
The SprayList: A Scalable Relaxed Priority
Queue[1]

Seminar Advanced Algorithms and Data Structures - Student Report
Adrian Balla

2018-11-11

Motivation and Introduction

Ω(n log n) for sorting and many more lower bounds provide a theoretical
limit to computational speed. A definite bound for speed in hardware is
the physical limit for processor frequency, almost hit today.
So no hope for further increase in overall performance on these two axes?
There is in fact a 3rd axis, which can be resorted to for specific but com-
mon cases, called parallelism. According to Amdahl’s Law: Whenever an
algorithm has parallelizable part (i.e. certain steps can be carried out in-
dependently), it can be computed in a fraction of the time by distributing
it over multiple processors.
Nowadays, multicore machines are ubiquitous. Such a computer distributes
its given work over potentially more than 100 cores. This distribution can
be achieved via work-requesting, where each processor fetches a job from
a priority queue, which is in shared memory. A difficulty in this environ-
ment is that a collision of read with write operations results in interruptions
(stalls [3]) responsible for slowdowns and ultimately a reduction in through-
put. Hence, contention on the top element of the priority queue becomes
a bottleneck.

Traditionally, binary heaps are employed for the priority queue. In this
new setting however, many complications evolve. For instance, an inser-
tion requires moving a key upwards by swapping until the heap property
is restored. Blocking the entire structure for the execution of an operation
would be an option that performs poorly, while allowing concurrent access

1



of the heap would be undesirable because of high number of collisions (e.g.
when multiple items are inserted) and difficulties maintaining consistency.
The SkipList is superior in this setting, it requires less intricate mecha-
nisms.

The SkipList

SkipLists are ordered lists containing n elements with varying height (from
0 to ∞) which are accessible from levels starting at 0. (See Figure 1 for
an example)
Similar to a linked list, a node consists of links to its successors, one for
each level that is less than its height. At level l of a node we thus can reach
the next node with height > l or descend to the level below.
Inserting a new element consists of finding the position corresponding to
its value (doable in O(log n)) and the linking process (takes constant time).
The advantages over heaps are evident: Once a node is added, there are
no further modifications and collisions are less frequent. A downside is the
randomness and, in practice, the use of additional pointers.
Theoretically, the first element can be removed in constant time, but com-
petition for extracting the top element, or rather numerous simultaneous
accesses, delay success and therefore throttle throughput.

Relaxation

In place of a single point of contention, the head, an obvious way to reduce
collisions is to spread the choice of extraction over multiple elements at
the top of the queue. Most algorithms using priority queues won’t break
when receiving errors of this type, or at least can be adjusted slightly to
withstand them. Wasted work is a result, e.g. when elements have to be
re-added because of too low priority.Say we allowed the queue to return an
element that is off by k from the optimum. We call such a data structure
k-relaxed in general. Because we opted for a SkipList, we do not have to
linearly traverse, but may skip elements. Before constructing an algorithm,
let us review the core property of the SkipList:

The height of the elements is geometrically distributed:
height ∼ Geo(1/2)

2



Figure 1: A Spray execution on an ideal SkipList

Whenever an item is to be added to this list, we will flip a coin until it
shows head and set the height of our new element to the number of coin
flips performed. I.e. Pr[height > j] = 1/2j.

Let us consider ideal instances for now: exactly 1/2j of the items have
height > j. So one out of 2j elements satisfy the latter condition. In
addition, a step down the list at level l means moving over 2l elements
total.

The SkipList depicted in Figure 1 is a special case. For the fixed
interval of size k = 8 we can start at the head and explore this interval
as with binary search or a binary tree. Starting at level 2, we choose to
descend if we would like to land in the left half or else move along to the
next node at this level (green line) for the right half. While the blue line
marks the path to the up-most element, the green line walks furthest and
the cyan one is in-between. In fact, we have 8 paths, one for each element,
so we can choose uniformly among them by choosing the step length al at
level l u.a.r. from {0, 1}. The table in Figure 1 shows the corresponding
step lengths for each plotted path.

In this particular SkipList it makes sense to take at most one step per
level. Over all SkipLists, more steps are preferable and the process above
can be generalized to the Spray algorithm:

3



The Spray Algorithm

Note: In this report, log x means log2 x and is assumed to be integer.

The procedure Spray takes parameters H, the starting height, L, the
maximum jump length and D, the number of steps to descend after a hor-
izontal walk.

We start at the head at height H and repeat the following:
Walk a jump length, chosen u.a.r. from [0, L], horizontally and then,

if the bottom level has not been reached yet, descend D steps; else return
the current element.

The i-th part of a Spray is the walk at level iD. The i-suffix of a Spray

is the 0-th up to the i-th part (i.e. a0, ..., ai). In other words: the (i + 1)
lowest horizontal walks of a spray.
A tuple (a0, ..., alp) of length (lp + 1) describes a Spray execution, where ai
steps are taken at level iD.

The runtime of Spray clearly is in O(LH/D)

In Figure 1, Spray was executed with H = 2, L = 1, D = 1.
In order to vary the relaxation, we introduce the parameter p, that should
be at most the umber of clients executing DeleteMin/DeleteMax opera-
tions concurrently. When all of these access the SkipList at the same time,
a selection of at least p elements needs to be provided.

Bounding the hit probability on a perfect SkipList

By bounding the probability of landing on each element, we obtain a limit
for collisions and for uneven hit distribution.

Intuitively, a SkipList that can be traversed most efficiently should have
its elements separated by exponential distance with regard to its height.

Definition. A perfect SkipList has distance 2min(h1,h2) between any two
consecutive elements of height h1 and h2.

4



Figure 2: The sum of walked distances in binary representation for p = 32,
L = log p = 5, H = log p− 1 = 4, where the step lengths ai ∈ [1, 5].

The distance a Spray walks in a perfect SkipList is

H∑
i=0

ai2
i

In this section, let L = log p, H = log p− 1 and D = 1.
The furthest walk then is of distance L(2log p − 1). Being roughly p log p,
this is an upper bound for the number of reachable elements and for low
p, 1

p log p
is roughly 1

p
, so the following theorem shows that the distribution

among those elements is close to uniform and thus probability of collision
is small.

To simplify the analysis, we assume L = log p is even and we set the
jump length to be at least 1. That is, ai ∈ [1, L].

Theorem 1

The probability that a Spray (with L = log p, H = log p− 1, D = 1) hits
any element is ≤ 1

p
.

Proof: Let the element which the Spray lands on be x. The follow-
ing equation states that the walking distance d equals x. We will bound
the probability of this equation being satisfied by providing the probabil-
ity of the first log p bits of the distance d matching those of x. Let the

5



corresponding event of match be E (In short: ∀k ∈ [1, log p] : d(k) = x(k))

d :=

log p−1∑
i=0

ai2
i = x

Before proving the general case, consider the example p = 32. Figure 2
shows the binary representation of the summands, the sum (total distance)
and carry bits as well as the position x. If the bits in the green frame do
not match, the equation cannot be satisfied.
Say we generated a0 first. The chance of a match is 1/2 because we select
from [1, 5]. Then, a match at bit 2 has probability 1/2 for the same reason.
This repeats until there is a mismatch at the i+1-th bit after generating ai,
or all green bits match. This happens with probability (1/2)5 = (1/2)log p =
1/p.

The equation from above gives us the equation a
(1)
0 = x(1), denoting

equal parity, where y(j) is the j-th bit of y and ai are again the jump
lengths. Since L is even and ai ∈ [1, L] (chosen u.a.r.), the probability of

ai being even (i.e. a
(1)
0 = 0) is 1/2. Thus, the equation is satisfied with the

same probability due to symmetry.
Similarly, the equation a

(1)
1 +a

(2)
0 = x(2) mod 2 is satisfied with probability

1/2 again:

Pr[x(1) = 0] = Pr[a1(1) = 0] · Pr[a0(2) = 0] + Pr[a1(1) = 1] · Pr[a0(2) = 1]

=
1

2
Pr[a0(2) = 0] +

1

2
Pr[a0(2) = 1]

= 1/2

a
(1)
k−1 +a

(2)
k−2 + ...+a

(k−1)
1 +a

(k)
0 + c = x(k) mod 2 for a carry bit c is fulfilled

with probability 1/2 as well, for the same reason as with k = 2. The

argument is that a
(1)
k−1 is independent of all other variables in the current

equation and is symmetric. Thus flipping this one bit will flip the entire left-
hand side of the equation, entailing symmetry for the latter too. Finally,
Pr[E ] = (1/2)log p = 1/p.

Bounding the furthest walk

In contrast to above, we now consider any SkipList (the general case) and
ensure that not too many elements are skipped by the Spray, or else low

6



Figure 3: The expected walking distance for the greatest step choice

priority elements are returned. Since we have no control over the SkipList’s
element height distribution, we can only give probabilistic guarantees.

Basically, the goal is to bound the sum of the distances each part of
the furthest Spray walks. (This means each part takes L steps.) We can
loosen this by bounding each summand. The Markov or Chernoff bounds
are powerful tools which require knowledge of our variable’s expectation:
In the previous section, we knew the exact distance of two consecutive
elements with height > l. Interestingly, here this is the average value. Let
El be the expected value of the distance of a walk of L steps on level l.

El = 2lL

The argument is the very same: On average, one out of 2l elements
satisfy the condition height > l. Therefore a step at level l results in a
distance of 2l. For certain parameter choices, the probability of skipping
the (1 + 1

log p
) log p

log p−1
p-th element is low (p−Ω(1)).

Proposition 1 will bound the distance of the individual parts of the
Spray, while Lemma 1 will bound the entire distance, both probabilisti-
cally.

Fix H = log p − 1, L = M log3 p (M is some constant) and D =
max(1, log log p). (These are the parameters that were chosen for the final
algorithm.)

Let di be the distance which the i-th part of a Spray walks.
Recall the definition of El, which we will instantiate with L = M log3 p:

El = M2l log3 p

7



Proposition 1

If k ≤ log p and α > 0, then the distance traveled at level k is bounded by
(1 + α)M2k log3 p with probability e−Ω(Mα2 log3 p).

Proof: We apply a Chernoff bound, which yields the result:

Pr[distance ≥ (1+α)M2k log3 p = (1+α)2kL = (1+α)E[distance]] ≤ e−Ω(Mα2 log3 p)

distance (at level k) can be thought of the sum of indicator variables, one
for each element, that are 1 iff their corresponding elements are skipped.

Lemma 1

For a fixed α, the k-suffix of any Spray will go a distance of at most
M(1 +α) log p

log p−1
2kD+1 log3 p, with probability at least 1− e−Ω(Mα2 log3 p) over

the choice of the SkipList.
Proof:

Pr[
k∑
r=0

dr ≥ (1 + α)
k∑
r=0

ErD] ≤
k∑
r=0

Pr[dr ≥ (1 + α)ErD] (by the union bound)

≤ k · e−Ω(Mα2 log3 p) (by Proposition 1)

≤ (log p)e−Ω(Mα2 log3 p)

∈ e−Ω(Mα2 log3 p)

With the above probability following also holds:

k∑
r=0

dr ≤ (1 + α)
k∑
r=0

ErD

= M(1 + α) log3 p
k∑
r=0

2rD

≤M(1 + α) log3 p
kD∑
r=0

2r

≤M(1 + α)
log p

log p− 1
2kD+1 log3 p

8



Theorem 2

No Spray will return an element beyond the first M(1 + 1
log p

) log p
log p−1

p log3 p

with probability at least 1− p−Ω(M).
Proof: Instantiate Lemma 1 with α = 1

log p
and k = lp (i.e. the full-

height Spray).

The SprayList

So far we randomly selected a high-priority element by doing a Spray. This
random walk with the parameter choice from the above section combined
with the SkipList’s Delete operation constitutes the DeleteMin/DeleteMax
operation of our priority queue, the SprayList. The runtime of O(log3 p) is
proven in the original paper.
Inserting is equivalent for the queue and the SkipList and can be done in
O(log n).

Conclusion

To conclude, the paper has presented a relaxed priority queue that attempts
to land on one of the first O(p log3 p) elements with (approximately) uni-
form distribution, utilizing random walks. It takes errors into account
but scales better than any other proposed up to that point in terms of
throughput. A user of the SprayList has to balance wasted work against
dequeueing throughput by adjusting the relaxation parameter.

Additionally, low collision probabilitywas proven (the paper’s Theorem
3 does so for the general case).

Several follow-up papers were exploring the gain of relaxation and pro-
vided comparisons with the SprayList (for up to 108 elements).
Exemplarily, the MultiQueue [2] performs the SprayList in both through-
put and quality, according to the paper’s benchmarks.
It operates on an array of priority queues, from which, on every MultiQueue-
operation, one is pulled out at random. The original operation is then
applied to the chosen priority queue. However, in the case of a DeleteMin,
multiple priority queues are selected, their smallest values are compared
and the smallest of these is returned. The taken queues are then put back.

9



An internal priority queueis blocked entirely during these operations. Nev-
ertheless, this data structure seems to perform well. Though there is a
minor downside: The error depends on

√
n, whereas the Spray is com-

pletely independent of the list’s length.

References

[1] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The spraylist:
A scalable relaxed priority queue. Technical report, September 2014.
Best Artefact Award.

[2] Hamza Rihani, Peter Sanders, and Roman Dementiev. Multiqueues:
Simpler, faster, and better relaxed concurrent priority queues. arXiv
preprint arXiv:1411.1209, 2014.

[3] Nir Shavit. Data structures in the multicore age. Commun. ACM,
54(3):76–84, March 2011.

10


