
SIAM J. COMPUT.
Vol. 23, No. 5, pp. 1001-1018, October 1994

1994 Society for Industrial and Applied Mathematics
008

COMPUTING WITH NOISY INFORMATION*

URIEL FEIGEt, PRABHAKAR RAGHAVANt, DAVID PELEG AND ELI UPFAL

Abstract. This paper studies the depth of noisy decision trees in which each node gives the wrong answer with
some constant probability. In the noisy Boolean decision tree model, tight bounds are given on the number of queries
to input variables required to compute threshold functions, the parity function and symmetric functions. In the noisy
comparison tree model, tight bounds are given on the number of noisy comparisons for searching, sorting, selection
and merging. The paper also studies parallel selection and sorting with noisy comparisons, giving tight bounds for
several problems.

Key words, fault-tolerance, reliability, noisy computation, sorting and searching, error-correction

AMS subject classifications. 68M 15, 68P 10, 68R05

1. Introduction. Fault-tolerance is an important consideration in large systems. Broadly,
there are two approaches to coping with faults. The first is the "reconfiguration" approach [7],
[13], in which faults are identified and isolated in real time. This is done concurrently with
computation, and often has a significant overhead. A second, different approach is to devise
robust algorithms that work despite unreliable information operations, without singling out
the faulty components. This latter approach has been the focus of much recent work 11],
[23], [16]-[19] [26], [22], [14], [15]. These papers differ in their general setting and in the
mechanisms they use to model the faulty behavior of components. This paper concerns the
probabilistic setting to this latter paradigm, as in [22], [14], and [15].

1.1. Model. Our general model will be a (possibly randomized) computation tree, in
which each node gives the correct answer with some probability, which is at least p, where p
is a fixed constant in (1/2, 1), bounded away from 1/2 and 1. The node faults are independent.
We study the depth of the computation tree in terms of a tolerance parameter Q 6 (0, 1/2):
on any instance, the computation tree must lead to a leaf giving the correct answer on that
instance with probability at least Q. The success probability of the algorithm is computed
over the combined probability space of the outcome of individual operations and the results
of coin flips (in case our algorithm is randomized).

There are several possible types of computation trees that could be studied in this noisy
tree model; this paper focuses on two. The first is the noisy Boolean decision tree, in which
the tree computes a Boolean function of N Boolean variables X XN. Each node in the
tree corresponds to querying one of the input variables; with some probability, we are given
the wrong value of that variable. Each leaf is labeled 0 or 1, and corresponds to an evaluation
of the function.

The second type studied is noisy comparison trees for problems such as sorting, selection,
and searching. Here the input is a set {Xl, x2 XN} of N numbers. (For searching, the
input contains also x-l, the searched element.) Each node in the tree specifies two indices
and j of the elements to be compared. (In our searching algorithms, for instance, one of

these indices is always the searched element.) The node responds with either "xi > xj" or

*Received by the editors March 4, 1991; accepted for publication (in revised form) June 8, 1993.
tThe Weizmann Institute of Science, Rehovot, Israel. Part of the work was done while this author was visiting

IBM T.J. Watson and Almaden Research Centers, San Jose, California 95120.
tlBM T.J. Watson Research Center, Yorktown Heights, New York 10598. A portion of this work was done while

the author was visiting the Weizmann Institute of Science, Rehovot, Israel.
The Weizmann Institute of Science, Rehovot, Israel. The work of this author was supported in part by an Allon

Fellowship, a Bantrell Fellowship and a Walter and Elise Haas Career Development Award.
IBM Almaden Research Center, San Jose, California 95120. This author’s work at the Weizmann Institute was

supported in part by a Bat-Sheva de Rothschild Award and by a Revson Career Development Award.

1OOl

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1002 U. FEIGE, R RAGHAVAN, D. PELEG, AND E. UPFAL

"Xi " Xj," and gives the wrong answer with some probability. Each leaf is labeled with a
permutation representing the sorted order for the input (for sorting and merging) or an index
in [1, N] (for selection and searching).

A simple example is in order here. In the absence of errors, the maximum of N numbers
can be found by a comparison tree of depth N 1. In the face of a constant probability of error,
it is possible to repeat each comparison of the fault-free decision tree O(log(N/Q)) times and
obtain, by majority voting, a guess for the true result of the comparison that is wrong with
probability at most Q/N. (Note that this does not require a special majority operation, but
only "blowing up" each node of the tree into a subtree of the appropriate depth.) Doing this
for every comparison immediately gives us a noisy comparison tree of depth O(N log(N/Q))
for finding the maximum (we can afford to sum the failure probability of Q/N over the N
events). In a similar fashion, any decision tree that has depth d in the absence of noise can be
used to devise a noisy one of depth O(d log(d/Q)).

The crux of our work is to show that while this logarithmic blowup is unavoidable for
certain problems, it is (perhaps surprisingly) unnecessary for certain others. In fact, we are
able to show such a separation between problems that have the same decision tree complexity
in the absence of errors, such as the threshold function with various parameters (Theorems 2.2
and 2.7). A major obstacle to proving the lower bounds is that errors cancel--multiple errors
could compound on an input to lead to a leaf giving the correct answer to that input, for the
"wrong reason."

Another distinction we make is between a static adversary, where the probability of
correctness of every node of the tree is fixed at p, and a dynamic adversary who can set the
probability of correctness of each tree node to any value in [p, 1).

It turns out that there is a difference between these two cases. In the dynamic case, the
noisy decision tree complexity is bounded below by the deterministic (noise free) decision tree
complexity, since the adversary may always opt for a correct execution (with all individual
operations giving the correct value). In contrast, in the static case, the noisy decision tree
complexity is bounded above by log(n/Q) times the randomized noise free decision tree
complexity. This follows from the fact that the availability of basic operations with fixed
success probability provides us with a fixed-bias coin, which in turn can be used to generate
a fair coin. Since there are problems for which the randomized decision tree complexity
is significantly smaller than the deterministic decision tree complexity (cf. [24]), it follows
that the presence of fixed probability faults may actually help the algorithm. This points out
another source of difficulty in proving lower bounds in the noisy decision tree model.

1.2. Related previous work. Noisy comparison trees for binary search and related prob-
lems were studied by Renyi [22] and by Pelc 14], 15]. Pippenger 16] and others have studied
networks of noisy gates, in which every gate could give the wrong answer with some prob-
ability. Kenyon-Mathieu and Yao [11 study a Boolean decision tree in which an adversary
is allowed to corrupt at most k nodes (read operations) along any root-leaf path. Rivest et al.
[23] consider the problem of binary search on N elements using a comparison tree when an
adversary can choose k comparisons to be incorrect ("lies") on any root-leaf path. This model
was further studied by Ravikumar et al. [18], [19]. Yao and Yao [26] study sorting networks
with at most k faulty comparators.

Our work differs from [11], [23], [18], [19] in that we allow every node of the decision
tree to be independently faulty with some probability. Thus in our model the number of faults
is not prescribed in advance--knowledge of this number could well be exploited by a "fault-
tolerant" algorithm. The probabilistic model allows us to tolerate a relatively large number of
faults compared to [11], [23], [18], [19].

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

COMPUTING WITH NOISY INFORMATION 1003

/3Prob 1"[’1.3. Results. Let ,_,U, Q ,,lj (respectively, rt)et,N,Q(II)) denote the minimum depth of any
noisy probabilistic (respectively, deterministic) decision tree for instances of size N ofproblem
I-l, with tolerance Q. For notational simplicity, we shall write DN, Q(["I) ()(f) to denote
both/r)Prob /3Det...N,Q([’I) (f) and .N,Q(II) O(f).

All our lower bounds are for probabilistic trees, and all the upper bounds (with the excep-
tion of parallel sorting) are for deterministic trees. Furthermore, all our lower bounds apply
against the weaker static adversary (and hence also against a dynamic adversary), and all the
upper bounds apply against a dynamic adversary (and hence also against a static adversary).
Since all of our bounds are tight (up to constant factors), we conclude that randomization does
not significantly help for the problems studied (with the possible exception of parallel sorting).

For any problem I-l, the depth of its optimal decision tree is at most polynomial in the
length of the input. However, the size of the decision tree is often exponential. An important
feature of our upper bounds is that the corresponding decisions trees have descriptions which
are polynomial in the length of the input. At any time step, the next query (or comparison)
to be made is a simple function (i.e., computable in polynomial time) of the outcomes of the
previous queries.

Let TH denote the K-of-N threshold function: given N Boolean inputs, the output is
if and only if K or more of the inputs are 1. The PARITY function on N Boolean inputs

outputs if and only if the number of l’s in the input is even. For noisy Boolean decision
trees we have the following results (in 2).

(1) DN,Q(TH) (R)(Nlog(m/Q)), where rn min{K, N- K}. In particular,
/DetN,Q(OR) and ,N,Q(AND) are both O(Nlog(1/Q)).

(2) DN, Q(PARITY) (R)(N log(N/Q)).
Notice the wide range of noisy tree depths in these results, whereas in the absence of

noise, decision trees for all these problems have depth N. Problems such as parity have a
blowup in tree depth that grows with N, rather than p or Q alone (unlike the OR function).
In 2 we extend these results to all symmetric functions.

Let K-SEL be the problem of selecting the Kth largest of N elements. In the noisy
comparison tree model we have the following tight results (in 3).

(1) DN, Q(BINARY SEARCH) (R)(log(N/Q)).
(2) DN, Q(SORTING) (R)(N log(N/Q)).
(3) DN, Q(MERGING) ((N log(N/Q)).
(4) DN, Q(K-SEL) (R)(Nlog(m/Q)), where rn rain{K, N- K}.
In particular, the maximum or the minimum element can be found by a noisy tree of depth

O(Nlog(1/Q)).
A well-known sports commentator has observed [9] that the problem of finding the max-

imum by a noisy comparison tree has a sporting interpretation: we wish to find the best of N
teams by a tournament. In each game, the better team wins with some probability, which is at
least p; how many games must be played in order that the best team wins with probability at
least Q? One algorithm we give for finding the maximum by a noisy comparison tree bears
a remarkable resemblance to the NBA championship: teams pair up and play a game at the
first round, the winners pair up and play three games at the next, five in the third round and so
on. It can be shown that the best team fails to win such a tournament with probability at most
c’(1 p) for some c’, and that the total number of games is O(N). This failure probability
can be reduced to Q by multiplying the number of games in each round by c log(1 / Q).

This brings up the following natural question: how many days must such a tournament
last, assuming a team plays at most one game a day? Similarly, what is the depth of a noisy
"EREW" parallel comparison tree with up to N/2 parallel comparisons at each node? The
"NBA" algorithm described above requires (R)(log N log(N/Q)) rounds.

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1004 U. FEIGE, P. RAGHAVAN, D. PELEG, AND E. UPFAL

In 4 we show that O(log(N/Q)) rounds suffice for this problem, while keeping the
total number of games down to O(N log(l/Q)). More precisely, we show that there is an
N-processor EREW-PRAM algorithm that computes the maximum of N elements with noisy
comparisons, using O(log(N/Q)) rounds and a total of O(N log(1 / Q)) comparisons, with
failure probability at most Q. The algorithm applies even when each element is allowed to

participate in at most one comparison per round (i.e., no element duplication is allowed).
In 5 we give a randomized parallel algorithm for sorting. The algorithm is based on a

randomized, noisy, parallel comparison tree (with N comparisons per node) ofdepth O(log N).
For sorting N numbers, the failure probability ofthe algorithm can be made as small as N
for any constant c > 0.

2. Boolean decision trees. The main result of this section is a lower bound on the depth
of any noisy Boolean decision tree computing the K-of-N threshold function THNr. As a first
step, we prove a lower bound for the case K 1, which is the OR function.

THEOREM 2.1 FIPrb._.N,Q(OR) ((Nlog)/(log _-Pp)).Q

Proof Let (X1 XN) be the input vector, let 6 (0 0) and let ij denote
an input vector Xj and the remaining inputs zero. The proof is based on showing that
distinguishing between 6 and the adjacent vectors 1-j requires the stated depth. For a leaf of a
Boolean decision tree of depth d and an input vector ’, let Pr{l’} denote the probability of
reaching (in a probabilistic decision tree it combines the probabilities of the random choices
of the algorithm with the probabilities of the random answers to the queries) on an input ’.

Assume that Xj appears r(j,) times on the path from the root to . Then

Pr{,.fj} > (.1 P)
r(j’e)

Pr{lO}.
P

For any e, Y’;= r(j, e) d. Therefore ;= ((1 p)/p)r(j,e) achieves its minimum (over
all choices of r(j,)) at N((1 p)/p)a/N.

For a set L of leaves, define

Pr{L[f} _, Pr{g[)}.
eeL

Thus, letting S denote the set of leaves labeled 0, we get

N N

Pr{SIj} _Z Pr{glfj}
j=l j=l

>
1- p Pr{[(}

eS j=l P

> Pr{S[}N(1-P)d/N

P

Clearly Pr{SI6} > (1 Q), and for every j, Pr{S]j} < Q, and hence

(l--P)dIN
QN >_ (1- Q)N

P

The bound on d follows.
Note that the proof works with a static adversary. A somewhat simpler proof can be given

if the adversary is dynamic (Theorem 4.1).

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

COMPUTING WITH NOISY INFORMATION 1005

Let us now turn to the general threshold function THN. For a vector " (X1 XN)
of N bits, let o9 (") denote the weight of , i.e., co (") -,.N=I Xi. Thus

THe.= [1, w()>_K,

! O, otherwise.

THEOREM 2.2. For every K < N/2,

[
(THe) f2 ION log K +N,Q

forO (1 l_Q)/(log 1/(1 p)).
We first give a high level overview of the main ideas of the proof.
The main difficulty in proving lower bounds in our model stems from the fact that algo-

rithms may be adaptive. For our lower bound, it suffices to use a static adversary: each query
has a fixed probability p of giving the right answer.

Let T be a noisy decision tree (algorithm) of depth ?,N that computes THNx, where ?,
may be a function of N. Now we strengthen the algorithm, but make its adaptive behavior
easier to analyze, by transforming it to a two-phase algorithm T in a "more powerful" model.
The transformation is based on the observation that in any execution of T, at most N/3 input
variables are each queried more than ot 3y times. (The choice of 1/3 is somewhat arbitrary,
and is replaced by the parameter # later.)

(A) Nonadaptive phase: Query each variable exactly c times. Each query returns the
correct value with probability p.

(B) Adaptive phase: Request the values of N/3 of the input variables. These requests
are answered correctly. At each point, T’s choice of which variable to read next may depend
upon all the answers up to that point.

Since we are considering static adversaries and randomized algorithms, T can simulate
the execution of T. The algorithm T first runs the nonadaptive phase (A), querying each input
variable c times. In phase (B) it starts simulating the execution of T. As long as T queries
a variable fewer than ot times, T supplies the answers from the answers it got in phase (A)
on queries to that variable. Once T queries a variable more than ot times (note that this may
happen for at most N/3 of the variables), T requests the (correct) value of this variable in the
adaptive phase (B). It then uses this value to answer T’s subsequent queries after corrupting it
randomly with probability p. Clearly, on any input, the probability distribution on TI’s outputs
is identical to that on T’s outputs. Noting that the depth of T is at most a constant times the
depth of T plus N, any lower bound on the depth of T implies a corresponding lower bound
for T.

We now outline the approach to proving thatTH cannot be computed reliably by a T type
algorithm if y is o(log K). For the lower bound, we only supply inputs to the algorithm with
weights either K (for which the algorithm should output 0) or K (for which the algorithm
should output 1). We show that if T1 has insufficient depth, it is unlikely to distinguish between
inputs from these different weights (and thus output values).

Since phase (A) of T is nonadaptive, it is relatively easy to analyze its outcome. We view
this phase as a game of randomly placing N balls, K or K of which are black and the rest
white, into c -4- bins, numbered 0 to or. A white (respectively, black) ball corresponds to an
input variable Xi that is set to 0 (respectively, 1). Ball is placed in bin j if exactly j of the

queries to Xi were answered 1. (By symmetry, it suffices to count the number of answers
and ignore the ordering between them and the 0 answers.) The vector (so s), where sj

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1006 U. FEIGE, P. RAGHAVAN, D. PELEG, AND E. UPFAL

is the number of balls in bin j, is called the execution profile of the nonadaptive phase (A). If
K > 1/(1 p), each bin can be expected to have at least one ball of each color.

At the end of phase (A), T1 gets to see its profile, but not the actual colors of the balls in
the bins. Its must determine the number of black balls using noiseless queries to N/3 of the
balls in phase (B), together with the execution profile from phase (A).

We employ one final device to simplify the analysis of phase (B). Before phase (B) begins,
we "help" the algorithm T1 by revealing the values "for free" ofK- ofthe black balls (creating
a new profile). In particular, if the input contained K black balls, then the single black ball to
be left hidden, is chosen randomly with the probability distribution of the white balls. Now, if
there were just K black balls, then phase (B) will reveal only white balls, and if there were
K black balls, then the probability that phase (B) reveals the remaining ball is only constant
(bounded from above by N/3(N K + 1) < 2/3). Thus with constant probability, phase
(B) gives T no additional information about the number of black balls. In this case, Tl must
base its decision upon only two profiles seen, both of which were seen before phase (B) of the
algorithm has begun. Thus we reduce our problem to the analysis of simple random allocation
games. Now standard probability theory can be used to show that the distribution of profiles
that result from inputs having K black balls is statistically similar to the one that results
from inputs having K black balls, making it impossible for T to achieve a success probability
better than some fixed constant bounded away from 1.

We turn to a detailed proof of the theorem.

Proof of Theorem 2.2. If K < max{(1 Q)/Q, C}, for some constant C, then the
adversary can announce the values of input variables X, X2 X:_ in advance to be 1.
Computing THN is then reduced to the problem ofcomputing the OR function ofthe remaining
N K + bits. By Theorem 2.1, this requires a tree of depth

Nlog((1 Q)/Q))log(p/(1 p))

Thus for the rest of the proof assume that K > max{(1 Q)/Q, C}, for a sufficiently
large constant C. Fix constants #, 0 such that

t0 < # <
1-Q

and

0 <0 <-
3 log(1 p)

Given a noisy decision tree forTH ofdepth y < 0N log K, we show that its failure probability
exceeds Q, and this will yield the lower bound of 0N log K on the depth.

Let

log K
3 log(1 p)

Since y < 0N log K, the number of input variables that are queried more than ot times in any
particular computation path is at most

By the previous discussion we may, without loss of generality, grant the decision tree

some additional information as outlined, and prove the lower bound for trees of the following
two-phase form, which are more powerful than any decision tree of depth y _< 0N log K.

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

COMPUTING WITH NOISY INFORMATION 1007

Phase (A). Query every variable exactly a times. Each query returns the correct value
with probability p.

Phase (B). Request the values of #N of the input variables X XN; these queries are
answered correctly.

The proof is by means of the probabilistic method. We present the tree with randomly
chosen inputs having K or K ones. We show that certain leaves of the tree will be reached
with almost the same probability regardless of whether the input has K or K ones. We
first analyze the outcome of Phase (A). Let Si denote the set of variables, of whose c queries,
were answered in Phase (A). The outcome of Phase (A) is fully characterized by the vector
S (So S,). Let si]Sil, and (so s,) (the execution profile of Phase (A)).
Let zi (respectively, Yi) denote the number of input variables in & whose actual values are 0
(respectively, 1). Let Y (z0 z) and)5 (y0 y,).

For a variable X, let

Pi Pr{X E SilX-- O} ()p-i(1- p)i.

Note that the expected value of Z over the inputs of interest is either (N K)Pi or
(N- K + I)Pi.

LEMMA 2.3. Pr{:li, Yi 0} < 1/N.
Proof

Pr{3i, y 0} < (1
i=1

Since the minimum value of p/0 is obtained when a,

log K

Pr{Zti, Yi 0} <_ (or + 1)(1 pO)N-K <_ (Or + 1)(1 (1 p)3,0gi,-p,)N-K l/N,

for sufficiently large N.
We now argue that the probability of getting a vector given co(’) K and given

co() K are very close to each other. In order to prove that, we shall restrict our
attention to the case when none of the zi variables diverges from its expected value by much
more than the standard deviation. Formally, let ,5’ be the event that for all < _< c,

(N- K)Pi (1 Ai) < zi < (N- K)Pi (1 + Ai),

where

log N
A 6

(N_K)PiO.

By the Chernoff bound [4], it follows that the case we focus on is the dominant one.

LEMMA 2.4. Pr{} < 1/N, where is the complement of. []

We now derive the following lemma.
LEMMA 2.5.

Pr{[(oo(’) K)/x g}
< <1+

N/5 Pr{[(o(3 K- 1) A oe}

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1008 U. FEIGE, P. RAGHAVAN, D. PELEG, AND E. UPFAL

Proof. Let g(e) (so se s) denote a distribution of N variables
(K ones and N K zeros) among the sets So S,. Similarly, denote by 5(e)
(zo ze z,) a distribution of the N K 0-variables among So S.

For any e, e2,

pr{5(el)l (zl N-K ot

z, z, I-I Pi z’

Pr{5(2)1} N-K ot

< Zg2 P
By condition g,

Ael < ze Pe2 < +mel
+ Ae ze2P 1- Ae

Since for any i, K-1/3 < Pi0 < 1,

Am 6,/!g[N
N

/-log N
mi 6/ -5 AM.

Thus,

2Am ze P2 2AM
<1-- < <1+ <1+N/5 + Am ze2 P AM N/5

By summing over all possible pairs ((), 33) such that (e) + 33 g(e) we get

Pr{g(e)lg}
Pr{g(e2))l}

e(e,)+p=(e) Pr{2(e) 1,5’} Pr{)l,5’}

e(e.)+p=e(e.) Pr{5(g2)lg} Pr{)31,5’}

Thus,

Pr{g(/)l}
N/5 Pr{g(t2))[}- N/"

We now add the last variable X, with value either one or zero, and get

Pr{Sl(w(fo K) , 1
Pr{gl(w(fo K- l) A $}

Y=I Pr{g(e)l}Pr{X e SeIX= 1}

Y.= Pr{g(g.)I}Pr{X e SeIX= 0}"

Using the fact that Pr{X &IX 0} Pr{X e S-elX 1} we have

Pr{gl(w(X) K) A g}
< < 1-1-

N1/5 Pr{gl(w(fO K- 1)/x g} Nil5

Since all assignments of K or K ones to the variables have equal probability, by
symmetry, all partitions of the variables into sets of sizes Sl s have equal probability
and the claim is proven. 1

To simplify the analysis of Phase (B) we assume without loss of generality that at the
end of Phase (A) the adversary reveals the locations of K input variables with value 1. If

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

COMPUTING WITH NOISY INFORMATION 1009

co ({’) is K, and for all i, Yi > 0, the remaining (unexposed) variable is chosen to be from set

Si with probability zi/(_j=l zj) zi/(N K).
Denote by Srl Sr, the input to Phase (B), where . contains the variables in Si that

were not revealed by the adversary. Note that zi/1 < for all (more specifically, I zi
for all sets Si except at most one, which might have zi -t- variables).

The tree cannot distinguish between variables in .. Suppose that the tree queries ri
variables in (_,i ri #N). If ; contains the unexposed 1-variable, the probability that
the tree hits the unexposed 1-variable is ri/1" I. The probability that the 1-variable is in . is
proportional to Si I. Thus the probability Phit of hitting the 1-variable in Phase (B) when for
all i, Yi > 0 is bounded above by

() Phit

Let S denote the event that the output of Phase (A) is a vector with the property that if
Phase (B) does not find a 1-variable, the algorithm outputs 0.

LEMMA 2.6.

Pr{SIw(fO K} > (1 1)N1/5
(1 Q)

N

Proof. Clearly Pr{SIw(X) K 1} > Q, or else the tree does not perform as
claimed. Now

Pr{SIw(fO K- 1} < Pr{g} + Pr{Sl(w(fo X- 1) A g}.

By Lemma 2.5,

Pr{$1w(X) K-1} < Pr{g} + Pr{SI(w(’) K) A$} 1+
Nil5

Pr{SIw()=K}()<_ Pr{} +
Pr{$}

+

Thus, for an input 2 with w(’) = K, by Lemma 2.4,

(Pr{Slw(fO=K} > (l-N) Pr{SIw(’) K- 1}-
(1 + z)

(1)(l)>
N1/5 1-Q--

implying the lemma. !-1

We are now ready to complete the proof of Theorem 2.2. By (.), when the output of
Phase (A) satisfies event S, w(’) K, and for all i, yi > 0, the probability that Phase (B)
finds the unexposed is at most 2/z. Otherwise the algorithm outputs 0. Since Q < 1/2,
when co (2") K, by Lemma 2.3,

Pr{3i y O} 2
Pr{3i Yi 0[S} < <

Pr{S} N"

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1010 U. FEIGE, P. RAGHAVAN, D. PELEG, AND E. UPFAL

Thus, the probability that the algorithm fails and outputs 0 when co(X) K is at least

Pr{$lco(fO K}(1 Pr{Bi y; 0IS})(1 2#) > Q

for sufficiently large N. []

A matching upper bound for THxN follows from a variant of the algorithm for K-SEL in

3. We defer the details of the algorithm to 3. Thus we have a deterministic upper bound
matching the lower bound for randomized algorithms.

rDet (THN) O(Nlog(m/Q)), where m min{K,N- K}. InTHEOREM 2.7. *-"N,Q
/3Det oDetparticular, N,0(OR) and N,0(AND) are both O(N log(l/O)).

In fact, the algorithm for K-SEL implies a more general result. A Boolean function f
on N Boolean variables is symmetric if f(X1 XN) f(Xr{l) X{N}) for every
permutation rr on N}. For the function f, let k be the largest < N/2 such that there
exist with o0 (") 1, and " with o(’) i, and f(") # f(’). Similarly, let k2 be
the smallest > N/2 such that there exist E" with co() i, and ’ with co (") + 1, and
f() f(’). Let/ max{k1, N k2 }.

THEOREM 2.8. Forany symmetricfunction f, DN, 0 f ID N log(//0)). In particular,
DN, o(PARITY) (R)(N log(N/Q)).

For the proof of this theorem see the end of 3.
3. Comparison trees. This section concerns noisy comparison trees. Our first claim is

that binary searching and insertion in a balanced search tree does not require a blowup in noisy
tree depth that grows with N. This result can be derived by modifying the algorithms of [23]
or [25] and adapting them to our model, or from 14]. We present a different algorithm, which
has the advantage that the ideas it is based on can also be used for other problems, where the
techniques of [23] or [25] do not seem to apply (see Theorem 4.2). The algorithm is obtained
by thinking of a noisy binary search as a random walk on the (exact) binary search tree.

In discussing upper bounds for searching among a set of elements x _< x2 < < XN
in a binary search tree, we will refer to our noisy comparison tree as an "algorithm" (rather
than tree) to avoid confusion with the binary search tree. For simplifying the description we
shall assume that the key being searched for is not in the tree (so that its insertion location has
to be determined).

Each node of the tree represents a subinterval of (-co, cxz], and is labeled by a pair
representing the endpoints of this interval. In particular, each leaf of the search tree represents
an interval between two consecutive input values. There are N + leaves, with the th
(1 _< < N + 1) representing (xi-1, xi] (assume x0 -oc and XN+ oo). For an internal
node u of the tree, let T,, denote the subtree rooted at u. Then the intervals associated with
the leaves of T, are contiguous, and u represents the interval obtained by merging them. That
is, u is labeled with the interval (xe, xh], for 0 < < h < N + 1, where xe is the smallest
endpoint of an interval associated with a leaf in T,,, and x, is the largest such endpoint. The
tree is nearly balanced, in the sense that for a vertex u labeled by (xe, xh], the left child of u

Fe+his labeled (xe, Xz] and the right child is labeled (x, xh], where z ,-T-q" The tree has depth
log Nq.

To search with unreliable comparisons we extend the tree in the following way: each leaf

xe is a parent of a chain of length m’ O(log(N! Q)). The nodes of the chain are labeled
with the same interval as the leaf. (In practice, these chains can be implemented by counters

representing the "depth" from the leaf.) Fig. depicts the resulting tree for three values,
(Xl, X2, X3) (2, 5, 7).

Let X (given, say, as X_l in the input set) be the key being searched for in the tree. The
search begins at the root of the tree, and advances or backtracks according to the results of the

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

COMPUTING WITH NOISY INFORMATION 1011

(- , 21 (
(- , 21

(- , 21

(- , 21

(- , 21

(2 ,51

(2 ,51

(5,71 (7 ,

(5,71 (7 ml

) (5 ,71

) (5,71

) (7 ,lll

FIG. 1. The extended comparison tree corresponding to the input list (2, 5, 7).

comparisons. Whenever reaching a node u, the algorithm first checks that X really belongs to
the interval (xe, x,] associated with u, by comparing it to the endpoints of the interval. This
test may either succeed, i.e., respond in X > xe and X < xh, or fail, i.e., respond in X < xe
or X > xh (or both). Such failure of the test may be due to noisy comparisons. However,
the search algorithm always interprets a failure as revealing an inconsistency due to an earlier
mistake, and consequently, the computation backtracks to the parent of u in the tree. If the
test succeeds, on the other hand, then the computation proceeds to the appropriate child of u.
That is, if u has two children, the algorithm compares X to Xz, the "central element" in u’s

e+ q), and continues accordingly.interval (i.e., such that z 2
The search is continued for m O(log(N/Q)) steps, m < m’ (hence it never reaches

the endpoint of any chain). The outcome of the algorithm is the left endpoint of the interval
labeling the node at which the search ends. For example, in the search tree depicted in Fig. 1,
the search for the value X 6 should terminate at the leaf marked x.

LEMMA 3.1. For every Q < 1/2, the algorithm computes the correct location ofX with
probability at least Q in O(log(N/ Q)) steps.

Proof We model the search as a Markov process. Consider a leaf w of the extended
tree T, and suppose that X belongs to the interval labeling this leaf. Orient all the edges of
T towards w. Note that for every node v, exactly one adjacent edge is directed away from v
and the other adjacent edges are directed towards v. Without loss of generality we can assume

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1012 U. FEIGE, E RAGHAVAN, D. PELEG, AND E. UPFAL

that the transition probability along the outgoing edge is at least 2/3, and the probability of
transitions along all other (incoming) edges is at most 1/3. Otherwise, we can bootstrap the
probability to 2/3 by repeating each comparison O(1) times and taking the majority.

Let my be a random variable counting the number of forward transitions (i.e., transitions
in the direction of the edges) and let rn b denote the number ofbackward transitions (mf %-rn 6

m). We need to show that mf m6 > log N with probability at least Q, implying that the
appropriate chain is reached. This follows from Chernoff’s bound [4] for rn c log(N/Q),
for a suitably chosen constant c. [

Using N insertions of the above algorithm, each with failure probability Q/N, yields a
noisy comparison tree of depth O(N log(N/Q)) for sorting.

THEOREM 3.2. (1) D,e(BINARY SEARCH) O(log(N/Q)).
/3Det(2) .N,Q(SORTING) O(N log(N/Q)).

(3) D,e(MERGING) O(N log(N/Q)).
We now present a noisy comparison tree of depth O(N log(m / Q)), m min{K, N K}

for selecting the Kth largest of N elements (in fact, the tree described can find all K largest
elements, or all N K smallest elements for K < N/2). By symmetry, we need only
consider the case K < N/2. Furthermore, the case x/ < K < N/2 can be handled
using our O(N log(N/Q)) sorting algorithm. Thus we assume that K < /-. The idea in
finding the Kth largest element when K is "small" is to use "tree selection" or "heapsort"
(see Knuth, pp. 142-145 [12]). In essence, the algorithm operates as follows. Once a heap
is created, the largest element can be extracted from the top of the heap, and "reheapifying"
the rest of the elements requires at most log N noiseless comparisons. Thus, extracting the K
largest elements can be done in K log N noiseless comparisons. By repeating each of these
K log N comparisons O(log((K log N)/Q)) times in the face of noise we can extract each
of the K largest elements from the heap with error probability at most Q/2K. Thus with
O(K log N log((K log N)/Q)) noisy comparisons we can extract the K largest elements with
probability at most Q/2. For K < ,v/-, this number of comparisons is O(N log(K/Q)).

The only remaining problem is that of constructing the initial heap. In order to do this,
run a "tournament" algorithm similar to the "NBA" algorithm in the introduction for finding
the maximum with failure probability Q/2K. The algorithm takes O(Nlog(K/Q)) steps,
and each of the K largest elements has probability at most Q/2K of being eliminated by a
smaller element. Thus, with probability Q/2, the initial heap is consistent with respect to

the K largest elements, and this suffices for our purposes. Therefore we have the following
theorem.

Det (K-SEL) O(Nlog(m/Q)), where m min{K, N K}.THEOREM 3.3. N,Q
In 2 we proved lower bounds on the threshold function in the noisy Boolean decision tree

model, whereas in this section we prove upper bounds on selection in the noisy comparison
tree model. We can use a reduction between the two problems to show that both bounds are

tight (up to constant factors). But first, since the results are proven in different computational
models, we need to show a reduction from the Boolean decision tree model to the comparison
model.

LEMMA 3.4. A noisy comparison between two Boolean variables can be implemented by
a constant number ofnoisy queries.

Proof. Query each of the two variables a constant number of times, obtain an estimate
for each of the variables by taking the majority of the corresponding responses, and compare
the estimates.

For Boolean inputs, selecting the Kth largest element and testing (by O(log N) queries)
if its value is 1, is equivalent to computing THN. The upper bound in Theorem 2.7 follows
trivially. The upper bound for computing any symmetric function (Theorem 2.8) follows from

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

COMPUTING WITH NOISY INFORMATION 1013

the fact that the comparison tree for K-SEL actually finds all K largest (or N K smallest, if
K > N/2) elements. By repeating K-SEL once with K kl and once with K k2 (see the
prologue to Theorem 2.8 for the interpretation of these parameters), and then querying each
of the kl largest and each of the N k2 smallest elements O (log N) times, the value of any
symmetric function can be established.

We now turn to lower bounds for the problems discussed above.
rr’rb(BINARY SEARCH) f2(log(N/Q)).THEOREM 3.5 (1) .U, Q

/-)Prob(2) .N,Q(SORTING) f2(N log(N/Q)).
rr’rob min{ K, N K}.(3) .N,Q(K-SEL) f2(Nlog(m/Q)), where m
/3Prob(4) .N,Q(MERGING) (N log(N/Q)).

Proof It is immediate that our searching and sorting algorithms are asymptotically optimal
in the comparison model, hence claims (1) and (2).

Next, the fact that a comparison tree for K-SEL implies a comparison tree for THxN
enables us to derive claim (3) from Theorem 2.2.

Finally, a lower bound for MERGING (claim (4)) can be derived by a reduction from
PARITY. We first show how a merging algorithm can be used to establish parity. Consider a
vector f; (xl Xx) of Boolean inputs whose parity is to be established. Transform it to
a vector of increasing integers I (11 IN), where for each j, Ij 2xj + 3j. Consider
the merge operation of with the vector " (Y1 YN), where Yj 3j + 1. The result
establishes the value of each of the xj, since Ij < Yj iff xj 0. So in order to compute the
parity of ,, it is sufficient to simulate the merging of I and . Claim (4) now follows from
Theorem 2.8 and the argument of Lemma 3.4.]

4. Parallel tournaments. In this section and the next we consider two problems on

noisy N-processor PRAMs in which each comparison operation between two elements in-
dependently gives the correct result with probability at least p. In this section we discuss
the problem of finding the maximum of N elements. Our solution can be implemented on
an EREW parallel decision tree with at most N/2 comparisons per round in O(log(N/Q))
rounds. Furthermore, each input element is involved in at most one comparison per round, and
no element is ever copied to create a replica of the element Because of its sporting interpreta-
tion, we will describe the algorithm in the tournament setting introduced in the introduction.
Let us now describe this setting in more detail.

A parallel algorithm for computing the maximum is called a tournament if in each parallel
step of the algorithm, each input element is involved in at most one comparison A tournament
is deterministic if the comparisons made at each step are uniquely determined by the results
of comparisons in previous steps (no randomization is allowed). The depth of a tournament
is the total number of parallel steps it takes. The size of a tournament is the total number
of comparisons it involves. A tournament is noisy if comparisons might output the wrong
answer. We consider noisy tournaments with a dynamic adversary. A noisy tournament is

Q-tolerant if it outputs the maximal element with probability at least Q.
THEOREM 4.1. Any deterministic Q-tolerant tournament has depth f2(log(N/ Q)) and

size f2(Nlog(1/Q)).
Proof. Let T be any Q-tolerant tournament. Let d denote its depth and s its size. Any

Q-tolerant tournament is also a deterministic noise-free tournament for finding the maximum,
hence its depth is at least log N. Thus for Q > N- we immediately derive that d > og<N/Q)

Assume now that Q < N-. For simplicity, we describe the argument as if a dynamic
adversary were controlling the probability of error for each comparison. Fix an arbitrary
input with a unique largest element. The adversary decides to introduce no noise in the
comparisons. The tournament must output the correct maximal element. Now switch the
indices of the largest and second largest elements in the input. Now the adversary introduces

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1014 U. FEIGE, P. RAGHAVAN, D. PELEG, AND E. UPFAL

noise only in comparisons between the two largest elements, and T proceeds exactly as in
the case that the inputs are not switched. Since there are at most d comparisons between the
two largest elements, the probability that the algorithm returns the same index as that of the
maximum element on both runs is (1 p)’, implying that d > (log(1/Q))/(log l_p).

The bound on the size follows from Theorem 2.1, together with the equivalence of the
models from Lemma 3.4.

We remark that a stronger version of the above theorem, in which the algorithm is proba-
bilistic and the adversary is static, can be proved along similar lines as those of Theorem 2.1.

We state an inequality, due to Hoeffding [8], to be used in the proofofthe next theorem. Let
Xi, for < _< n, be n independent random variables with identical probability distributions,
each ranging over the interval [a, b]. Let be a random variable denoting the average of the

Xi’s. Then

2n3Prob(l-

THEOREM 4.2. For every 0 < Q < 1/2 there is a Q-tolerant deterministic tournament

forfinding the maximum with depth O(log(N/ Q)) and size O(N log(l/Q)) simultaneously.
The tournament we construct is similar in spirit to the noisy binary search procedure of

3. For simplicity (and without loss of generality) we assume that N 2 for some
m. Create a balanced binary tree of depth m, and arbitrarily place one input element in each
node (including leaves, root and internal nodes). The algorithm proceeds in rounds. In each
round, many mini-tournaments are performed in parallel. Each mini-tournament involves
three players, and the largest of the three wins with probability at least q, for some constant

q to be computed later. The mini-tournaments are organized by partitioning the nodes of the
tree into triplets in a way to be described shortly, and forming a mini-tournament between
the three elements stored in each triplet. The partition into triplets depends on the round. In
even rounds, each triplet consists of a node at an even level of the tree and its two children.
Analogously, in odd rounds, each triplet consists of a node at an odd level and its two children.
At the end of the round, the winner of each mini-tournament is stored at the parent node, and
the two other elements are placed arbitrarily at the children. The whole procedure is repeated
for O(log(N/Q)) rounds.

We give some intuition on why our construction computes the maximum. The tournament
is best described as a random walk taken by the maximal element, M, over the balanced binary
tree. A win at a single mini-tournament may or may not advance Mtowards the root, depending
on whether M is already placed at the parent node before the mini-tournament begins. But
wins in two successive mini-tournaments advance M by at least one step. Likewise, if it loses
one of two successive mini-tournaments, it may move away from the root by one step, and
if it loses two successive mini-tournaments, it may move away from the root by two steps.
Summing up the probabilities of these events, it follows that on the average, in two successive
rounds, M is expected to decrease its distance to the root by at least q2 + 2q 2 steps. For
q > 15/16, this value is greater than 3/4, and so any g rounds are expected to advance M by
3g/8, and in less than 8m/3 steps M is expected to reach the root. (Note that guaranteeing
that M wins each mini-tournament with probability q > 15/16 can be achieved in a constant
number of comparisons, since a mini-tournament involves only three players.)

Two parts are still missing from the construction. One is a method of preventing M from
leaving the root once it reaches it. The other is a method of decreasing the total number
of comparisons from O(Nlog(N/Q)) to O(Nlog(1/Q)). This is significant if Q > N-c

asymptotically for any constant c.

In order to secure M at the root with high probability we adopt the following policy: an
element stays at the root as long as it has won the majority of mini-tournaments since it last

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

COMPUTING WITH NOISY INFORMATION 1015

reached the root. We employ a root counter which is initialized to 0. In mini-tournaments
which involve the root, if the element placed at the root wins the mini-tournament, the root
counter is incremented by 1. If a different element wins, and the root counter is at 0, this
element exchanges places with the root element. If the root element does not win and the root
counter has value greater than 0, then the root counter is decremented by 1, and no exchange
takes place.

LEMMA 4.3. The probability that M is at the root after d 256 log(N/Q) rounds is at
least Q/2.

Proof Assume that some other element W wins the tournament, i.e., occupies the root
by the end of the process. We do not decrease the probability of W ending up at the root
if we let it begin the tournament placed at the root, and let it win without competition any
mini-tournament in which M is not involved. This implies that during the whole tournament,
only two elements, M and W, could have occupied the root. Furthermore, W played exactly
d/2 mini-tournaments involving the root, losing at most d/4.

Now consider M’s performance in the tournament. Envision a scoring system, where
M starts with 0 points. Partition the rounds of the tournament into successive pairs of mini-
tournaments. For each such pair, M’s score is decremented by point for each mini-tournament
that it loses, and if M did not lose in any mini-tournaments, then its score is incremented by

point. In d rounds, M’s score is expected to be at least 3d/8. Applying the Hoeffding
inequality with d/2 (for the d selected above), we get that with probability Q/N, M’s
scores are at least 5d/16 points. At most log n of these points can be accounted for as steps
taking M from a leaf to just below the root. The other 5d/16 log n points must have been
"wasted" on decrementing W’s root counter. For d as in the lemma, this value is greater than
d/4, contradicting our assumption that W ends the tournament at the root.

Though the depth of the above tournament is O(log(N/Q)) as desired, its size is
O(N log(N/Q)), which is too large (for / Q o(N)). In order to diminish the total number
ofcomparisons when / Q < N, we execute the following truncation procedure during the first
(log N)/3 rounds. After O(i log(l/Q)) rounds, we delete the ith level from the bottom of the
competition tree. This has the effect of reducing the number of parallel mini-tournaments by
a constant factor every O(log(1 / Q)) rounds, and thus reducing the size of the first (log N)/3
rounds of the competition to O(N log(1 / Q)). Since for / Q < N the total number of rounds
is O(log N), it follows that the size of the whole competition remains O(N log(1/Q)).

LEMMA 4.4. Theprobability thatM is ata leafofthe truncated tree after 16i (log(/ Q)+2)
rounds is less than Q/2i+l.

Proof We may assume that M starts at a leaf of the tree. Observe that (log N)/3 rounds
are insufficient for M to reach the root, and thus we can ignore the effect of the root counter. In
g 16i (log(1 / Q) + 2) rounds, M is expected to advance by at least 3g/8 6i (log(1 / Q) + 2)
steps. The probability it advanced less than steps is as specified in the lemma, by the Hoeffding
inequality. [3

We now have all the ingredients to complete the proof of Theorem 4.2.

Proofof Theorem 4.2. From Lemma 4.4 it follows that the probability that the maximal
element M is lost in the truncation process is less than Q/2. Thus the total probability that M
does not win the tournament is at most Q, completing the proof of the theorem. []

5. Parallel sorting. The main result of this section is an N processors randomized
O (log N) time noisy sorting algorithm. We first present the algorithm in an N-parallel decision
tree model, and then modify it to an N-processor PRAM algorithm.

Our proof uses the following results of Assaf and Upfal [2].
THEOREM 5.1 [2]. There is a constant o, such thatfor every constant c > there is an

N log N processor deterministic EREW-PRAM algorithm that sorts N elements in the noisy
comparison model in O(cu log N) parallel time with failure probability Q < N-c.

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1016 U. FEIGE, R RAGHAVAN, D. PELEG, AND E. UPFAL

(The result in [2] is stronger, the sorting algorithm is nonadaptive and can be implemented
as a network of comparators; however the PRAM version is sufficient for the proofs in this
section.)

THEOREM 5.2. There is a constant , such that for any constant c > there is a
randomized, noisy, parallel comparison tree (N comparisons per node) of depth c log N
that sorts N numbers with error probability Q < N-c.

Proof The algorithm has three phases. In the first phase it chooses a random sample of

N log N elements and sorts them by running the algorithm of Theorem 5.1 (c + 2)/3 log N
steps. Since (N/log N)-(c+2) _< N-(c+l) for sufficiently large N, the probability that the first
phase fails to sort the sample correctly is bounded by 1/Nc+

The second phase of the algorithm partitions the N elements into N/log N sets,
S Se, such that with probability 1/Nc+l all elements in each set Si are not smaller
than the (i 1)st sample element and are not larger than the ith sample element (in the correct
sorted order). To achieve this, we assign one processor to each element. The processor runs
the noisy binary search algorithm of Theorem 3.2 for O((c + 3) log N) steps. The probability
that one search fails is at most 1/Nc+2, so that the probability that any element is misplaced
is at most 1/Nc+.

The third phase sorts the O(N/log N) sets. The probability that any set has more than
(c + 2) log2 N elements is bounded by

N(1 (c+2) log2 N)
N/lgN

< N-(C+).
N

In what follows we assume that all sets have no more than (c 4- 2) log2 N elements. We sort
the sets in parallel in O(log N) parallel steps, using any logarithmic parallel algorithm such
as the AKS network [1] or [5], repeating each comparison log N log log N times and taking
the majority value.

The probability that the majority oflog N/log log N comparisons does not give the correct
answer is bounded (using Chernoff bound) by

log log N pp
Since the sorting algorithm of each set uses O(log2 N log log N) comparisons, the probability
that a given set is not correctly sorted is bounded by exp(-0 log N

loglog N for some constant 0 > 0.

Thus, the probability that more than N/log N sets are not correctly sorted is bounded by

N/log N ’N log N,] exp (-0-logN N) <N-(C+)
log logN log N

By comparing each element O(log N) times (sequentially) to its two neighbors in the
computed order we can identify, with probability N-(c+), all the sets that are not correctly
sorted. Since with high probability the total number of elements in these O(N/log N) sets
is bounded by O(N/log N) we can assign log N processors to each element and sort all the
sets correctly, with probability 1/NC+, in O(log N) additional parallel steps, using again
the algorithm of Theorem 5.1 Summing the run-time and the failure probabilities of the three
phases we get that the correct sorted order is computed in O(c log N) time with probability
1- 1/N. fi

THEOREM 5.3. There is a constant y, such that for any constant c > there is an N
processor randomizedCRCW-PRAM algorithm that sorts N elements in the noisy comparison
model in cy log N parallel time with failure probability

_
N-c.

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

COMPUTING WITH NOISY INFORMATION 1017

Proof The three phases of the previous algorithm are implemented on an N processor
randomized CRCW-PRAM as follows.

Phase one: Each element chooses to participate in the sample with probability 2N/log N.
With probability 1/NC+1 the sample has at least N log N elements and no more than
3N/log N elements. Using an O(log N)-time prefix sum algorithm we copy the sample to a
second array. The fault tolerant sorting network can be directly modified to a PRAM algorithm.

Phase two: The binary search can be done in parallel by the N processors on a CREW-
PRAM. The main complication in implementing this phase is in placing the elements in the
sets. We use the counting method of Reischuk [20] to count the number of elements in each
set, and allocate them in N log N arrays.

Phase three: The only complication in implementing this phase is in assigning log N
processors to each of the elements in sets that need to be sorted again. When these sets are
identified, the allocation can be done by a O (log N)-time prefix-sum procedure.

li. Extensions and open problems. Using reductions from the bounds given above, it is
possible to derive tight bounds on the depths of noisy tree for the following problems: finding
the leftmost 1, UNARY-BINARY, COMPARISON, ADDITION and MATCHING (see [3] for
definitions).

The results of 2 can also be extended to show that there is a noisy Boolean decision tree
of depth O(N log(1 ! Q)) for any function that can be computed by a constant-depth formula
of size N.

In Theorem 2.8 we characterized the noisy decision tree complexity of all symmetric
functions. Obtaining such a characterization for general functions is a major open question.
Some progress was achieved by Kenyon and King [10], who showed that O(Nlog(k/Q))
queries suffice to compute any function f that can be represented either in k-DNF form or
in k-CNF form. As for lower bounds, Reischuk and Schmeltz [21] showed that almost all
functions require (R)(N log(N/Q)) queries. A simpler proof of this result is presented in [6].

An interesting open question is to give a deterministic noisy PRAM algorithm for sorting.
We conjecture that there is no noisy sorting network of size O(N log N) that sorts N elements
with polynomially small error probability.

Acknowledgments. We thank Noga Alon and Yossi Azar for helpful discussions, and
for directing us to some of the references. Thanks are also due to Oded Goldreich and two

anonymous referees for their illuminating comments on previous drafts of the paper.

REFERENCES

M. AJTAI, J. KOML0S, AND E. SZEMERDI, Sorting in c log n parallel steps, Combinatorica, 3 (1983), pp. 1-19.
[2] S. AssAr AND E. UPrAL, Fault tolerant sorting network, in 31 st Annual Symposium on Foundations ofComputer

Science, pp. 275-284, October 1990.
[3] A. K. CHANDRA, L. STOCKMEYErt, AND U. VISHKIN, Constant depth reducibility, SIAM J. Comput., 13 (1984),

pp. 423-439.
[4] H. CHERNOF, A measure of asymptotic efficiency for tests ofa hypothesis based on the sum of observations,

Annals of Math. Stat., 23 (1952), pp. 493-509.
[5] R. COLE, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
[6] U. FEIGE, On the complexity offinite randomfunctions, Inform. Process. Lett., 44 (1992), pp. 295-296.
[7] J. HASTAD, E T. LEIGHTON, AND M. NEWMAN, Reconfiguring a hypercube in the presence offaults, in 19th

Annual Symposium on Theory of Computing, pp. 274-284, 1987.
[8] W. HOErr:DING, Probability inequalities for sums of bounded random variables, J. Amer. Stat. Assoc., 58

(1963), pp. 13-30.
[9] R.M. KARr’, Personal communication, Berkeley, CA, 1989.
10] C. KENYON AND V. KING, On Boolean decision trees with faulty nodes, Proc. of the Israel Symposium on the

Theory of Computing and Systems, 1992, Springer-Verlag, New York.

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1018 U. FEIGE, R RAGHAVAN, D. PELEG, AND E. UPFAL

11 C. KENVON-MATHIEU AND A. C. YAO, On evaluating Boolean functions with unrealiable tests, Int. J. of Foun-
dations of Computer Science, (1990), pp. 1-10.

[12] D. E. KNUTrt, Sorting and Searching, The Art of Computer Programming, vol. 3. Addison-Wesley, Reading,
MA, 1973.

[13] M. PEASE, R. SHOSTAK, AND L. LAMPORT, Reaching agreement in the presence offaults, J. ACM, 27 (1980),
pp. 228-234.

14] A. PELf, Serching with known error probability, Theoret. Comput. Sci., 63 (1989), pp. 185-202.
[15] Sorting with random errors, Technical Report TR # RR 89/06-12, Univ. du Quebec a Hull, Quebec,

Canada, 1989.
[16] N. PIPPENGER, On nem’orks ofnoisy gates, in 26th Annual Symposium on Foundations of Computer Science,

pp. 30-38, 1985.
17] N. PIPPENGER, G. D. STAMOULIS, AND J. N. TSITSIKLIS, On a lower boundfor the redundancy ofreliable networks

with noisy gates, IEEE Transactions on Information Theory, to appear.
[18] B. RAVlKUMAR, K. GANESAN, AND K. B. LAKSHMANAN, On selecting the largest element in spite oferroneous

information, in Proc. 4th Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Comput.
Sci., pp. 88-99, Springer-Verlag, New York, 1987.

19] B. RAVIKUMAR AND K. B. LAKSHMANAN, Coping with knownpatterns oflies in a search game, Theoret. Comput.
Sci., 33 (1984), pp. 85-94.

[20] R. RESCHUK, Probabilisticparallel algorithmsfor sorting and selection, SIAM J. Comput., 14 (1985), pp. 396-
409.

[21 R. REISCHUK AND B. SCHMELTZ, Reliable computation with noisy circuits and decision trees a general n log n
lower bound, in 32nd Annual Symposium on Foundations of Computer Science, pp. 602-611, San Juan,
Puerto Rico, 1991.

[22] A. RENY, On a problem in information theory, in Selected Papers of Alfred Renyi, volume 2, P. Turan, ed.,

pp. 631-638. Akademiai Kiado, Budapest, 1976.
[23] R. L. RIVEST, A. R. MEYER, D. J. KLE|TMAN, K. WINKLMANN, AND J. SPENCER, Coping with errors" in binary

search procedures, J. Comput. System Sciences, 20 (1980), pp. 396-404.
[24] M. SAKS AND A. WIGDERSON, Probabilistic Boolean decision trees and the complexi, ofevaluating game trees,

in 27th Annual Symposium on Foundations of Computer Science, pp. 29-38, Toronto, Ontario, 1986.
[25] J.P.M. SCHALKWIJK, A class ofsimple and optimal strategiesfor block coding on the binary symmetric channel

with noiselessfeedback, IEEE Trans. Inform. Theory, 17 (1971), pp. 283-283.
[26] A.C. YAO AND E E YAO, On fault-tolerant networksfor sorting, SIAM J. Comput., 14 (1985), pp. 120-128.

D
ow

nl
oa

de
d

09
/1

7/
18

 to
 1

95
.1

76
.1

11
.2

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

