Vorlesungstermin 4: Graphenalgorithmen II

Markus Püschel David Steurer

talks2.dsteurer.org/graphenalgorithmen2.pdf

Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

allgemeines Thema: Graphen durchlaufen

allgemeines Thema: Graphen durchlaufen

zwei Ansätze: Tiefensuche und Breitensuche

allgemeines Thema: Graphen durchlaufen

zwei Ansätze: Tiefensuche und Breitensuche

wichtige Bausteine um Graphenprobleme zu lösen

allgemeines Thema: Graphen durchlaufen

zwei Ansätze: Tiefensuche und Breitensuche

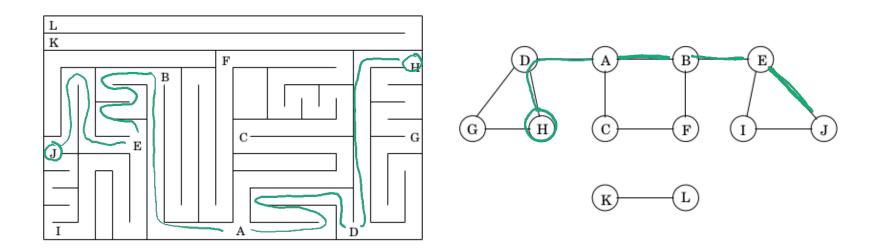
wichtige Bausteine um Graphenprobleme zu lösen

Beispiele: (heute)

- topologische Sortierung (Tiefensuche)
- kürzeste Wege (Breitensuche)

Übersicht: Vorlesung bis heute Graphen Algorithmen Topologische Bipartitheit Braitensuche Enler tour kosten m odell Lanfzeit worst-case Induktion Effizienz

Irrgärten erkunden



mögliche Strategie:

- markiere besuchte Stellen mit Kreide
- verwende Wollknäuel, um zu Verzweigungen zurückzufinden, die noch nicht vollständig erkundet sind

als Graphproblem: gegeben ein Graph (z.B. als Adjazenzliste) und ein Startknoten v, welche Knoten sind von v erreichbar?

Irrgärten erkunden

mögliche Strategie:

- markiere besuchte Stellen mit Kreide
- verwende Wollknäuel, um zu Verzweigungen zurückzufinden, die noch nicht vollständig erkundet sind

als Graphproblem: gegeben ein Graph (z.B. als Adjazenzliste) und ein Startknoten v, welche Knoten sind von v erreichbar?

statt Kreide und Wollknäuel verwenden wir **Datenstrukturen**

Irrgärten erkunden

mögliche Strategie:

- markiere besuchte Stellen mit Kreide
- verwende Wollknäuel, um zu Verzweigungen zurückzufinden, die noch nicht vollständig erkundet sind

statt Kreide: **Tabelle** (en: array)

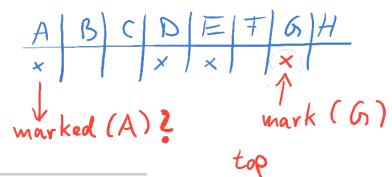
der Länge *n* (Anzahl Knoten)

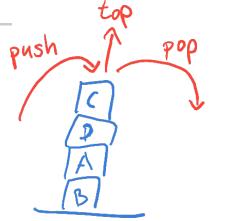
Operationen: (1) einen Knoten markieren, (2) testen ob ein Knoten markiert ist

Laufzeiten: jeweils O(1)

statt Wollknäuel: **Stapel** (en: stack)

Operationen: (1) einen Knoten oben auf Stapel legen, (2) auf obersten Knoten zugreifen, (3) obersten Knoten entfernen Laufzeiten: jeweils O(1)



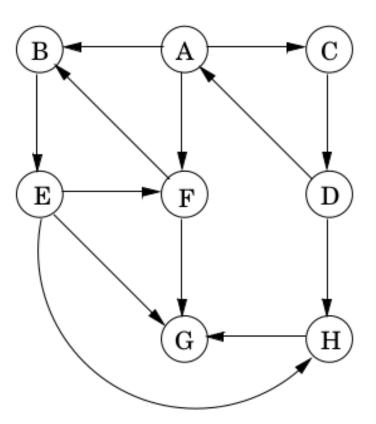


```
\begin{aligned} &\text{Tiefensuche}(G,v)\text{: (en. depth-first search)} \\ &\text{1. } S \leftarrow \text{Stapel mit Knoten } v \\ &\text{2. while } S \text{ nicht leer do} \\ &\text{1. } w \leftarrow \text{top}(S) \\ &\text{2. if } w \text{ schon besucht then pop}(S) \\ &\text{3. if } w \text{ noch nicht besucht then markiere } w \text{ als besucht } \\ &\text{ und push}(S, \{u \in N_G^+(w) \mid u \text{ noch nicht besucht}\}) \end{aligned}
```

Startknoten: A

Iteration: 0

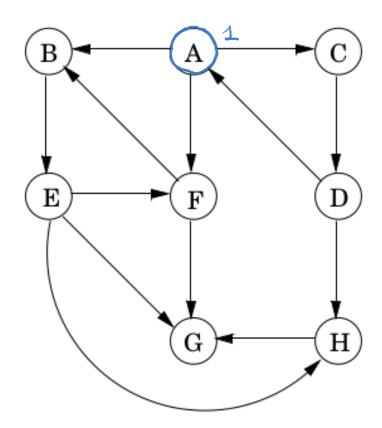
besuchte Knoten:

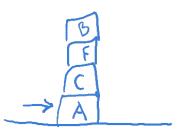


Startknoten: A

Iteration: 1

besuchte Knoten:

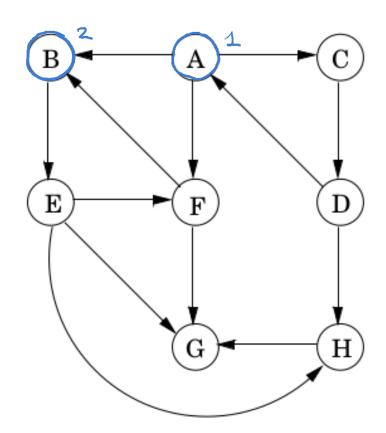


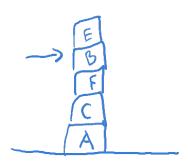


Startknoten: A

Iteration: 2

besuchte Knoten:

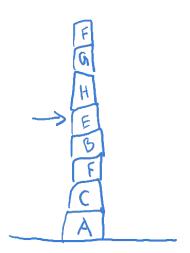


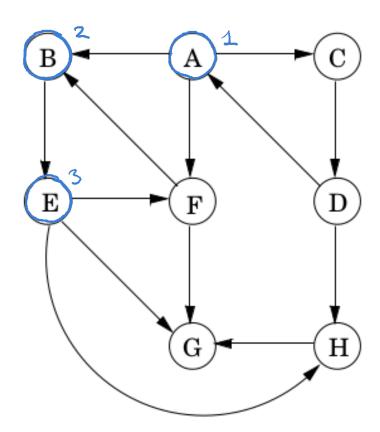


Startknoten: A

Iteration: 3

besuchte Knoten:

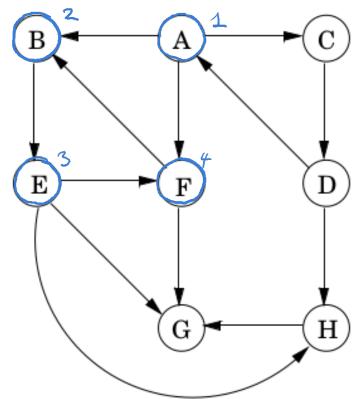


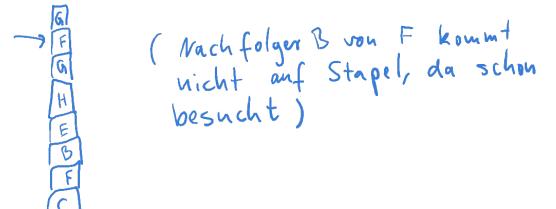


Startknoten: A

Iteration: 4

besuchte Knoten:

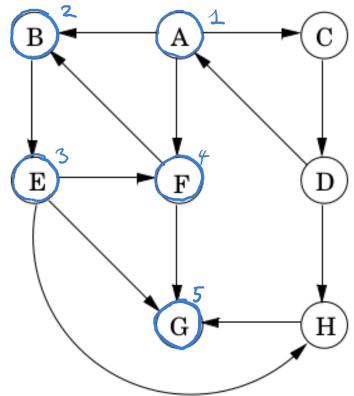




Startknoten: A

Iteration: 5

besuchte Knoten:

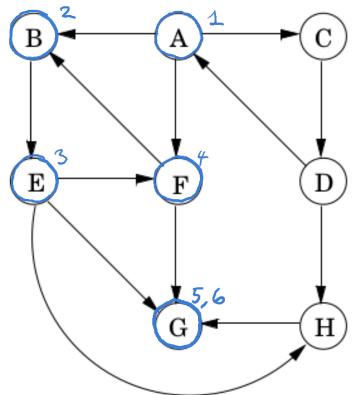


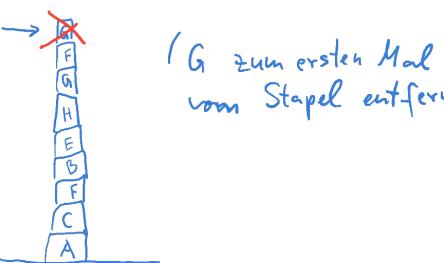


Startknoten: A

Iteration: 6

besuchte Knoten:



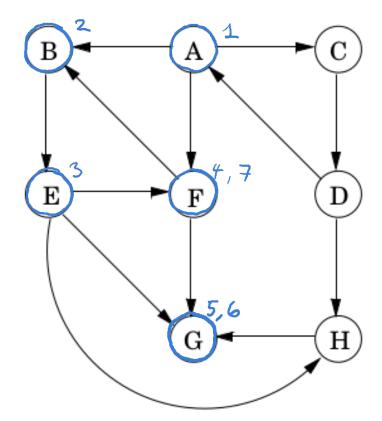


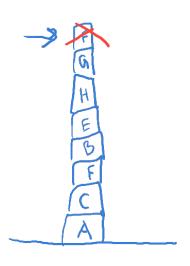
Startknoten: A

Iteration: 7

besuchte Knoten:

Stapel:





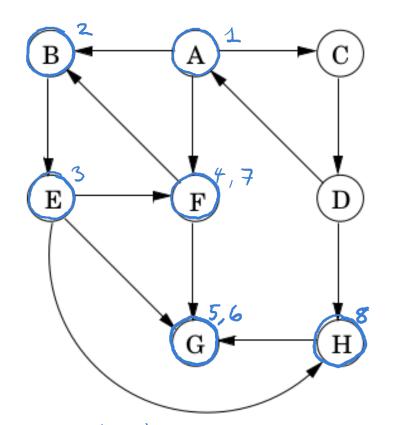
(Fzum ersten Mal von Stapel entsent)

Startknoten: A

Iteration: 8

besuchte Knoten:

Stapel:



(| terations zähler nicht erhöht

für wiederholtes Entfernen von Grom Stack)

H

Nachfolger Gron H nicht auf Stack gelegt,

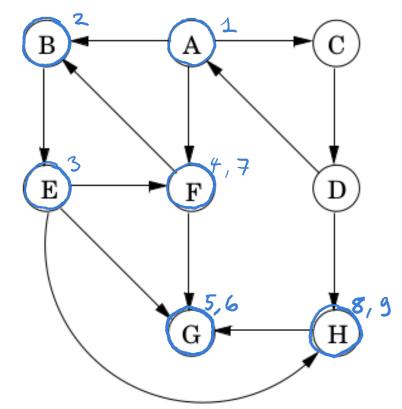
da schon besucht

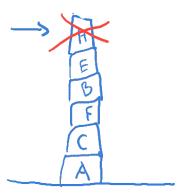
Startknoten: A

Iteration: 9

besuchte Knoten:

Stapel:



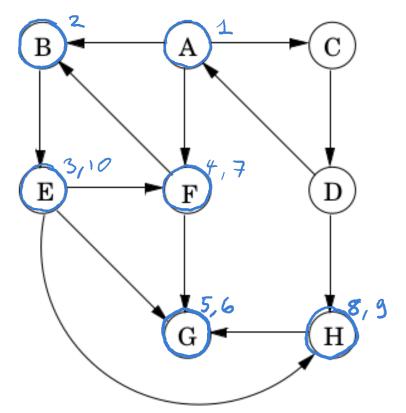


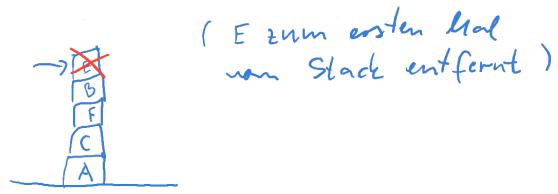
(H zum ersten Mal vom Stack entfernt)

Startknoten: A

Iteration: 10

besuchte Knoten:

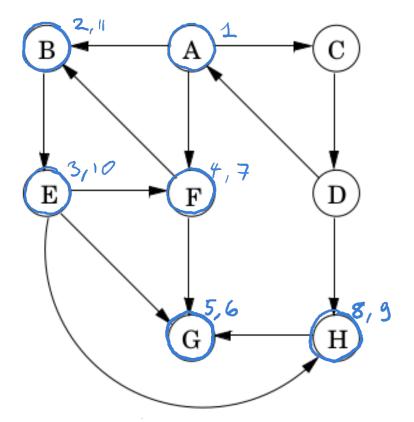


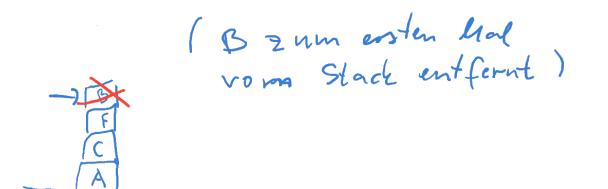


Startknoten: A

Iteration: 11

besuchte Knoten:



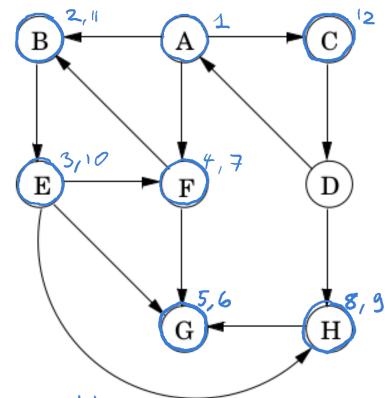


Startknoten: A

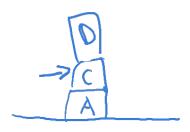
Iteration: 12

besuchte Knoten:

Stapel:



(Herations zähler nicht erhöht beim Wiederholten Ent-Cerneh von F)

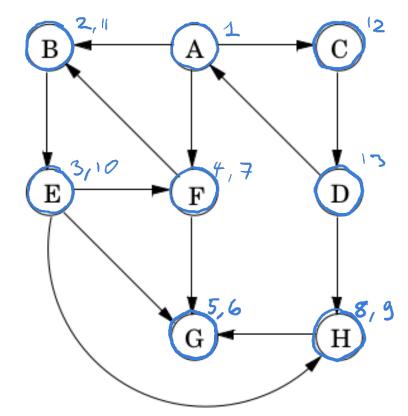


Startknoten: A

Iteration: 13

besuchte Knoten:

Stapel:



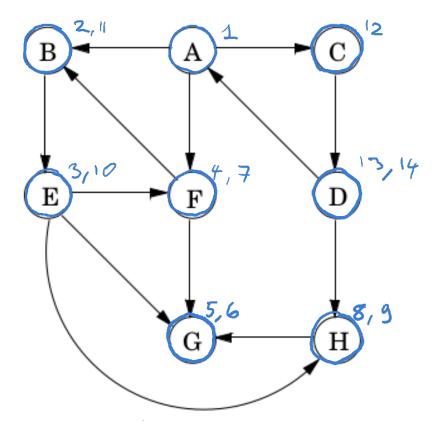
kommen 5 chom

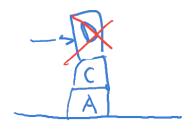
(Nachfolger A, H von D kommen nicht auf Stapel da schon besucht)

Startknoten: A

Iteration: 14

besuchte Knoten:

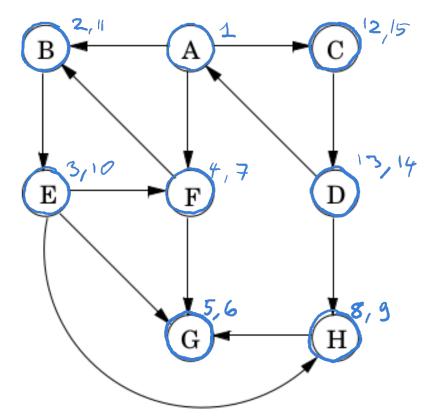




Startknoten: A

Iteration: 15

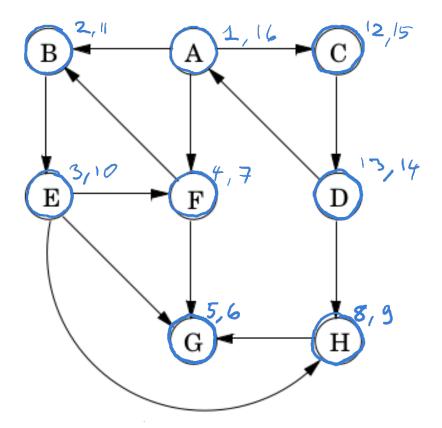
besuchte Knoten:



Startknoten: A

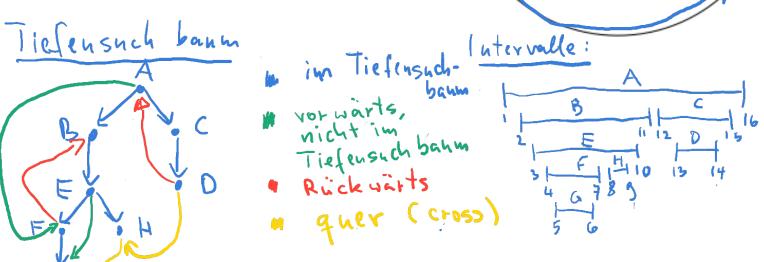
Iteration: 16

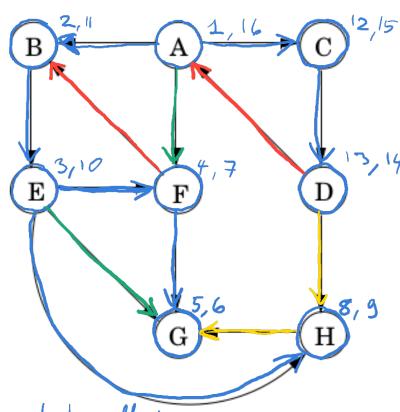
besuchte Knoten:



Startknoten: A

besuchte Knoten:





Graph G=(V,E) und Knoten $v\in V$

```
Tiefensuche(G,v): (en. depth-first search)

1. S \leftarrow Stapel mit Knoten v

2. while S nicht leer do

1. w \leftarrow \text{top}(S)

2. if w schon besucht then \text{pop}(S)

3. if w noch nicht besucht then markiere w als besucht und \text{push}(S, \{u \in N_G^+(w) \mid u \text{ noch nicht besucht}\})
wir verwenden "pseudocode" für kürzere Beschreibung
```

```
\begin{aligned} &\text{Tiefensuche}(G,v)\text{: (en. depth-first search)} \\ &\text{1. } S \leftarrow \text{Stapel mit Knoten } v \\ &\text{2. while } S \text{ nicht leer do} \\ &\text{1. } w \leftarrow \text{top}(S) \\ &\text{2. if } w \text{ schon besucht then pop}(S) \\ &\text{3. if } w \text{ noch nicht besucht then markiere } w \text{ als besucht } \\ &\text{und push}(S, \{u \in N_G^+(w) \mid u \text{ noch nicht besucht}\}) \end{aligned}
```

Behauptung: falls zu Beginn keine Knoten als besucht markiert sind, dann besucht Tiefensuche(G, v) genau die Knoten, die von v erreichbar sind

Beweisidee: da wir mit v beginnen und dann nur Kanten entlang gehen, ist jeder besuchte Knoten von v erreichbar es bleibt zu zeigen, dass jeder erreichbare $u \in V$ besucht wird

```
\begin{aligned} &\text{Tiefensuche}(G,v)\text{: (en. depth-first search)} \\ &\text{1. } S \leftarrow \text{Stapel mit Knoten } v \\ &\text{2. while } S \text{ nicht leer do} \\ &\text{1. } w \leftarrow \text{top}(S) \\ &\text{2. if } w \text{ schon besucht then pop}(S) \\ &\text{3. if } w \text{ noch nicht besucht then markiere } w \text{ als besucht } \\ &\text{ und push}(S, \{u \in N_G^+(w) \mid u \text{ noch nicht besucht}\}) \end{aligned}
```

Behauptung: falls zu Beginn keine Knoten als besucht markiert sind, dann besucht Tiefensuche(G, v) genau die Knoten, die von v erreichbar sind

Beweisidee:

```
es bleibt zu zeigen, dass jeder erreichbare u \in V besucht wird betrachte Weg w_0, \ldots, w_\ell von w_0 = v nach w_\ell = u w_0 = v wird in der ersten Iteration besucht falls w_i besucht wird, werden auch alle Nachfolger von w_i besucht, insbesondere w_{i+1} (wenn 0 \le i < \ell) per Induktion (über i): alle Knoten w_0, \ldots, w_\ell werden besucht
```

```
\begin{aligned} &\text{Tiefensuche}(G,v)\text{: (en. depth-first search)} \\ &\text{1. } S \leftarrow \text{Stapel mit Knoten } v \\ &\text{2. while } S \text{ nicht leer do} \\ &\text{1. } w \leftarrow \text{top}(S) \\ &\text{2. if } w \text{ schon besucht then pop}(S) \\ &\text{3. if } w \text{ noch nicht besucht then markiere } w \text{ als besucht } \\ &\text{ und push}(S, \{u \in N_G^+(w) \mid u \text{ noch nicht besucht}\}) \end{aligned}
```

Korollar: falls schon eine Knotenmenge $X\subseteq V$ als besucht markiert ist, dann besucht $\mathrm{Tiefensuche}(G,v)$ genau die Knoten, die noch von v erreichbar sind mittels Wegen, die X vermeiden

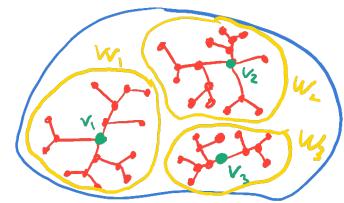
Anwendung: Zusammenhangskomponenten (Gungerichtet)

führe Tiefensuche solange für noch unbesuchte Knoten aus bis alle Knoten besucht sind

jede Tiefensuche besucht dabei genau eine Z.-komponente

Tiefensuche(G, v): (en. depth-first search)

- 1. $S \leftarrow$ Stapel mit Knoten v
- 2. while S nicht leer do
- 1. $w \leftarrow \text{top}(S)$
- 2. if w schon besucht then pop(S)
- 3. if w noch nicht besucht then markiere w als besucht und push $(S,\{u\in N_G^+(w)\mid u \text{ noch nicht besucht}\})$



Anwendung: Zusammenhangskomponenten (G ungerichtet)

führe Tiefensuche solange für noch unbesuchte Knoten aus bis alle Knoten besucht sind

jede Tiefensuche besucht dabei genau eine Z.-komponente

Tiefensuche(G):

- 1. markiere alle Knoten $v \in V$ als nicht besucht
- 2. for $v \in V$ do
 - 1. if v noch nicht besucht then $\mathrm{Tiefensuche}(G,v)$

Tiefensuche(G, v): (en. depth-first search)

- 1. $S \leftarrow$ Stapel mit Knoten v
- 2. while S nicht leer do
- 1. $w \leftarrow \text{top}(S)$
- 2. if w schon besucht then pop(S)
- 3. if w noch nicht besucht then markiere w als besucht und push $(S, \{u \in N_G^+(w) \mid u \text{ noch nicht besucht}\})$

$$ext{Laufzeit} \leqslant O(N_{ ext{push}} + N_{ ext{pop}} + N_{ ext{top}} + N_{ ext{markier}})$$

(wenn Graph als Adjazenzliste gegeben ist)

wobei: $N_{
m bla}=$ Anzahl von ${
m bla}$ Operationen (für ${
m push}$ Operationen

zählen wir die Anzahl der Knoten, die wir auf den Stapel legen)

es gilt
$$N_{
m pop}=1+N_{
m push}$$
 und $N_{
m top}=N_{
m pop}+N_{
m markier}$

$$ext{daher:} N_{ ext{push}} + N_{ ext{pop}} + N_{ ext{top}} + N_{ ext{markier}} \leqslant O(N_{ ext{markier}} + N_{ ext{push}})$$

sei W = besuchte Knoten während Tiefensuche(G, v)

$$\begin{array}{l} \operatorname{dann\ gilt\ } N_{\operatorname{markier}} = |W| \operatorname{und\ } N_{\operatorname{push\ }} \lesssim \sum_{w \in W} \operatorname{deg}_G^+(w) \\ \rightsquigarrow \operatorname{Laufzeit} \leqslant O(|W| + \sum_{w \in W} \operatorname{deg}_G^-(w))^{w \in W} \operatorname{Tiefensuche}(G,v) \end{array}$$

Tiefensuche(G, v): (en. depth-first search)

- 1. $S \leftarrow$ Stapel mit Knoten v
- 2. while S nicht leer do
- 1. $w \leftarrow \text{top}(S)$
- 2. if w schon besucht then pop(S)
- 3. if w noch nicht besucht then markiere w als besucht und push $(S, \{u \in N_C^+(w) \mid u \text{ noch nicht besucht}\})$

$$imes$$
 Laufzeit $\leqslant Oig(|W| + \sum_{w \in W} \deg_G^+(w)ig)$ für Tiefensuche (G,v)

Theorem:
$$\mathrm{Tiefensuche}(G)$$
 hat $\mathrm{Laufzeit} \leqslant O(|V| + |E|)$

jeder Knoten wird nur einmal besucht; $\sum_{w \in V} \deg_G^+(w) = |E|$

```
\begin{aligned} &\text{Tiefensuche}(G,v)\text{: (en. depth-first search)} \\ &\text{1. } S \leftarrow \text{Stapel mit Knoten } v \\ &\text{2. while } S \text{ nicht leer do} \\ &\text{1. } w \leftarrow \text{top}(S) \\ &\text{2. if } w \text{ schon besucht then pop}(S) \\ &\text{3. if } w \text{ noch nicht besucht then markiere } w \text{ als besucht } \\ &\text{und push}(S, \{u \in N_G^+(w) \mid u \text{ noch nicht besucht}\}) \end{aligned}
```

tieferes Verständnis: zu jedem Knoten $v \in V$ können wir ein Intervall $I_v \subseteq \{1,\ldots,2n\}$ zuordnen (wobei n=|V|) Intervall $I_v = \{\operatorname{pre}_v,\ldots,\operatorname{post}_v\}$ wobei $\operatorname{pre}_v = \operatorname{Iteration}$, in der v als besucht markiert wird und $\operatorname{post}_v = \operatorname{Iteration}$, in der v zum ersten Mal vom Stapel entfernt wird

Lemma: $\forall u,v \in V$. I_u und I_v sind disjunkt oder ein Interval ist im anderen komplett enthalten

$\begin{aligned} &\text{Tiefensuche}(G,v)\text{: (en. depth-first search)} \\ &\text{1. } S \leftarrow \text{Stapel mit Knoten } v \\ &\text{2. while } S \text{ nicht leer do} \\ &\text{1. } w \leftarrow \text{top}(S) \\ &\text{2. if } w \text{ schon besucht then pop}(S) \\ &\text{3. if } w \text{ noch nicht besucht then markiere } w \text{ als besucht} \end{aligned}$

und push $(S, \{u \in N_G^+(w) \mid u \text{ noch nicht besucht}\})$

Intervall $I_v = \{ \operatorname{pre}_v, \ldots, \operatorname{post}_v \}$ wobei $\operatorname{pre}_v = \operatorname{Iteration}$, in $\operatorname{der} v$ als besucht markiert wird und $\operatorname{post}_v = \operatorname{Iteration}$, in $\operatorname{der} v$ zum ersten Mal vom Stapel entfernt wird

Lemma: $\forall u,v \in V.\ I_u$ und I_v sind disjunkt oder ein Interval ist im anderen komplett enthalten

Beweisidee: falls $\operatorname{pre}_u < \operatorname{pre}_v < \operatorname{post}_u$, befindet sich v über u im Stapel wenn v besucht wird, so dass $\operatorname{post}_v < \operatorname{post}_u$

Typ einer Kante $(u,v)\in E$: vorwärts falls $I_u\supseteq I_v$, rückwärts falls $I_u\subseteq I_v$, quer falls $I_u\cap I_v=\emptyset$

```
Tiefensuche(G, v): (en. depth-first search)

1. S \leftarrow \text{Stapel mit Knoten } v

2. while S nicht leer do

1. w \leftarrow \text{top}(S)

2. if w schon besucht then \text{pop}(S)

3. if w noch nicht besucht then markiere w als besucht und \text{push}(S, \{u \in N_G^+(w) \mid u \text{ noch nicht besucht}\})
```

Intervall $I_v = \{ \operatorname{pre}_v, \ldots, \operatorname{post}_v \}$ wobei $\operatorname{pre}_v = \operatorname{Iteration}$, in $\operatorname{der} v$ als besucht markiert wird und $\operatorname{post}_v = \operatorname{Iteration}$, in $\operatorname{der} v$ zum ersten Mal vom Stapel entfernt wird

Lemma: $\forall u,v \in V$. I_u und I_v sind disjunkt oder ein Interval ist im anderen komplett enthalten

Typ einer Kante $(u,v)\in E$: vorwärts falls $I_u\supseteq I_v$, rückwärts falls $I_u\subseteq I_v$, quer falls $I_u\cap I_v=\emptyset$

Lemma: für jede Querkante $(u,v) \in E$ liegt I_v vor I_u

diese Intervalle bilden einen Wald, genannt Tiefensuchwald

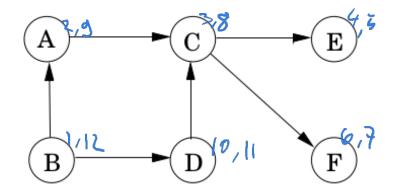
Tiefensuche(G, v): (en. depth-first search)

- 1. $S \leftarrow$ Stapel mit Knoten v
- 2. while S nicht leer do
- 1. $w \leftarrow \text{top}(S)$
- 2. if w schon besucht then pop(S)
- 3. if w noch nicht besucht then markiere w als besucht und $\operatorname{push}(S,\{u\in N_G^+(w)\mid u \text{ noch nicht besucht}\})$

topologische Sortierung durch Tiefensuche

Beobachtung: für einen azyklischen Graph kann es keine Rückwärtskante bei der Tiefensuche geben

Theorem: wir erhalten eine topologische Sortierung, wenn wir die Knoten nach den Zahlen post, absteigend sortieren



Kürzeste Wege

oft: nicht nur irgendeinen Weg von u nach v

sondern: <mark>einen kürzesten Weg</mark>

Anwendung: Routenplanung (z.B. Google Maps) und mehr

Länge eines Wegs = Anzahl der Kanten

Distanz d(u, v) = Länge des kürzesten Wegs von u nach v $(d(u, v) = \infty$ falls kein solcher Weg existiert; d(u, u) = 0)

später: Kanten können unterschiedliche Längen haben

Kürzeste Wege

Länge eines Wegs = Anzahl der Kanten

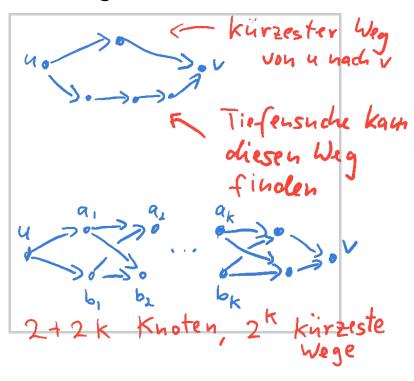
Distanz d(u, v) = Länge des kürzesten Wegs von u nach v $(d(u, v) = \infty$ falls kein solcher Weg existiert; d(u, u) = 0)

später: Kanten können unterschiedliche Längen haben

Beobachtungen: Falls $d(u,v)<\infty$, dann gilt $d(u,v)\leqslant n-1$

Tiefensuche findet Pfad aber nicht unbedingt den kürzesten

es kann exponentiell viele Pfade von u nach v geben



Datenstrukturen für Graphtraversierung

um kürzeste Wege zu finden müssen wir nur den Stapel bei der Tiefensuche mit einer anderen Datenstruktur ersetzen

Stapel: (en. stack) "LIFO = last in, first out" push: Objekt oben auf den Stapel legen pop: oberstes Element vom Stapel entfernen

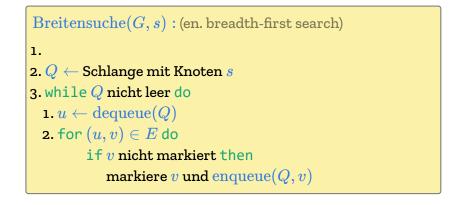
Schlange: (en. queue) "FIFO = first in, first out"

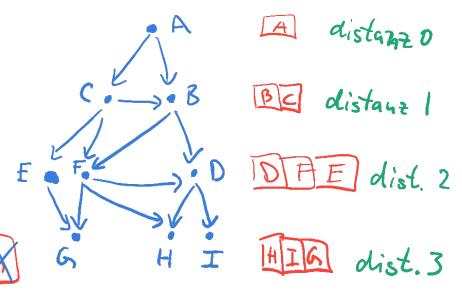
Stapel

enqueue: Objekt am Ende der Schlange hinzufügen

dequeue: Element am Anfang der Schlange entfernen

Schlange dequeue enqueue



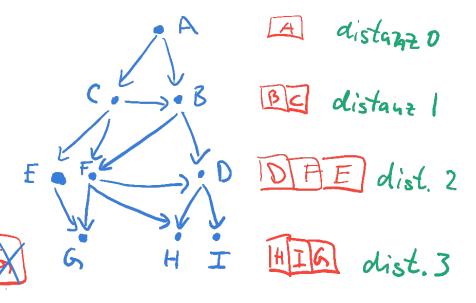


 $\operatorname{Breitensuche}(G,s):$ (en. breadth-first search)

1. $\operatorname{dist}[u] \leftarrow \infty$ für alle $u \in V \setminus \{s\}$ und $\operatorname{dist}[s] \leftarrow 0$ 2. $Q \leftarrow \operatorname{Schlange}$ mit Knoten s3. while Q nicht leer do

1. $u \leftarrow \operatorname{dequeue}(Q)$ 2. $\operatorname{for}(u,v) \in E$ do

if $\operatorname{dist}[v] = \infty$ then $\operatorname{dist}[v] \leftarrow \operatorname{dist}[u] + 1$ und $\operatorname{enqueue}(Q,v)$



```
Breitensuche(G, s): (en. breadth-first search)

1. \operatorname{dist}[u] \leftarrow \infty für alle u \in V \setminus \{s\} und \operatorname{dist}[s] \leftarrow 0

2. Q \leftarrow \operatorname{Schlange} mit Knoten s

3. while Q nicht leer do

1. u \leftarrow \operatorname{dequeue}(Q)

2. for (u, v) \in E do

if \operatorname{dist}[v] = \infty then

\operatorname{dist}[v] \leftarrow \operatorname{dist}[u] + 1 und enqueue(Q, v)

For G is G and G is G in G in G is G and G is G and G is G in G in
```

Behauptung: Für alle $t \in \mathbb{N} \cup \{0\}$, gibt es einen Moment, so dass die folgenden Aussagen gelten

- 1. für alle Knoten $v \in V$ mit $d(s,v) \leqslant t$ gilt $\operatorname{dist}[v] = d(s,v)$
- 2. für alle anderen Knoten $v \in V$ gilt $\operatorname{dist}[v] = \infty$
- 3. die Schlange enthält genau die Knoten mit d(s,v)=t

```
Breitensuche(G,s): (en. breadth-first search)

1. \operatorname{dist}[u] \leftarrow \infty für alle u \in V \setminus \{s\} und \operatorname{dist}[s] \leftarrow 0

2. Q \leftarrow \operatorname{Schlange mit Knoten } s

3. while Q nicht leer do

1. u \leftarrow \operatorname{dequeue}(Q)

2. for (u,v) \in E do

if \operatorname{dist}[v] = \infty then

\operatorname{dist}[v] \leftarrow \operatorname{dist}[u] + 1 und \operatorname{enqueue}(Q,v)

For A is A = 0. A constant A is A = 0. B constant A is A in A is A i
```

Behauptung: Für alle $t \in \mathbb{N} \cup \{0\}$, gibt es einen Moment, so dass die folgenden Aussagen gelten

- 1. für alle Knoten $v \in V$ mit $d(s,v) \leqslant t$ gilt $\operatorname{dist}[v] = d(s,v)$
- 2. für alle anderen Knoten $v \in V$ gilt $\operatorname{dist}[v] = \infty$
- 3. die Schlange enthält genau die Knoten mit d(s,v)=t

Beweis: per Induktion über $oldsymbol{t}$

Ende