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Abstract

Balls-and-bins games have been a wildly successful tool for modeling load balancing problems. In
this paper, we study a new scenario, which we call the ball recycling game, defined as follows:

Throw m balls into n bins i.i.d. according to a given probability distribution p. Then, at
each time step, pick a non-empty bin and recycle its balls: take the balls from the selected
bin and re-throw them according to p.

This balls-and-bins game closely models memory-access heuristics in databases. The goal is to have
a bin-picking method that maximizes the recycling rate, defined to be the expected number of balls
recycled per step in the stationary distribution.

We study two natural strategies for ball recycling: Fullest Bin, which greedily picks the bin with
the maximum number of balls, and Random Ball, which picks a ball at random and recycles its bin.
We show that for general p, Random Ball is O(1)-optimal, whereas Fullest Bin can be pessimal.
However, when p = u, the uniform distribution, Fullest Bin is optimal to within an additive constant.
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1 Introduction

Balls-and-bins games have been a wildly successful tool for modeling load balancing problems [1–3, 9, 15,
16, 18, 26–29, 35, 41, 42]. For example, they can be used to study the average and worst-case occupancy of
buckets in a hash table [7], the worst-case load on nodes in a distributed cluster [8,36], and even the amount
of time customers wait in line at the grocery store [27]. In all these load-balancing problems, balls-and-bins
games are used to study how to distribute load evenly across the resource being allocated.

In this paper we study a new scenario, which we refer to as the ball recycling game, defined as follows:

Throw m balls into n bins i.i.d. according to a given probability distribution p. Then, at each
time step, pick a non-empty bin and recycle its balls: take the balls from the selected bin and
re-throw them according to p.

We call a bin-picking method a recycling strategy and define its recycling rate to be the expected number
of balls recycled in the stationary distribution (when it exists).

The ball recycling game models insertion buffers and update buffers, which are widely used to speed
up insertions in databases by batching updates to blocks on disk (see Section 3 for an explanation of insertion
buffers and how they map to ball-recycling games). The recycling rate of a recycling strategy corresponds
to the speed-up obtained by an insertion buffer, so the goal studied in this paper is how to maximize the
recycling rate.

In this paper, we present results for ball recycling for both general p and for the special case of uniform
p, which we denote by u. As we explain in Section 3, these distributions correspond to update and insertion
buffers, respectively.

We focus on three natural recycling strategies:

• Fullest Bin: A greedy strategy that recycles the bin with the most balls.

• Random Ball: A strategy that picks a ball uniformly at random and recycles its bin.

• Golden Gate: A strategy that picks the bins in round-robin fashion; after a bin is picked, the next
bin picked is its non-empty successor.

Let ‖p‖ 1

2

= (
∑√

pi)
2 be the half quasi-norm of p. We achieve the following result for general p.

Theorem 1 (Section 4). Consider a ball recycling game with m balls and n bins, where the balls are
distributed into the bins i.i.d. according to distribution p. Then Random Ball is optimal.

It achieves recycling rate RRB:

1. If m ≥ n,

RRB = Θ

(

m

‖p‖ 1

2

)

.

2. If m < n, let L be the m lowest-weight bins, q =
∑

ℓ∈L pℓ, and RRB
L be the recycle rate of Random

Ball restricted to L. Then,
RRB = Θ

(

min
(

RRB

L , 1/q
))

.

In order to establish this result, we first show that no recycling strategy can achieve a higher recycling
rate than (2m + n)/‖p‖ 1

2

. This directly establishes optimality when m = Ω(n). For m = o(n), we show
that Random Ball performs as well as another optimal strategy, Aggressive Empty, and show that
Aggressive Empty closely mimics the offline optimal strategy.

Interestingly, the greedy strategy Fullest Bin is not generally optimal, and in particular:

Observation. There are distributions for which Fullest Bin is pessimal, that is, it recycles at most 2
balls per round whereas OPT recycles almost m balls per round.
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For example, consider the skyscraper distribution, where p0 = 1 − 1/n + 1/n2 and pi = 1/n2, for
0 < i ≤ n− 1. Suppose that m =

√
n. Then Fullest Bin will pick bin 0 every time until it has at most one

ball, at which point it will pick another bin, which will almost certainly have 1 ball in it. Thus, the recycling
rate of Fullest Bin drops below 2. Suppose, instead, that we recycle the least-full non-empty bin. In this
case, every approximately

√
n rounds, a ball lands in a low-probability bin and is promptly returned to bin

0. Thus, the recycling rate of this strategy is nearly m. Thus, Fullest Bin is pessimal for this distribution.
However, the uniform distribution is of particular importance to insertion buffers for databases based on

B-trees since, as we show in Section 3, (arbitrary) random B-tree insertions are nearly uniformly distributed
across the leaves of the B-tree. On the uniform distribution, Fullest Bin and Golden Gate are optimal
even up to lower order terms:

Theorem 2 (Section 5). Fullest Bin and Golden Gate are optimal for the ball recycling game with
distribution u for any n and m to within an additive constant. They each achieve a recycling rate of at least
2m/(n+ 1), whereas no recycling strategy can achieve a recycling rate greater than 2m/n+ 1.

In this case, Random Ball is only optimal to within a multiplicative constant in the following range:

Theorem 3 (Section 5). On the uniform distribution u, Random Ball is at least (1/2+1/(2 ·64))-optimal
and at most (1− 3/1000)-optimal.

Thus, we establish some surprising results: that Fullest Bin can perform poorly for arbitrary p but is
optimal for u, up to lower-order terms; and that Random Ball is asymptotically optimal for any p and in
particular is more than 1/2-optimal but not quite optimal for u.

In Appendix B, we present experimental results showing that our analytical results for the ball recycling
problem closely matches performance results in real databases. We describe the recycling strategies of several
commercial and open-source database systems. In particular we focus on InnoDB, a B-tree that uses a variant
of Random Ball.

Our results suggest that Fullest Bin or Golden Gate would be a better choice than Random Ball

for InnoDB. We modified InnoDB to use Golden Gate since Golden Gate requires less bookkeeping than
Fullest Bin (see Section 3 for details), indeed requiring a change of only a few lines of code, and measured
a 30% improvement in its insertion-buffer flushing rate, which is in line with our theoretical results.

We conclude that ball recycling is a natural hitherto unexplored balls-and-bins game that closely models a
widely deployed method for improving the performance of databases. Moreover, this is the first application
(to our knowledge) of a balls-and-bins game to the throughput of a system. This is in contrast to past
balls-and-bins analyses, which modeled load balancing and latency.

2 Related Work

Balls-and-bins games are one of the most studied models in all of computer science, so it would be impossible
to do justice to the entire literature here. Rather, we focus on prior work on dynamic balls-and-bins games.
In dynamic balls-and-bins games, balls are added and removed from bins according to some rules, and the
goal is to understand the long-term behavior of the system. Thus, ball-recycling games are instances of this
general class, although previously studied dynamic balls-and-bins games are quite different, and are typically
used to study load-balancing problems, rather than throughput.

Previously studied models differ from ball-recycling games in several ways:

• The process for removing balls is assumed to be random, e.g. a random ball is removed, or a random
bin is selected for emptying. Prior research has assumed these events are determined by some external
process, so they have not studied algorithms for controlling this process. As a result, although the
theory of Markov chains has played a major role in the study of balls-and-bins games, the theory of
Markov decision processes, which we use extensively, has not shown up at all.

• The balls are thrown uniformly randomly. This is a natural assumption for hashing and randomized
load-balancing problems, but is not appropriate when studying updates to existing keys in a database.
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• The objective is to analyze the occupancy of the fullest bin or, in some models, to analyze the amount
of time that balls wait in a queue. Our objective is to analyze the number of balls recycled in each
time step.

• The number of balls in the system is not fixed. Prior models were used for load balancing, in which
balls correspond to tasks and bins resources, so it makes sense to model new balls entering the system
asynchronously. In our setting, the balls are the resource (i.e. they correspond to slots in a buffer), so
they are fixed.

• The study of dynamic balls-and-bins games was introduced simultaneously with the study of the power
of multiple choices [3], and most past work on dynamic balls-and-bins games has been in the same
model. In our model, balls have only a single choice (i.e. their on-disk location), although it may be
possible to extend our work to systems in which each ball has multiple choices (e.g. for an insertion
buffer for an on-disk cuckoo hash table).

Azar, et al. [3] introduced both the power of two choices and dynamic balls and bins games. They showed
that if, at each time step, a random ball is rethrown with d uniformly random choices, then, in n3 time steps,
the fullest bin has ln lnn/ lnd+O(1) balls whp.

In his dissertation [29], Mitzenmacher studied several dynamic load-balancing problems. He studied
several variants on the supermarket model, in which balls arrive according to a Poisson process and enqueue
themselves in the shortest of d queues that they select uniformly randomly from n queues. Mitzenmacher
showed that d > 1 exponentially reduced the average time a ball spent in a queue. He also studied a variant in
which, at each time step, one ball was removed from one queue and was immediately re-enqueued according
to the above procedure. Adler, et al. [1] studied a variant of the supermarket model in which balls arrived
in batches of size m and chose their queues in parallel, and showed that the average waiting time remains
O(ln lnn) as long as m is sufficiently smaller than n.

Cole, et al. [15] studied a model in which balls are recycled one-at-a-time according to a recycling plan
chosen in advance. In their model, there are an infinite number of labeled balls and the adversary specifies in
advance two ball IDs for each time step: the first ID specifies a ball to be removed from the system, and the
second ID specifies a ball to be inserted. Thus the number of balls currently in the system is always n. The
first time a ball is inserted, it chooses d bins uniformly randomly and picks the least loaded. From then on,
whenever that ball reenters the system, it always goes into that bin. In their model, the adversary cannot
examine the state of the current system when deciding which ball to recycle, as in our model. Given this
restriction, they show that the fullest bin has roughly ln lnn/ ln d balls. Vöcking showed the shocking result
that, by choosing bins non-uniformly and breaking ties asymmetrically, the max load could be reduced to
ln lnn/d lnφd +O(1) whp.

Cole, et al. [16] extended their results to routing through a network: an adversary specified in advance
the start time, end time, source, and destination of flows, and the system used a power of two choices variant
of Valiant’s randomized routing paradigm [39] to limit congestion to O(ln lnn) whp.

Czumaj and Stemann [18] study a load balancing problem in which, at each time step, a random ball is
removed from the system and a new ball is thrown using d choices. After the new ball is inserted, the d bins
examined during its insertion are rebalanced. Surprisingly, the max load is still O(ln lnn).

3 Ball Recycling as a Model for Insertion and Update Buffers

Ball recycling models insertion and update buffers, which are widely used in modern databases [4, 6, 13, 14,
21, 22, 30, 31, 37, 40, 43]. These implementations are discussed in more detail in Appendix B.

For a key-value store, such as a database, an insertion buffer is a cache of recently inserted items.
When the insertion buffer fills, the database selects a disk block and all the cached items going to that block
are evicted in bulk. If k elements are flushed in bulk, then there is a speedup of k, compared to writing the
elements to the destination block as soon as they arrive. After evicting k items, there is room for k new
elements in the buffer. An update buffer caches changes to existing key-value pairs but is otherwise like
an insertion buffer. Although these types of buffers seem quite similar, we show that their differences result
in important differences in how they are modeled as a ball recycling game.
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For databases that use B-trees and hash tables, insertion and update buffers typically reside in DRAM. In
the Bε-tree [11], each node maintains a buffer of insertions and updates to its subtree. When a node’s buffer
becomes full, the tree selects one of the node’s children and moves all pending messages for that subtree to
the child’s buffer, usually via Fullest Bin. In both cases, the goal is to maximize the number of items
removed from the buffer in each flush.

In either case, the mapping to ball recycling is direct: disk blocks are bins and elements in the inser-
tion/update buffer are balls. The probability distribution p is based on the distribution of items inserted
or updated. Evicting all the items going to a disk block corresponds to emptying the bin associated with
that disk block. After an eviction of k items, we have room for k new insertions/updates, i.e., we have k
new balls to throw. The policy for selecting the target disk block of an eviction corresponds to the policy
for selecting a bin to recycle, and the speedup induced by an eviction policy is its recycling rate.

For B-trees, insertion buffers and update buffers differ in an important way: updates do not change the
structure of leaves of a B-tree. In contrast, insertions can change the range of keys associated with a leaf
(due to leaf splits), which yields the following result:

Lemma 1. If N keys are inserted into a B-tree i.i.d. according to some key distribution q, then provided B =
Ω(logN), the maximum probability that a leaf has of receiving the next insertion is O(B/N) with probability
1. Thus the corresponding recycling game is asymptotically almost uniform: no bin has probability more
than a constant multiple of 1

n .

We prove the uniformity bound as follows. Let F (κ) be the cumulative density function (CDF) of q,
which is the probability that an item sampled from q is less than κ. If κ is distributed according to q, then
F (κ) will be uniformly distributed on [0, 1].

If n points are sampled from [0, 1] uniformly and sorted so that x1 ≤ x2 ≤ · · · ≤ xn, then maxxi+B − xi

is known as the maximal B-spacing. It follows that:

Lemma 2. Having inserted n keys into a B-tree i.i.d. according to a distribution q, the maximum probability
that any leaf has of receiving the next insertion is less than the maximum B-spacing of the CDFs of those
points.

The literature of such spacings tells us that:

Lemma 3 ( [19]). If B = Θ(logn), then the maximum B-spacing of n points distributed uniformly on the
unit interval is Θ(B/n) with probability 1.

For B = ω(logn), we can subdivide B into intervals of logn points, each of which will satisfy the lemma.
Adding together the resulting bounds, we have that the maximal B-spacing of n points is O(B/n) with
probability 1. Together with Lemma 2, this implies Lemma 1.

We also note that a [almost-uniform] ball recycling game is an imperfect model for an insertion buffer,
because the ball recycling game has a fixed number of bins, whereas in the insertion buffer, the number of
disk blocks will increase.

Finally, the implementation of these strategies is a point of departure between insertion/update buffers
and ball recycling. In ball recycling, it is obvious which bin each ball is in. In insertion/update buffers for
a B-tree, elements have a key, but we don’t necessarily know what the buckets are, since the mapping from
keys to buckets depends on the pivots used to define the B-tree leaves. Fullest Bin needs to know what
the buckets are, whereas Random Ball and Golden Gate do not. For Random Ball this is because
the key of the randomly selected item can be used to fetch its target B-tree leaf, after which we know the
max and min keys in that leaf, and Golden Gate can be implemented by remembering the upper bound
of the last leaf to which we flushed and then flushing the item with the successor of that key, along with all
the other keys going to that leaf. None of these strategies require knowledge of p.

Our results on general p have an interesting implication for Bε-trees, which are known to be asymptot-
ically optimal for insertions, in the worst case. Bε-trees can also handle updates by propagating messages
to the leaves. For some update distributions, flushing according to Random Ball can achieve an update
rate that is Bε faster than Fullest Bin. We expect to try Random Ball flushing in our Bε-tree-based
file system, BεtrFS [17, 23, 24, 44, 45].
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4 Random Ball is Optimal

In this section we prove Theorem 1, showing that Random Ball is O(1)-optimal. This result is well-defined
because of the following Lemma, proven in Appendix A:

Lemma 4. There exists a deterministic recycling strategy OPT that achieves the optimal expected average
recycling rate.

4.1 Outline of Proof

We prove Theorem 1 in the following steps:

1. No recycling strategy has a recycling rate exceeding (2m+ n− 1)/‖p‖ 1

2

. (Section 4.2)

2. Random Ball matches that bound when m ≥ n, leading to case (1) of Theorem 1. (Section 4.3)

3. There is an optimal strategy, Aggressive Empty, when m < n. The recycling rate of Aggressive

Empty matches case (2) of Theorem 1. (Section 4.4)

4. By comparison to Aggressive Empty, Random Ball is optimal. (Section 4.5)

4.2 The Upper Bound

We begin by proving an important lemma that will be used throughout, which we refer to as the flow

equation. Then we proceed to prove the upper bound.
Let A be a strategy with a unique stationary distribution χA,p. Let φi be the event that A picks bin i

to recycle. Let RA
i = E[RA(χA,p)|φi] be the number of balls recycled given that the strategy picks bin i,

and fi = P (φj), the probability of picking the bin i in the stationary distribution. We note that RA
i and fi

could alternatively be defined as limits of repeated applications of A to any given starting state.
For a given bin i, we can analyze the “flow” of balls into and out of i. When k balls are thrown, pik of

them are expected to land in i. For a ball to leave i, i must first be picked to be emptied by A, at which point
every ball in i will be evicted. In the stationary distribution, the net flow must be zero. We can generalize
to any set of bins and get:

Lemma 5. Let A be a strategy with a unique stationary distribution for a ball recycling game with n bins
with probabilities p. If L is a subset of the bins, pL =

∑

ℓ∈L pℓ, fL =
∑

ℓ∈L fℓ and RA the conditional
recycle rate given A picks a bin in L, then

pLRA = fLRA
L .

We will mostly use the following special case of the Lemma 5:

Lemma 6 (The Flow Equation). Let A be a recycling strategy with a unique stationary distribution for a
ball recycling game with n bins with probabilities p. Then, for all 0 ≤ i < n,

piRA = fiRA
i .

We now describe the main upper bound on the recycling rate of any recycling strategy. In order to
understand the intuition behind Lemma 7, consider a given bin i. Intuitively, it makes sense to think that
for a reasonable recycling strategy the recycling rate of the other bins in the system will go down as the
number of balls Xi in bin i grows. After all, the Xi balls in bin i aren’t available for recycling, until bin i is
selected. If we assume this intuition as fact for the moment, this suggests that the expected number of balls
in bin i should be greater than half the recycling rate of bin i, perhaps excluding the last ball to land in the
bin.

By the Flow Equation, this would suggest that

E [Xi] ≥
1

2
(RA

i − 1) =
1

2

(

pi

fi
RA − 1

)

,
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so that after summing over i, we obtain Lemma 7.
However, the following strategy does not satisfy this assumption: for a given bin i, have the strategy just

pick the least full non-empty bins until i has a few balls, then pick the fullest ones, then pick i and repeat.
Showing that better strategies do not do this is non-trivial, and we give a more roundabout proof.

Lemma 7. Consider a ball-recycling game with m balls, n bins and distribution p. If A is a strategy with
a unique stationary distribution that picks bin i with frequency fi, then its recycle rate is bounded by

RA ≤ 2m+ n− 1
∑

j
pj

fj

.

Given a strategy A, the idea of the proof is to use the invariance of the statistic

Z(X) =

n
∑

j=1

X2
j

pj
,

under the action of A on its stationary distribution. The application of A to Z together with the flow
equation creates a factor of

∑

j Rj , which when solved for proves the bound. First, we begin with some
foundational lemmas, and then proceed to prove the main results.

Lemma 8. Suppose k balls are thrown into n bins i.i.d. according to distribution p. Let B(j, k) be the
binomial random variable denoting how many balls land in the jth bin. The following hold:

1. E [B(j, k)] = pjk

2. E
[

(B(j, k))2
]

= pj(1 − pj)k + p2
jk

2

Proof. B(j, k) is a binomial random variable with parameters pj and k.

Next, given a state X , we compute the effect of recycling the ℓth bin on the jth component of Z. Note
that if A recycles bin ℓ of state X , then Xℓ = RA(X).

Lemma 9. In a ball-recycling game with m balls, n bins and probability distribution p, if a stateless strategy
A recycles bin ℓ in state X, then for j 6= ℓ,

E
[

(AX)2j
]

= X2
j + 2XjpjR

A(X) + pj(1− pj)R
A(X) + p2

jR
A(X)2,

where RA(X) = Xℓ is the number of balls recycled.

Proof.

E
[

(AX)2j
]

= E
[

(Xj +B(j, RA(X)))2
]

(1)

= X2
j + 2XjE

[

B(j, RA(X))
]

+ E
[

B(j, RA(X))2
]

(2)

= X2
j + 2XjpjR

A(X) + pj(1− pj)R
A(X) + p2

j

(

RA(X)
)2

(3)

We now can use this result to compute the result of applying A to Z.

Lemma 10. In a ball recycling game with m balls, n bins and probability distribution p, if a strategy A
recycles bin ℓ in state X, then

E [Z(AX)] = Z(X)−
(

1 +
1

pℓ

)

(

RA(X)
)2

+ (2m+ n− 1)RA(X)
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Proof.

E [Z(AX)] =

n
∑

j=1

E
[

(AX)2j/pj

]

=
E
[

(AX)2ℓ
]

pℓ
+
∑

j 6=ℓ

E
[

(AX)2j
]

pj

=
pℓ(1− pℓ)R

A(X) + p2
ℓ

(

RA(X)
)2

pℓ

+
∑

j 6=ℓ

1

pj

(

X2
j + 2XjpjR

A(X) + pj(1 − pj)R
A(X) + p2

j

(

RA(X)
)2
)

= Z −
(

RA(X)
)2

pℓ
+ 2mRA(X)− 2

(

RA(X)
)2

+
∑

j

((1− pj)R
A(X) + pj

(

RA(X)
)2
)

= Z −
(

1 +
1

pℓ

)

(

RA(X)
)2

+ (2m+ n− 1)RA(X)

Now, we can prove Lemma 7.

Proof of Lemma 7. Let χA be the stationary distribution relative to A. Let φj be the event that A recycles
the jth bin of χA, RA

j the random variable of how many balls are recycled given the jth bin is chosen by

A and fj be the probability that A recycles that bin. Because χA = AχA by definition, we must have
E
[

Z(AχA)
]

= E
[

Z(χA)
]

. Therefore:

E
[

Z(χA)
]

= E
[

Z(AχA)
]

(4)

=
∑

j

fjE
[

Z(AχA)|φj

]

(5)

=
∑

j

fj

(

E
[

Z(χA)|φj

]

−
(

1 +
1

pj

)

(

RA
j

)2
+ (2m+ n− 1)RA

j

)

(6)

≤ E
[

Z(χA)
]

+ (2m+ n− 1)RA −
∑

j

fj

(

1 +
1

pj

)

(

RA
j

)2
(7)

= E
[

Z(χA)
]

+ (2m+ n− 1)RA −
∑

j

1

fj

(

p2
j + pj

) (

RA
)2

, (8)

where the last line is because of the Flow Equation. Thus we have:

RA ≤ 2m+ n− 1
∑

j
1

fj

(

p2
j + pj

) (9)

≤ 2m+ n− 1
∑

j
pj

fj

(10)

Lemma 7 applies to the optimal deterministic strategy OPT promised by Lemma 4, and we know that
RA ≤ ROPT for any recycling strategy A. Thus, by maximizing the RHS of Lemma 7, we can get an upper
bound on the recycling rate of any recycling strategy.

Lemma 11. Consider a ball-recycling game with m balls, n bins and distribution p. For any recycling
strategy A,

RA ≤ 2m+ n− 1

‖p‖ 1

2

.
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Proof. This follows immediately from the Cauchy-Schwartz Inequality

4.3 Random Ball with m ≥ n

We show the following lower bound, which with Lemma 11, shows optimality when m = Ω(n).

Lemma 12. Random Ball recycles at least m
‖p‖ 1

2

balls per round in expectation.

Proof. Let χRB = (χRB
i ) be the random variable of the number of balls in each bin in the stationary

distribution of Random Ball. Random Ball recycles bin i with probability
χRB

i

m , and therefore the

expected number of balls recycled from bin i per round is
E

[

(χRB

i )
2
]

m . The number of balls that land in bin i

per round is pi

∑n
j=1

E

[

(χRB

j )2
]

m . Since X is distributed stationarily, we must have

pi

n
∑

j=1

E
[

(

χRB
j

)2
]

m
=

E
[

(

χRB
i

)2
]

m
≥ E

[

χRB
i

]2

m
,

using Jensen’s Inequality. Clearing denominators, taking square roots and summing across i, we have





n
∑

j=1

E
[

(

χRB
j

)2
]





1

2 n
∑

i=1

√
pi =

n
∑

i=1



pi

n
∑

j=1

E
[

(

χRB
j

)2
]





1

2

≥
n
∑

i=1

E
[

χRB
i

]

= m.

Therefore the expected recycle rate is

n
∑

j=1

E
[

(

χRB
j

)2
]

m
≥ m
(
∑n

i=1

√
pi

)2
=

m

‖p‖ 1

2

.

Corollary 1. Let B be a ball-recycling game with m balls and n bins. If m = Ω(n), then Random Ball is
asymptotically optimal among recycling strategies.

4.4 Aggressive Empty is Optimal

In this section, we investigate Aggressive Empty strategies, which aggressively recycle balls outside a
given subset of bins. That is, it runs one strategy on a subset of bins, but always recycles any bin outside
of this set if it has any balls. Specifically, we show that an optimal strategy on a particular O(m) subset
of the bins can be extended to an optimal strategy on the full ball-recycling game by aggressively emptying
the rest.

Consider a ball-recycling game with m balls, n bins, and ball distribution p. Let L be some subset of
bins and S be a strategy on the induced ball-recycling game of L, which is the ball-recycling game with
m balls, |L| bins, and ball distribution q, where

qi =
pi

∑

ℓ∈L pℓ
.

Therefore, q is p’s conditional probability distribution on L. We define L, S-Aggressive Empty to be the
strategy which empties the lowest weight non-empty bin if there is a ball not in L, and otherwise performs
S on L. Note that all the balls will be in L whenever S is performed, so this is well-defined.

We begin by showing that there exists an L and S such that |L| = O(m), L contains all bins with weight
at least 1

m , and L, S-Aggressive Empty is asymptotically optimal. Note that when m = Ω(n), this is
trivial, because we can take L to be all the bins and S to be an optimal strategy; however, this section
provides stronger bounds when m = o(n). Intuitively, the idea is that very low weight bins won’t be able to
effectively accumulate balls, so strategies do better to recover any balls in them than to wait for more balls
to land there. Later, we will need the extra condition on L, that it contains all the “high” weight bins.

9



Lemma 13. There exists an L and S such that |L| = O(m), L contains all bins of weight at least 1

m and
L, S-Aggressive Empty is asymptotically optimal.

Proof. By Lemma 4, there exists an optimal deterministic strategy OPT. Using the flow equation, Lemma 7
can be rewritten as:

n
∑

i=1

ROPT
i ≤ 2m+ n.

Because OPT will never recycle an empty bin, each ROPT
i ≥ 1. Therefore, there can be at most m bins with

average recycle rates at least 3. Let L be this set of bins, together with any bins of weight at least 1

m , and
we will construct a strategy S that aggressively empties the remaining bins into L.

S aggressively empties the complement of L, but also keeps a virtual configuration of where OPT thinks
the balls are, as well as a log of where S has moved them. So when S aggressively empties a bin, it also
updates the log of each ball it throws, indicating where it landed. When Lc is empty, it asks OPT which
bin to recycle based on the virtual configuration. If it says to recycle a bin in Lc, we use the logs to update
where those balls will land in the virtual configuration. If it says to recycle a bin in L, we recycle those balls
that are there in the virtual configuration, and leaving any others behind in that same bin. Thus S performs
OPT but rushes ahead to recycle those balls outside of L.

Now, consider t rounds of OPT. For large enough t, OPT will recycle on average at most 3 balls at a
time from Lc. S recycles at least 1 ball at a time from Lc and exactly as many balls at a time from L.
Therefore for large t, t rounds of OPT will correspond to at most 3t rounds of S, and during this period S
will recycle the same number of balls. Thus S is 3-optimal.

Next we compute the recycle rate of L, S-Aggressive Empty as a function of the recycle rate of S on
the induced ball-recycling game on L.

Lemma 14. If RS is the recycle rate of S (on L), and q is the probability of a ball landing in Lc, then the
recycle rate of L, S-Aggressive Empty is

RAE = Θ

(

1

(1 − q)/RS + q

)

Proof. Consider a collection of recycling rounds of L, S-Aggressive Empty where t of those times L, S-
Aggressive Empty recycles a bin from L. Say b balls are thrown from bins in L and a balls land in Lc.
Now, if m balls are thrown into bins of size at most 1

m , then the expected number of empty bins is at most

m

(

1− 1

m

)m

≤ m

e
.

Because fewer thrown balls will have fewer collisions, this means the expected number of non-empty bins
when k ≤ m balls are thrown into Lc is at least

(

1− 1

e

)

k, requiring at least as many time steps to aggressively
empty. Thus, for large t, the expected number of turns required to empty the a balls out of Lc is at least
(

1− 1

e

)

a
1−q . Whereas even if the balls were recycled from Lc one at a time this expected number of turns

is at most a
1−q turns. The number of balls recycled during this period is b + a

1−q , and we have shown the
number of rounds ρ satisfies:

ρ = Θ

(

t+
a

1− q

)

.

For large enough t, b = Θ
(

tRS
)

and a = Θ
(

tqRS
)

, so the overall recycle rate RAE therefore satisfies

RAE = Θ

(

tRS + tqRS/(1− q)

t+ tqRS/(1− q)

)

= Θ

(

1

(1 − q)/RS + q

)
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4.5 Random Ball is Optimal

In this section we will further examine the performance of Random Ball and show that it is asymptotically
optimal. We first describe a sufficient condition for optimality of a strategy based on its recycle rate on L,
then show that Random Ball satisfies this criterion.

Lemma 15. Let L be a set of O(m) bins for which there exists a strategy T such that L, T -Aggressive

Empty is asymptotically optimal. Let ROPTL be the recycle rate of the optimal strategy on the induced
ball-recycling game of L. For a given strategy S, let RS

L be the conditional recycle rate of S in the stationary
distribution given that a ball in L is selected, and q be the probability that a ball lands in Lc, i.e. q =

∑

k∈Lc pk.
If either

E
[

RS
L

]

= Ω(ROPTL) or E
[

RS
L

]

= Ω

(

1

q

)

,

then S is asymptotically optimal.

Proof. By applying Lemma 5, the subset variant of the flow equation, to L,

fLRS
L = (1 − q)(fLRS

L + (1− fL)RS
Lc),

where fL is the stationary probability of S picking a bin in L. Solving for fL,

fL =
RS

Lc

qRS
L +RS

Lc

. (11)

Suppose RS
L = o

(

1

q

)

and RS
L is optimal on L. If RS

L ≤ 1

q , then fL ≥ 1

2
, and so because RS =

fLRS
L + (1− fL)RS

Lc , we must have RS = Ω(RS
L).

Now, using Lemma 13, let L and T be such that L, T -Aggressive Empty is asymptotically optimal,
and let RAE be its expected recycle rate. By Lemma 14,

RAE = Θ

(

1

(1− q)/RT + q

)

= O
(

RT
)

= O
(

RS
L

)

= O
(

RS
)

, (12)

so S must be asymptotically optimal.

If RS
L = Ω

(

1

q

)

, then RS
L > α

q for some α. If we rearrange Equation (11) and multiply by RS
L, we get

fLRS
L =

1
q

RS
Lc

+ 1

RS
L

.

Here 1

RS
L

≤ q
RS

Lc
, so fLRS

L = Ω
(

1

q

)

, and thusRS = Ω
(

1

q

)

as well. Now we can compare to L, T -Aggressive

Empty as above:

RAE = Θ

(

1

(1− q)/RT + q

)

= O

(

1

q

)

= O
(

RS
)

so in this case S is asymptotically optimal as well.

We can now prove Theorem 1.

Proof of Theorem 1. If m = Ω(n), then by Lemmas 11 and 12 we are done.
Otherwise, we will proof the lemma for a slightly modified Random Ball that only recycles 1 ball

outside of L even if more are available; that is, it moves only one of the balls in the bin. Since this strategy
is worse than Random Ball, this will be sufficient.

If RL ≥ 1−q
q , then we are done by Lemma 15. Otherwise, in the stationary distribution, when a bin in

L is recycled, the expected number of balls which land in Lc is qRL < 1− q. When a bin in Lc is recycled,
the expected number of balls which land in L is 1− q. Thus Random Ball must pick a bin in L more than
half the time, and so the expected number of balls in L must be more than m

2
.

11



Now analogously to the proof of Lemma 12, we have:

pi





m
∑

j=1

E
[

(

χRB
j

)2
]

+

n
∑

j=m+1

E
[

χRB
j

]



 = E
[

(

χRB
i

)2
]

≥ E
[

χRB
i

]2
.

Thus,

E
[

χRB
i

]

≤ √
pi





m
∑

j=1

E
[

(

χRB
j

)2
]

+
m

2





1

2

.

Summing over i ∈ [m] yields

E
[

χRB
L

]

≤
(

m
∑

i=1

√
pi

)





m
∑

j=1

E
[

(

χRB
j

)2
]

+
m

2





1

2

,

where χRB
L is the expected number of balls in L. Now,

RRB
L ≥ 1

m

m
∑

j=1

E
[

(

χRB
j

)2
]

≥ E
[

χRB
L

]2

m
(
∑m

i=1

√
pi

)2
− 1

2
>

m

4‖pL‖ 1

2

− 1

2
, (13)

where pL is the conditional probability distribution on L obtained from p. Thus by Lemma 11, Random

Ball is asymptotically optimal on the induced system of L, and therefore Random Ball is asymptotically
optimal by Lemma 15.

5 The Uniform Case

The results of Section 4 hold for any distribution of the balls into the bins. Here we consider the special
case when they are uniformly distributed, which models insertion buffers as discussed in Section 3. We then
show that Golden Gate and Fullest Bin are optimal, up to lower-order terms, in this setting, whereas
Random Ball is at least 1/2- and at most (1 − ǫ)-optimal, for some constant ǫ > 0.

Consider the uniform bin recycling problem. In this case, Lemma 11 implies:

Corollary 2. Consider a ball-recycling game with m balls, n bins and uniform distribution u. For any
recycling strategy A,

RA ≤ 2m+ n− 1

n
= 2

m

n
+ 1.

The average number of balls in a bin is m/n, so Corollary 2 suggests that any “reasonable” strategy will
be at least 1/2-optimal in the uniform case.

We now show that Golden Gate and Fullest Bin are within an additive constant of optimal on
strictly uniform distributions.

Lemma 16. Golden Gate and Fullest Bin each recycle at least 2m/(n+1) balls per round in expectation.

Proof. Let S be the random variable denoting the number of balls thrown in a given round with Golden

Gate. Golden Gate will recycle the bins in order starting from the next one and cycling around. Therefore,
we can consider the collection of bins to be a queue. After throwing the balls, the average place in the queue
in which a ball lands is the [(n− 1)/s]th bin, due to uniformity. Each ball thrown will therefore sit for an
average of less than (n− 1)/2 round before it is thrown again. Therefore, m− E [S] ≤ E [S] (n − 1)/2, and
we have the result after solving for E [S].

Let T be the random variable denoting the number of balls thrown in a given round with Fullest

Bin. If after removing the balls in the Fullest Bin, we list the bins in order of fullness, we can again
think of the bins as a sort of queue. When we throw the balls, the average place in the queue which a
ball lands is the [(n− 1)/2]th bin as above, due to uniformity. Now, we reorder the bins back into fullness
order. During the reordering more balls are moved up the queue than down, thus each ball thrown into the
system will sit for an average of less than (n − 1)/2 rounds before it is thrown again. Therefore, as above,
m− E [S] ≤ E [S] (n− 1)/2, and we are done.

12



Corollary 2 and Lemma 16 together prove Theorem 2. Despite these strong performance bounds, recall
that Fullest Bin can perform arbitrarily badly on non-uniform p. Random Ball on the other hand is
always O(1)-optimal.

5.1 Random Ball in the Uniform Case

However, Random Ball does not achieve this level of optimality on uniform distributions. In this section we
will show in Theorem 3 that Random Ball recycles at most 1+ (2− ǫ)m/n balls per round in expectation,
for some ǫ > 0. The upper bound is given in Lemma 18 and Corollary 3, and the lower bound is given in
Lemma 19.

We begin with the following lemma:

Lemma 17. Let χRB be the stationary distribution relative to Random Ball, RRB(X) the random variable
of how many balls Random Ball recycles from ball configuration X, andRRB = E

[

RRB
(

χRB
)]

the expected
recycle rate of Random Ball. Then,

E
[

RRB
(

χRB
)2
]

RRB
=

2m+ n− 1

n+ 1
≤ 1 +

2m

n
.

Proof. Consider the random variable of the number of distinct unordered pairs of balls which are in the same
bin in χRB. In expectation, a round of Random Ball eliminates

(RRB

2

)

and creates
R−1
∑

k=0

m−RRB + k

n

such pairs. In the stationary distribution, these must be equal, so

E
[

RRB
(

χRB
)2
]

2
− RRB

2
=

(2m− 1)RRB

2n
−

E
[

RRB
(

χRB
)2
]

2n
.

After rearranging we have the result.

Lemma 18. There exists a constant α > 0 such that Random Ball is at most (1 − α) optimal.

Proof. Let χRB be the stationary distribution relative to Random Ball, RRB(X) the random variable of
how many balls Random Ball recycles from ball configuration X , and RRB = E

[

RRB
(

χRB
)]

the expected
recycle rate of Random Ball. We will prove the result by contradiction, so assume that for all constant
ǫ > 0

RRB ≥ 1 +
(2− ǫ)m

n
.

Let c ∈ (1, 2) be a constant to be determined later. We say a bin is light if it contains at most cm/n
balls. Let L be the random variable of the number of balls in light bins in the stationary distribution. Then
the probability qL that Random Ball recycles a light bin in the stationary distribution is E [L] /m. We
proceed by cases.
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Case 1. Suppose E [L] ≥ δm for some constant δ > 0. Then qL ≥ δ and for c ≤ 2− 2ǫ and ǫ < 1/2,

Var
[

RRB
(

χRB
)]

= E
[

(

RRB
(

χRB
)

−RRB
)2
]

≥ qL

(

1 +
(2− ǫ)m

n
− cm

n

)2

≥ δ(2− ǫ − c)2
m2

n2
+ 2δ(2− ǫ − c)

m

n
+ δ

≥ ǫ2δ

4

(

4m2

n2
+

4m

n
+ 1

)

≥ ǫ2δ

4

(

RRB
)2

.

Thus by the definition of variance, we have

E
[

RRB
(

χRB
)2
]

≥
(

1 +
ǫ2δ

4

)

(

RRB
)2

.

Now by Lemma 17,

RRB ≤
(

1 +
ǫ2δ

4

)−1(

1 +
2m

n

)

.

Since ǫ, δ are constants greater than 0, we have our contradiction for the first case.

Case 2. Otherwise, E [L] < δm. Since L ∈ [0,m], E
[

L2
]

< δm2. Lemma 17 implies E
[

RRB
(

χRB
)2
]

≤
(1 + 2m/n)2. Together Hölder’s inequality we have

E
[

LRRB
(

χRB
)]

≤
(

E
[

L2
]

E
[

RRB
(

χRB
)2
])1/2

<

(

δm2

(

1 +
2m

n

)2
)1/2

=
√
δm

(

1 +
2m

n

)

(14)

Let Y be the random variable of the number of balls in the stationary distribution which start in a light
bins, but end up begin among the first 1+ cm/n balls in a heavy bin after an application of Random Ball.
Let Φ be the random variable of the number of distinct unordered pairs of balls that are in the same light
bin in the stationary distribution. Applying Random Ball in expectation creates at most

E





RRB−1
∑

k=0

L+ k

n



 = E

[

2LRRB
(

χRB
)

+RRB
(

χRB
)2 −RRB

(

χRB
)

2n

]

such pairs, and eliminates at least

E

[

Y

1 + cm
n

(

1 + cm
n

2

)]

.

In the stationary distribution these quantities must be equal, so rearranging together with Equation (14),
we have

E [Y ] ≤
2E
[

LRRB
(

χRB
)]

+ E
[

RRB
(

χRB
)2
]

−RRB

cm

<
2
√
δ

c

(

1 +
2m

n

)

+
E
[

RRB
(

χRB
)2
]

−RRB

cm

<

(

1 +
2m

n

)

(

2
√
δ

c
+

2

cn

)

,
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where we have used Lemma 17 for the last inequality.
We now compute the effect on E [L] of applying Random Ball to the stationary distribution. By

Markov’s inequality, there must be more than (1 − 1/c)n light bins, and so the probability that a ball is
thrown into a light bin is more than 1 − 1/c. Therefore, at least (1 − 1/c)RRB balls land in light bins in
expectation. We expect at most E [Y ] balls to be in light bins which turn into heavy bins. Finally, we recycle
at most cm/n balls from a light bin E [L] /m of the time. Since the net change to L must be 0 in expectation,

(

1− 1

c

)

RRB <
c

n
E [L] + E [Y ] .

However, this is a contradiction. Indeed, the LHS is at least

(

1− 1

c

)(

1 +
(2− ǫ)m

n

)

,

but the RHS is less than

δc
m

n
+

(

1 +
2m

n

)

(

2
√
δ

c
+

2

cn

)

.

Thus, if we pick a sufficiently small δ > 0, ǫ = 0.01, c = 1.98 and n ≥ 3, we have a contradiction. For n ≤ 2,
the contradiction follows immediately from Lemma 17.

Corollary 3. Setting (ǫ, c, δ) = (0.001, 1.456, 0.042) in the proof of Theorem 3, we obtain

RRB < 1 + 1.994
m

n
.

Lemma 19. The uniform random ball policy has the expected recycle rate at least

(

1 +
1

64
− c

)

m

n
for any constant c > 0 if m ≥ n.

Proof. Let Xt,k be the random variable denoting the number of balls in the kth bin at the beginning of the
tth round. Because of the symmetry, Xt,k follows the same distribution as Xt,ℓ for any k 6= ℓ. For simplicity,
we let Xt be a random variable that follows the same distribution as Xt,k for all k.

We pick t to be sufficiently large so that the system enters its stationary state after t rounds. Thus, Xt

and Xt′ follows the same distribution for any t′ > t.
Let Yt be the random variable denoting the number of balls recycled in the t-round. By definition, we

have

E [Yt] =
∑

1≤k≤n

E
[

X2
t,k

]

m
=

n

m

(

E [Xt]
2 +Var [Xt]

)

.

Note that E [Xt] = m/n, yielding E [Yt] ≥ m/n.
To show E [Yt] deviates from m/n, we plan to lower-bound Var [Xt]. We discuss the lower bound case by

case.

1. If P (Xt ≤ (1− ǫ)m/n) ≥ δ, then E [Yt] ≥ (1 + ǫ2δ)m/n.

2. Otherwise P (Xt > (1 − ǫ)m/n) > 1− δ. Our plan is to show that if δ is small enough, then this case
does not exist.

We say a bin is heavy if it has more than (1− ǫ)m/n balls. Let Zt be the random variable denoting the
number of heavy bins at the beginning of the t-th round. Given the condition for this case, we have

E [Zt] =
∑

1≤k≤n

E
[

I
[

Xt,k > (1− ǫ)
m

n

]]

> (1− δ)n.
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Zt is a non-negative variable in [0, n] and has an expectation value more than (1− δ)n. By the Markov
inequality, we obtain

Pr[Zt ≤ (1− 2δ)n] <
1

2
and Pr[Zt > (1 − 2δ)n] >

1

2
.

We compute E
[

Zt+n/2

]

from the given Zt. If Zt > (1 − 2δ)n for some constant δ < 1/4, no matter
what random choices are made in the system, we know the following facts, where Ht denotes the set
of heavy bins at the beginning of the tth round and P denotes the time period between the tth round
and the (t+ n/2)th round.

(a) At least (1/2− 2δ)n bins in Ht are flushed during P .

(b) At least (1/2− 2δ)(1− ǫ)m balls are recycled during P .

(c) At least (1/2− 2δ)n bins in Ht are not flushed during P .

Given (c), we can find a subset St ⊂ Ht that is composed of (1/2− 2δ)n bins in Ht not flushed during
P . Note that which bins are flushed and which are not depend on the random choices made by the
system. Hence, St varies.

Next, we give a lower bound on the expected number of balls in any St. The balls which stay in St

come from two different sources. There are those that stay in St at the beginning of the tth round, of
which there are at least |St|(1 − ǫ)m/n. There are also those which are recycled during P , of which
there are at least |St|(1− o(1))|B|/n by Lemma 20. Combining the two sources, the expected number
of balls in St is at least

Γ = (1− ǫ)

(

(

1

2
− 2δ

)

+

(

1

2
− 2δ

)2

(1− o(1))

)

m.

Lemma 20. Let B be the multiset of the first (1/2 − 2δ)(1 − ǫ)m balls recycled during P , whose
existence is assured by (b). Let Li be the random variable denoting the number of balls in B that land
on the ith bin. If m ≥ n,

E [min{L1, L2, . . . , Ln}] = (1− o(1))|B|/n.

Given Γ, we obtain the following bound:

E
[

Zt+n/2

∣

∣ Zt > (1− 2δ)n
]

≤ |St|+
m− Γ

(1 − ǫ)m/n

=

(

1

1− ǫ
−
(

1

2
− δ

)2

(1− o(1))

)

n

≈
(

3

4
+ ǫ+ δ

)

n

Together with the trivial bound E
[

Zt+n/2

∣

∣ Zt ≤ (1− 2δ)n
]

≤ n, the inferred E
[

Zt+n/2

]

equals

P (Zt ≤ (1− 2δ)) E
[

Zt+n/2

∣

∣ Zt ≤ (1 − 2δ)
]

+ P (Zt > (1 − 2δ)) E
[

Zt+n/2

∣

∣ Zt > (1− 2δ)
]

<
1

2

(

1 +

(

3

4
+ ǫ+ δ

))

n

≈
(

7

8
+

ǫ+ δ

2

)

n

This leads to a contradiction if ǫ + δ is small enough. This is because we have E [Zt] > (1 − δ)n and
E
[

Zt+n/2

]

= E [Zt], because the system already is stationary.

As a result, we have a contradiction if ǫ+3δ
2

< 1

8
.
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Combine the results for the two cases, we wish to maximize 1 + ǫ2δ subject to ǫ + 3δ < 1

4
. Picking ǫ = 1/6

yields the result.

Theorem 3 follows from Corollaries 2 and 3 and Lemma 19.
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A Ball Recycling is a Markov Decision Process

We prove some foundational results in this appendix. In particular, we prove Lemma 4, and show that all
finite-state recycling strategies have stationary distributions.

A.1 Ball recycling games are Markov decision processes

This section makes use of the standard theory of Markov chains and Markov decision processes; for an
introduction see e.g. [25].

In a ball recycling game, we represent the configuration of the balls as a vector X = (Xi) of length n,
where Xi is the number of balls in the ith bin. Since the number of balls is finite, there is only a finite
number of bin configurations.

A recycling strategy A takes as input the current bin configuration X together with an internal state
S, and selects a non-empty bin to recycle; the next state is obtained by removing all the balls from the
selected bin and re-throwing them according to p. This recycling algorithm may be randomized. We
generally restrict ourselves to finite-state recycling strategies, those where the internal state has finitely
many possible configurations, and we also sometimes refer to stateless strategies, where there is a unique
internal state. We write AiX for the state obtained after i rounds of recycling using strategy A. In each
round, the recycling algorithm earns a reward equal to the number of balls recycled in that round.

Thus the ball recycling game is a Markov decision process, and we are interested in policies that maximize
the expected average recycling rate, defined for a policy A as

RA = lim
T→∞

1

T

T
∑

t=0

R(AtX0).

Note that Markov decision processes are very general. For example, in a Markov decision process the
policy may vary over time, and may even take the entire history of the process and its own past decisions
into account when deciding on its next action. Thus, for some strategies A, the limit RA may not exist.
In the literature of Markov decision processes, this is often handled by taking the lim sup instead of the
limit. However, for any Markov decision process, any strategy that maximizes the limit also maximizes the
lim sup [25]. Therefore, for simplicity, we will focus only on strategies for which the limit is well-defined.
Note that this does not reduce the applicability of our results: since optimizing the limit is sufficient to
optimize the lim sup, all our upper bounds apply to arbitrary recycling strategies, not just ones for which
the limit is well-defined. Furthermore, when we prove a recycling strategy is optimal, it is optimal among
all recycling strategies, not just ones for which the above limit is well-defined.

A Markov decision process policy is deterministic if it decides on its next action based solely on the
current state, i.e. without looking at history, the number of time steps that have passed, or by flipping
random coins. A deterministic policy can be represented as a simple table mapping each state to a single
action to be taken whenever the system is in that state.

All Markov decision processes have an optimal policy that is deterministic and stateless [25]. In particular,
Lemma 4 follows from Kallenberg’s Corollary 5.4.

A.2 Stationary distributions of recycling strategies

A ball recycling game and a finite-state recycling strategy together define a Markov process. We now show
that finite-state recycling strategies result in Markov processes with stationary distributions, and that these
stationary distributions are often unique.

The following lemma shows that, when we look only at the bin configurations, that recycling games have
properties analogous to irreducibility and aperiodicity in Markov chains.

Lemma 21. For any ball recycling game with m balls and n bins there is an ǫ > 0 such that, for all bin
configurations X and Y , and for all recycling strategies, the probability that X reaches Y within min(m,n)
steps is at least ǫ. Furthermore, every state can transition to itself in one time step.
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Proof. We just need to show a sequence of outcomes for ball tosses that transform X into Y , no matter
which bins the recycling strategy chooses to empty. So, imagine that, at each step, all the recycling balls
land in occupied bins, so that at each step, the number of occupied bins goes down by 1. After at most
min(m,n) − 1 steps, all the balls will be in a single bin. On the next round, the recycling strategy must
choose that bin, causing all the balls to be rethrown. There is some non-zero probability that they land in
configuration Y .

For the second observation, simply note that all the recycled balls may happen to land in the bin from
whence they came.

Lemma 22.

1. All ball-recycling games using finite-state recycling strategies have stationary distributions.

2. All ball-recycling game using stateless recycling strategies are ergodic, and hence have unique stationary
distributions which are equal to their limiting distributions.

Proof. Follows from Lemma 21.

We now show that the two main recycling strategies studied in this paper yield unique stationary distri-
butions. The strategies are:

• Fullest Bin: selects the bin that has the most balls;

• Random Ball: selects a ball uniformly at random and recycles whichever bin it is in.

Lemma 23. Fullest Bin and Random Ball are ergodic for all recycling games.

Proof. Fullest Bin and Random Ball are stateless, so by Lemma 22, they are ergodic.

B Database Experiments

Many databases cache recently inserted items in RAM so that they can write items to disk in batches. Ex-
amples include Azure [4], DB2 [21], Hbase [43], Informix [22], InnoDB [13], NuDB [30], Oracle [31], SAP [37],
and Vertica [40]. They are also used to accelerate inserts in several research prototypes, such as the buffered
Bloom filter [14] and buffered quotient filter [6]. By batching updates to disk, these insertion buffers

reduce the amortized number of I/Os per insert, which can substantially improve insertion throughput.
Facebook claims that the insertion buffer in InnoDB speeds up some production workloads by a factor of 5
to 16, and accelerates some synthetic benchmarks by up to a factor of 80 [13].

Insertion buffers can significantly mitigate the precipitous performance drop that databases can experi-
ence when the data set grows too large to fit in RAM. Figure 1a shows the time per 1,000 insertions into
a MySQL database using the InnoDB backend, with and without InnoDB’s insertion buffer enabled. For
the first 200, 000 insertions, the entire database fits in RAM, and so insertions are fast, even without the
insertion buffer.

Once the database grows larger than RAM, insertion performance without the insertion buffer falls off
a cliff. In fact, once the database reaches 1M rows, it can perform only about 200 insertions per second,
suggesting that the throughput is limited by the random-I/O performance of the underlying disk. In the
benchmark with the insertion buffer enabled, on the other hand, performance degrades by only a small
amount.

Based on the performance of the first 1M insertions, it appears that InnoDB’s insertion buffer effectively
eliminates the performance cliff that can occur when the database grows larger than RAM. This improvement
explains the popularity of insertion buffers in database design.

However, in our experiment, as the database continues to grow, the efficacy of the insertion buffer declines.
Figure 1b shows the time per 10,000 insertions as the database grows to 50M rows. Although the performance
without the insertion buffer drops more quickly early on, it remains relatively stable thereafter. Performance
with the insertion buffer, on the other hand, slowly declines over the course of the benchmark until it is only
about a third faster than without the insertion buffer. This is well below the 5 − 80× speedups reported
above.
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(b) All fifty million insertions

Figure 1: The cost of inserting batches of rows into an empty table in InnoDB with and without the insertion
buffer. The rows are inserted in batches of 10,000 to avoid slowdown in parsing, and the keys are distributed
uniformly. After 1M insertions, the buffered version takes 12.3% as long as the unbuffered version (measured
over 50000 insertions); after 50M insertions, the advantage is reduced so that the buffered version takes to
68.3% of the time of the unbuffered. (Lower is better)

As these experiments show, it can be difficult to extrapolate from small examples the performance gains
that insertion buffers can provide for large databases. Therefore, it is no wonder that reported speedups
from insertion buffers vary wildly from as little as 2× to as high as 80× [13]. Some have even suggested that
insertion buffers may provide many of the benefits of write-optimization [12], i.e., that insertion buffers can
bring the performance of B-trees up to that of LSM-trees [34], COLAs [5], Fractal Trees [38], xDicts [10], or
Bǫ-trees [11].

Here we validate our theoretical study of insertion buffers by showing that our analysis above can have a
material impact on the performance of databases with insertions buffers. We simulated workloads of random
insertions to a B-tree, with varying distributions on the inserted keys. We found that, as predicted, the
performance was independent of the input distribution and closely matched the performance predicted by
our theorems.

We then ran workloads of random insertions into InnoDB and measured the average batch size of flushes
from its insertion buffer. InnoDB implements a variant of the random-item flushing strategy. We modified
it to implement the golden-gate flushing strategy. Despite the additional complexities of InnoDB’s insertion
buffer implementation, we found that performance closely tracked our theoretical predictions and was inde-
pendent of the distribution of inserted keys. We also found that the golden-gate flushing strategy improved
InnoDB’s flushing rate by about 30% over the course of our benchmark.

Summary. Our analysis explains why insertion buffers can provide dramatic speedups for small databases,
but only small gains are available as the database grows. Our results also provide useful guidance to imple-
menters about which flushing strategy will provide the most performance improvement.

Our results also show that insertion buffers cannot deliver the same asymptotic performance improve-
ments that are possible with write-optimized data structures, such as LSM-trees and Bǫ-trees.

B.1 Insertion-Buffer Background

This section describes insertion buffers are actually implemented and used in deployed systems and recent
research prototypes.
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SAP: The SAP IQ database supports an in-memory row-level versioning (RLV)
store, and insertions are performed to the RLV store and later merged into
the main on-disk store [37].

NuDB: The NuDB SSD-based key-value store buffers all insertions in memory, and
later flushes it to SSD [30]. Flushes occur at least once per second, or more
often if insertion activity causes the in-memory buffer to fill.

Buffered Bloom and
quotient filters:

Bloom filters are known to have poor locality for both inserts and lookups.
The buffered Bloom filter [14] improves the performance of insertions to a
Bloom filter on SSD by buffering the updates in RAM. The on-disk Bloom
filter is divided into pages, and each page has a buffer of updates in RAM.
When a page’s buffer fills, the buffered changes are written to the page.

The buffered quotient filter stores newly inserted items in an in-memory
quotient filter [6]. When the in-memory quotient filter fills, its entire contents
are flushed to the on-disk quotient filter.

InnoDB: The InnoDB [32] B-tree implementation used in the MySQL [33] and Mari-
aDB [20] relational database systems includes an insertion buffer.

Our experiments in this paper focus on InnoDB as an archetypal and open-
source implementation of an insertion buffer, so we describe it in detail.

InnoDB structures its insertion buffer as a B-tree. When the insertion buffer
becomes full, it selects the items to be flushed by performing a random walk
from the root to a leaf. The random walk is performed by selecting, at each
step, uniformly randomly from among the children of the current node. Once
it gets to a leaf, it it picks a single item to insert into the on-disk B-tree.
This item, along with any other items in the insertion buffer that belong in
that leaf, are inserted into the leaf and removed from the insertion buffer.

InnoDB’s insertion buffer is complicated in several ways. First, the size of
the insertion buffer changes over time, as InnoDB allocates more or less space
to other buffers and caches.

InnoDB also has a leaf cache. Whenever a leaf is brought into cache for any
reason, all inserts to that leaf that are currently in the insertion buffer are
immediately applied to the leaf, and any future inserts to that leaf also skip
the insertion buffer as long as the leaf remains in cache.

Finally, it performs some flushing when the buffer is not full. Roughly every
second, InnoDB performs a small amount of background flushing. Moreover,
it prematurely flushes its buffer to a leaf when it calculates that such a flush
will cause the leaf to split. We hypothesize that this feature exists to simplify
the transactional system.

B.2 Leaf Probabilities in B-Trees

In Section 5, we established that, on insertion, the leaf probabilities are nearly uniform. We empirically
verify this uniformity property by simulating insertions into the leaves of a B-tree. We insert real-valued
keys i.i.d. according to uniform, Pareto (real-valued Zipfian) and normal distributions; the leaves of the
B-tree split when they are full, and we measure the ratio of the maximal weight leaf to 1/n. Lemma 1
tells us that this ratio should be asymptotically at most constant, but as Figure 2 shows, our experimental
analysis shows further that this constant is generally less than 2. Because leaves generally split in 2, this
makes some intuitive sense.

We also verify the these results using the InnoDB storage engine. We insert 5 million rows into a database
using uniform, Pareto and normal distributions on the keys. the results are summarized in Fig. 3a. The
maximum ratio does not exceed 2.3, and the 95th percentile ratio does exceed 1.6. Thus the distribution of
the keys to the leaves is in fact almost uniform.
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Figure 2: Deviation of the maximum weight leaf from uniform in simulation

B.3 Simulating Insertion Buffers

The ball-and-bins models described above are based on a static leaf structure. However, in practice inserting
into a database causes the leaf structure (the number and probability distribution of bins in the model) to
change. However, we can still perform the same strategies, and by simulating an insertion buffer in front
of a database, we can compare their efficiency as well as verify that much of the static analysis empirically
applies to the dynamic system.

We insert real-valued keys into the simulation according to one of several distributions of varying skewness:
uniform on [0, 1000], Pareto with parameter α = {0.5, 1.0, 2.0}, and uniform centered at 0, with standard
deviation 1000. We have a buffer which stores 2,500 keys; when it fills we choose a leaf according to the
chosen strategy and flush all the buffered keys destined to it. Initially we have one leaf, and the leaves split
when they exceed 160 keys, as uniformly as possible.

As shown in Figure 4, the key distribution doesn’t affect the recycle rate of the insertion buffer, and as the
number of leaves gets larger, the recycle rate decreases. Generally fullest bin does better than golden gate,
and golden gate does better than random ball. Demonstrated with the normal distribution (all distributions
perform very similarly), Figure 4f shows that golden gate initially outperforms random ball by about 30%,
which then decreases as the number of bins grows.

B.4 Real-World Performance

In this section, we empirically the performance of insertion buffers in InnoDB, the default storage engine in
MySQL.

Analogously to the experiments in Appendix B.3, we insert rows into the MySQL database, and after
every 10000 insertions, we check the “merge ratio” reported by InnoDB. This is the number of rows merged
into the database from the buffer during each buffer flush, and corresponds to the recycling rate in the balls
and bins model. We also check the reported memory allocated to the buffer, which allows us to control for
memory usage.

The keys of the rows are i.i.d. according to the same real-valued probability distributions as in Ap-
pendix B.3: uniform on [0, 1000000], Pareto with parameter α = {0.5, 1, 2}, and normal centered at 0 with
standard deviation 1000. The results for the different distributions are shown in Figures 5a to 5e. The
structure of the plot generally does not depend on the key distribution, and while there is more noise, the
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(a) Maximum leaf weight relative to uniform
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(b) 95th percentile leaf weight relative to uniform

Figure 3: Deviation of the maximum and 95th percentile weight leaves from uniform as observed in InnoDB
after performing insertions.

overall picture is similar to the plots in Figure 4.
If we were to hold the number of leaves roughly constant and change the buffer size, Lemma 16 suggests

that the relationship with recycle rate would be roughly linear. To test this, we ran the above experiment
with buffer sizes from 8mb to 128mb in 2mb increments. We performed 11 million insertions with uniformly
distributed keys each time, and then took the average recycle rate for the last million rows. As demonstrated
in Figure 5f, the resulting plot is nearly linear.
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(a) Uniform key distribution
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(b) Pareto-0.5 key distribution
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(c) Pareto-1 key distribution
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(d) Pareto-2 key distribution
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(e) Normal key distribution
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(f) Ratio of golden gate to random ball with normally dis-
tributed keys

Figure 4: Simulated results with various key distributions and recycling strategies. (Higher is better)
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Golden Gate Random Ball (default)

0 1 2 3 4 5
0

20

40

Rows inserted in millions

R
ec
y
cl
e
ra
te

ov
er

la
st

1
0
0
0
0
in
se
rt
io
n
s

(a) Uniform key distribution
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(b) Pareto α = 0.5 key distribution
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(c) Pareto α = 1 key distribution
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(d) Pareto α = 2 key distribution
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(e) Normal key distribution
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(f) Buffer size and recycle rate

Figure 5: InnoDB Insertion buffer recycle rates for various key distributions and memory sizes. (Higher is
better)
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