > 0. In GSP, each
buyer i casts a bid bi, the mechanism sorts the bids in a decreasing order, assigns the k-th highest bidder
the corresponding slot k, k = 1, . . . , n, and charges it the price-per-click equal to the bid bk+1 (with the
convention that bn+1 := 0). Let π(j) denote the player that is assigned to slot j, j = 1, 2, . . . , n. (Observe
that π is a permutation of (1, 2, . . . , n).) Then, the valuation of player π(j) of the slot j is vπ(j) · rj , and the
payment of the player is bπ(j+1) · rj . Thus, the player’s payoff is vπ(j) · rj − bπ(j+1) · rj .

EXERCISE 11.1:
Consider the GSP auction as a strategic game, where the strategies of players are the bids bi, and the payoffs
are given by the result of the GSP auction. The social welfare of a strategic profile b = (b1, . . . , bn) is the
total valuation of the slots assigned to players, i.e., SW(b) :=

∑n
j=1 vπ(j) · rj . An assignment of slots to

bidders that maximizes this sum is called a social optimum, and denoted by OPT. We are interested in price
of anarchy (PoA), which is now defined as the ratio

SW(OPT)

SW(worst NE)
=

∑n
j=1 vj · rj∑n

j=1 vπ∗(j) · rj
,

where π∗(j), j = 1, . . . , n is the assignment of buyers to slots in a pure-strategy Nash equilibrium of largest
social welfare.

a) Show that an assignment where π(j) = j is a social optimum, having social welfare
∑n
j=1 vj · rj .

b) Show that PoA can be arbitrary bad, i.e., show that for any α > 1 there exists a setting in which the
PoA is larger than α.
(Hint: You may consider a Vickrey auction translated into GSP.)

c) Consider the restriction of GSP game in which every player i can only bid bi ≤ vi (i.e., the set of
strategies Si is equal to {x : x ≤ vi}.

i) Consider a pure Nash equilibrium, and let π(j) be the buyer assigned to slot j in this Nash
equilibrium. Prove that for every j and j′, the following holds:

vπ(j′) · rj′ + vπ(j) · rj ≥ vπ(j′) · rj ,

or, equivalently,
rj′

rj
+
vπ(j)

vπ(j′)
≥ 1.

(Hint: Use the fact that in NE no player wants to change its strategy to obtain a different slot.)

ii) Using the above inequality, prove that in any restricted GSP game, the price of anarchy is at most
two.


