
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Department Informatik
Markus Püschel David Steurer Peter Widmayer
Chih-Hung Liu
Stefano Leucci

Datenstrukturen & Algorithmen Blatt P7 HS 17

Solution for Exercise P7.1 Inversions.

The problem can be solved by a variant of the Mergesort algorithm. In particular, we design
a recursive procedure SortAndCount that takes an array A = 〈a0, a1, . . . , an−1〉 of n distinct
integers as input, sorts A, and returns the number of inversions in A. If n ≤ 1 then SortAndCount

is trivial since A is already sorted and contains 0 inversions. If n ≥ 2, Algorithm SortAndCount

splits A into two arrays A1 = 〈a0, . . . , abn−1
2
c〉 and A2 = 〈adn

2
e, . . . , an−1〉 containing the first dn2 e

and the last bn2 c elements of A, respectively.1 Then, SortAndCount recursively invokes itself on
A1 (resp. A2) to compute the number of inversions η1 of A1 (resp. η2 of A2) and the sorted
version A′1 of A1 (resp. the sorted version A′2 of A2). Finally, A′1 and A′2 are merged into a single
sorted vector A′ and the number of inversions of A is computed as described in the following.

Observe that an inversion between two elements ai and aj (with i < j) in A falls into one of
three categories:

1. i ≤ bn−12 c and j ≤ bn−12 c, i.e., ai and aj both belong to A1.

2. i ≥ dn2 e and j ≥ dn2 e, i.e., ai and aj both belong to A2.

3. i ≤ bn−12 c and j ≥ dn2 e, i.e., ai belongs to A1 and aj belongs to A2.

Since the number of inversions of A that fall into category 1 (resp. 2) is exactly η1 (resp. η2)
we only need to find the number η3 of inversions that fall in category 3. This can be done by a
modification of the Merge procedure of Mergesort: initially η3 = 0 and A′ is empty, then Merge

iteratively compares the smallest element x in A′1 with the smallest element y in A′2.
2 If x < y

then x is removed from A′1 and added to A′. Notice that, in this case, all the elements in A′2 are
larger than x and hence there are no inversions between x and the remaining elements in A′2.
If x > y then y is removed from A′2, y is added to A′, and η3 is incremented by |A′1|. This is
because y is smaller than all the elements in A′1 and therefore there are exactly |A1| inversions
of category 3 between y and the elements in A′1.

Finally, SortAndCount copies A′ into A and returns η1 + η2 + η3.

1Notice that this operation creates no new inversions in A1 and A2.
2The case in which one of A′1 and A′2 is empty is easily handled by adding all the missing elements to A′.

Solution for Exercise P7.2 Mountain Trip.

We first consider the following auxiliary problem: given a sorted vector A = 〈a1, a2, . . . , aη〉 of
m distinct integers and two additional numbers x, y, compute the number N(A, x, y) of elements
a in A such that x ≤ a ≤ y. This problem can be solved in O(log η) time by performing two
binary searches on A: the first binary search looks for the largest index i ≤ m such that ai < x,
while the second binary search looks for the smallest index j > 0 such that aj > y.3. The
elements of A between x and y are exactly the ones in the sub-array 〈ai+1, ai+2 . . . , aj−2〉 and
hence N(A, x, y) = j − i+ 1.

To solve the original problem we first sort the arrays 〈s1, . . . , sS〉 and 〈m1, . . . ,mM 〉 containing
the positions of the sea and mountain cities, respectively. Let S′ and M ′ be the sorted vectors,
respectively, and notice that this step requires O(S logS+M logM) time (e.g., using Mergesort).
Then, we examine one trip ad a time: when the i-th trip is considered we check whether
N(S′, bi, ei) > 0 and, if this is the case, the trip is ignored. Otherwise, if N(S′, bi, ei) = 0, we
compute the number N(M ′, bi, ei) of mountain cities visited by the trip and we keep track of
the best trip examined so far. The time required by this step is O(logS + logM) per trip,
therefore the total time spent by the algorithm is O((T + S) logS + (T +M) logM) = O((M +
S + T) log(M + S)).

3If a0 ≥ x then let i = 0. If am ≤ y then let j = m+ 1.

2

