
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Department Informatik
Markus Püschel David Steurer Peter Widmayer
Chih-Hung Liu
Stefano Leucci

Datenstrukturen & Algorithmen Blatt P9 HS 17

Solution for Exercise P9.1 Dyno.

The problem can be solved by using a dynamic programming algorithm. For i = 0, . . . , L − 1,
we let OPT[i] be true iff Dyno can reach segment i. Moreover, let Ei be true iff segment i is
empty. By the problem definition we know that OPT[0] = true. For i > 0, OPT[i] = true if (i)
segment i is empty and (ii) at least one of the following two conditions holds:

• Dyno can reach segment i− 1 (as Dyno can walk from segment i− 1 to segment i); or

• Dyno can reach segment i − D, if it exists (as Dyno can jump from segment i − D to
segment i).

Otherwise OPT[i] = false. In formulas: OPT[i] = Ei ∧
(
OPT[i− 1] ∨OPT[i−D]

)
, where we

assumed that OPT[j] = false for j < 0.

All the values OPT[i] can be computed in time O(L) by considering the L segments in increasing
order of index while keeping track of the position of the next cactus (if any). That is, if cacti
is the array containing the positions of the C cacti (in sorted order), the algorithm maintains
the following invariant: immediately before (resp. after) segment i is considered, the algorithm
stores the smallest index k such that cacti[k] ≥ i (resp. cacti[k] > i), if any. Notice that
updating k only requires constant time per segment and that, once k is known, it is possible to
check whether Ei = true in constant time.

The solution of the problem is now arg maxi=0,...,L−1OPT[i], which can be found in O(L) time.



Solution for Exercise P9.2 Light Coffee.

We define EVEN[i][j] (resp. ODD[i][j]) to be the maximum number of Grahams that Alice
can remove from her wallet if she must pay exactly j Flops, can use only the first i coins, and
needs to pay using an even (resp. odd) number of coins. If there is no way to satisfy the above
constraints, then we let EVEN[i][j] (resp. ODD[i][j]) be equal to a sufficiently small value that
we denote by −∞.

Clearly, EVEN[0][0] = 0, EVEN[0][j] = −∞ for j 6= 0, and EVEN[i][j] = −∞ for any i and
j < 0. Similarly, ODD[i][j] = −∞ whenever i = 0 (regardless of j) or j < 0 (regardless of i).

Consider EVEN[i][j] for i > 0 and j ≥ 0 and notice that, if Alice does not use the i-th coin,
EVEN[i][j] = EVEN[i− 1][j]. On the contrary, if Alice does use the i-th coin, then she needs
to pay j − vi Flops using an odd number of coins selected from the first i− 1 coins. Hence:

EVEN[i][j] = max{EVEN[i− 1][j], wi + ODD[i− 1][j − vi]},

and, with a similar reasoning:

ODD[i][j] = max{ODD[i− 1][j], wi + EVEN[i− 1][j − vi]}.

Therefore the problem can be solved by using the previous relations in a dynamic programming
algorithm that computes all EVEN[i][j] and ODD[i][j] in increasing order of i = 0, . . . , n.
Notice that it suffices to store EVEN[i][j] and ODD[i][j] for 0 ≤ i ≤ n and 0 ≤ j ≤ C. Since
each value can be computed in constant time, the algorithm requires O(n · C) time.

The solution to the problem is exactly the value of OPT[n][C].

2


