

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich

Department Informatik Markus Püschel David Steurer Chih-Hung Liu Stefano Leucci

Peter Widmayer

Datenstrukturen & Algorithmen

Blatt P7

HS 17

Solution for Exercise P7.1 Inversions.

The problem can be solved by a variant of the Mergesort algorithm. In particular, we design a recursive procedure SortAndCount that takes an array $A = \langle a_0, a_1, \ldots, a_{n-1} \rangle$ of n distinct integers as input, sorts A, and returns the number of inversions in A. If $n \leq 1$ then SortAndCount is trivial since A is already sorted and contains 0 inversions. If $n \geq 2$, Algorithm SortAndCount splits A into two arrays $A_1 = \langle a_0, \ldots, a_{\lfloor \frac{n-1}{2} \rfloor} \rangle$ and $A_2 = \langle a_{\lceil \frac{n}{2} \rceil}, \ldots, a_{n-1} \rangle$ containing the first $\lceil \frac{n}{2} \rceil$ and the last $\lfloor \frac{n}{2} \rfloor$ elements of A, respectively.¹ Then, SortAndCount recursively invokes itself on A_1 (resp. A_2) to compute the number of inversions η_1 of A_1 (resp. η_2 of A_2) and the sorted version A'_1 of A_1 (resp. the sorted version A'_2 of A_2). Finally, A'_1 and A'_2 are merged into a single sorted vector A' and the number of inversions of A is computed as described in the following.

Observe that an inversion between two elements a_i and a_j (with i < j) in A falls into one of three categories:

- 1. $i \leq \lfloor \frac{n-1}{2} \rfloor$ and $j \leq \lfloor \frac{n-1}{2} \rfloor$, i.e., a_i and a_j both belong to A_1 .
- 2. $i \geq \lfloor \frac{n}{2} \rfloor$ and $j \geq \lfloor \frac{n}{2} \rfloor$, i.e., a_i and a_j both belong to A_2 .
- 3. $i \leq \lfloor \frac{n-1}{2} \rfloor$ and $j \geq \lfloor \frac{n}{2} \rfloor$, i.e., a_i belongs to A_1 and a_j belongs to A_2 .

Since the number of inversions of A that fall into category 1 (resp. 2) is exactly η_1 (resp. η_2) we only need to find the number η_3 of inversions that fall in category 3. This can be done by a modification of the Merge procedure of Mergesort: initially $\eta_3 = 0$ and A' is empty, then Merge iteratively compares the smallest element x in A'_1 with the smallest element y in A'_2 .² If x < y then x is removed from A'_1 and added to A'. Notice that, in this case, all the elements in A'_2 are larger than x and hence there are no inversions between x and the remaining elements in A'_2 . If x > y then y is removed from A'_2 , y is added to A', and η_3 is incremented by $|A'_1|$. This is because y is smaller than all the elements in A'_1 and therefore there are exactly $|A_1|$ inversions of category 3 between y and the elements in A'_1 .

Finally, SortAndCount copies A' into A and returns $\eta_1 + \eta_2 + \eta_3$.

¹Notice that this operation creates no new inversions in A_1 and A_2 .

²The case in which one of A'_1 and A'_2 is empty is easily handled by adding all the missing elements to A'.

Solution for Exercise P7.2 Mountain Trip.

We first consider the following auxiliary problem: given a sorted vector $A = \langle a_1, a_2, \ldots, a_\eta \rangle$ of m distinct integers and two additional numbers x, y, compute the number N(A, x, y) of elements a in A such that $x \leq a \leq y$. This problem can be solved in $O(\log \eta)$ time by performing two binary searches on A: the first binary search looks for the largest index $i \leq m$ such that $a_i < x$, while the second binary search looks for the smallest index j > 0 such that $a_j > y$.³. The elements of A between x and y are exactly the ones in the sub-array $\langle a_{i+1}, a_{i+2} \ldots, a_{j-2} \rangle$ and hence N(A, x, y) = j - i + 1.

To solve the original problem we first sort the arrays $\langle s_1, \ldots, s_S \rangle$ and $\langle m_1, \ldots, m_M \rangle$ containing the positions of the sea and mountain cities, respectively. Let S' and M' be the sorted vectors, respectively, and notice that this step requires $O(S \log S + M \log M)$ time (e.g., using Mergesort). Then, we examine one trip ad a time: when the *i*-th trip is considered we check whether $N(S', b_i, e_i) > 0$ and, if this is the case, the trip is ignored. Otherwise, if $N(S', b_i, e_i) = 0$, we compute the number $N(M', b_i, e_i)$ of mountain cities visited by the trip and we keep track of the best trip examined so far. The time required by this step is $O(\log S + \log M)$ per trip, therefore the total time spent by the algorithm is $O((T+S)\log S + (T+M)\log M) = O((M + S + T)\log(M + S))$.

³If $a_0 \ge x$ then let i = 0. If $a_m \le y$ then let j = m + 1.