Eidgenossische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ziirich Federal Institute of Technology at Zurich

Department Informatik

Markus Piischel David Steurer Peter Widmayer
Chih-Hung Liu

Stefano Leucci

Datenstrukturen & Algorithmen Blatt P9 HS 17

Solution for Exercise P9.1 Dyno.

The problem can be solved by using a dynamic programming algorithm. For ¢ =0,..., L — 1,
we let OPTYJi] be true iff Dyno can reach segment ¢. Moreover, let F; be true iff segment i is
empty. By the problem definition we know that OPT[0] = true. For i > 0, OPTJ[i] = true if (i)
segment i is empty and (ii) at least one of the following two conditions holds:

e Dyno can reach segment i — 1 (as Dyno can walk from segment i — 1 to segment i); or

e Dyno can reach segment ¢ — D, if it exists (as Dyno can jump from segment i — D to
segment 7).

Otherwise OPT/[i] = false. In formulas: OPT[i] = E; A (OPT[i — 1] V OPT[i — D]), where we
assumed that OPT[j] = false for j < 0.

All the values OPTYi] can be computed in time O(L) by considering the L segments in increasing
order of index while keeping track of the position of the next cactus (if any). That is, if cacti
is the array containing the positions of the C' cacti (in sorted order), the algorithm maintains
the following invariant: immediately before (resp. after) segment i is considered, the algorithm
stores the smallest index k such that cactilk] > i (resp. cactilk] > i), if any. Notice that
updating k£ only requires constant time per segment and that, once k is known, it is possible to
check whether F; = true in constant time.

The solution of the problem is now arg max;—g,. . r—1 OPT][i], which can be found in O(L) time.

Solution for Exercise P9.2 Light Coffee.

We define EVEN[i][j] (resp. ODDJi|[j]) to be the maximum number of Grahams that Alice
can remove from her wallet if she must pay exactly j Flops, can use only the first 7 coins, and
needs to pay using an even (resp. odd) number of coins. If there is no way to satisfy the above
constraints, then we let EVEN[i][j] (resp. ODDJi][j]) be equal to a sufficiently small value that
we denote by —oo.

Clearly, EVEN]0][0] = 0, EVEN]0][j] = —oo for j # 0, and EVEN[i|[j] = —oo for any i and
j < 0. Similarly, ODDi][j] = —oo whenever i = 0 (regardless of j) or j < 0 (regardless of 7).

Consider EVEN(i|[j] for ¢ > 0 and j > 0 and notice that, if Alice does not use the i-th coin,
EVEN][i][j] = EVEN[i — 1][j]. On the contrary, if Alice does use the i-th coin, then she needs
to pay j — v; Flops using an odd number of coins selected from the first ¢ — 1 coins. Hence:

EVEN][i][j] = max{EVEN[i — 1][j], w; + ODDJ[i — 1][j — v]},
and, with a similar reasoning:

ODD[i][j] = max{ODD][i — 1][j], w; + EVEN[i — 1][j — v;]}.

Therefore the problem can be solved by using the previous relations in a dynamic programming
algorithm that computes all EVEN[i|[j] and ODD[i][j] in increasing order of i = 0,...,n.
Notice that it suffices to store EVEN[i|[j] and ODD[i][j] for 0 <i <n and 0 < j < C. Since
each value can be computed in constant time, the algorithm requires O(n - C') time.

The solution to the problem is exactly the value of OPT[n][C].

