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1 Introduction

Condon, Hajiaghavi, Kirkpatrick and Maňuch propose a new analysis of a well-known
solution to the Approximate Majority in [1]. The Approximate Majority problem is a
relaxation of the majority problem, where the correctness of the result only holds in
probability and may depend on the difference between the number of elements in the
two categories. This problem appears in molecular biology and is one of the simplest
examples of a population protocol.

1.1 What is a population protocol?

Approximate majority works in a model of computation called population protocol. This
model is well-known from chemistry: consider a typical reaction

CO2 + H2O→ H2CO3

A population protocol is based on a set of rules X +Y → Z, similar to the one above.
We call the types X,Y, Z states. From an initial mix of elements of the different states,
the computation takes place by following the rules (imagine molecules that are mixed in
a solution, where then reactions happen).

This model has several real world applications. The most obvious example is chemistry,
but also molecular biology and in ecology to simulate population dynamics.

2 The Approximate majority problem

In this report, we will analyse one of the most simple population protocols: approximate
majority. In the approximate majority problem, we use two states of elements, which
we call X and Y . We will denote x, respectively y, for the number of elements of state
X, respectively Y . We will further write n for the total number of elements. There are
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different ways of defining population protocols to solve the approximate majority prob-
lem, with different properties and runtimes. We will first discuss the simplest version,
which we call the two-state majority. We will then introduce and present the analysis
by Condon et al. of the three-state majority.

2.1 The two-state majority

The two-state majority uses states X and Y and the following rules:

X + Y → X +X

Y +X → Y + Y

Note that in this definition the order of X and Y is important (which doesn’t make
sense if we think of the application in chemistry). We could also say that the order
doesn’t matter but the rules are non-deterministic with both rules being equally likely.

What these rules say essentially is that when an X and Y meet, one of them will
transform into the other’s state. If we wait for long enough, then we expect an equilib-
rium to form (i.e. eventually, all elements will be either all X, or all Y ). We further
expect that if there are more X’s than Y ’s at the beginning, the elements will on average
tend to all become X’s. Thus, this solves the approximate majority problem, with the
simplest rules imaginable!

This can indeed be shown to be true. However, the guarantees are quite weak: the
probability ofX becoming the majority if there are x elements of stateX at the beginning
are x

n . This is not better than picking one element at random in the mix and claiming
that that state is the majority! Furthermore, the number of interactions needed with
this set of rule can be shown to be O(n2). We will now see that we can do better than
this naive approach.

2.2 The three-state majority

The main issue with the two-states majority described above was that the “mutation”
of X into Y ’s (or the other way around) happened randomly: depending on the order
of the elements in the reaction, the elements mutated into X’s or Y ’s, but the number
of elements of the respective state had no influence on which mutations happened.

We can improve on this by introducing a new state alongside X and Y . We introduce
elements of state B. These B’s can be thought of elements undecided between X and Y ,
called “blank”. Initially, all elements are either X or Y , but adapted rules will introduce
B’s into the mix:

X + Y → B +B

X +B → X +X

Y +B → Y + Y
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Now, when an element X meets a Y , they will both be mutated into B’s. These B’s
in turn mutate into X’s and Y ’s. However, this time, the probability of mutating into
X or Y will depend on the relative number of X’s and Y ’s in the mix. Thus B’s will be
more likely to mutated into a X if X has a majority, reinforcing this majority further.

It turns out that proving an upper bound on the number of interactions needed to
achieve consensus – i.e. all elements are either X or Y – is quite challenging. In a very
lengthy proof, Angluin et al showed the number of interactions can be bounded with
O(n log n), and that the consensus will be the correct solution with high probability
provided that the initial difference between the number of elements of state X and Y ,
x − y, is in o(

√
n) [2]. It seemed astonishing that such a simple system requires such

a lengthy proof. In their paper, Condon et al give a simpler proof for this bound, and
reduce the requirement for x− y to be in Ω(

√
n log n).

In the rest of this report, we will discuss the approach taken in the paper and give an
outline of the proof.

Given certain interaction rules, it has be shown that such interacting systems (a)
reach a concensus – that is when all objects belong to the same species – within a given
number of interactions, and (b) the species of the concensus is the species that had the
majority in the beginning, given that the gap between the majority and minority was
wide enough. The characteristic (a) is often called efficiency, and characteristic (b) is
called correctness.

While the definition of most such interaction rules is fairly straight-forward, the proof
of their correctness and, in particular, of their efficiency have proven quite challenging.
The paper argues it provides a simpler proof of correctness and efficiency for a particular
set of interaction rules proposed by Angluin et al [2].

2.3 Outline of the work

The proof is based on the idea of starting from a slightly modified population protocol,
and then reducing this to our original population protocol.

The modified population protocol is in fact a tri-molecular CRN (chemical reaction
network). We will not go into the details of the differences between a population protocol
and a CRN. A tri-molecular CRN is essentially a population protocol that takes three
elements on the left side of the population protocol rule.

In the next section, we will start by presenting the analysis of the tri-molecular CRN
instance. We will then adapt these results in section 4 for two different bi-molecular
CRNs and show how these interaction rules translate to the same rules as in the popu-
lation protocol. We will conclude with a discussion of the results in section 5.
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3 Tri-molecular CRN for approximate majority

We will start by considering a tri-molecular CRN composed of the following two reac-
tions:

X +X + Y → X +X +X (1)

X + Y + Y → Y + Y + Y (2)

The CRN contains the two states X and Y . Remember that we write x and y for the
number of elements in the respective state. We will assume without loss of generality
x > y, as the interaction rules are symmetric with regard to X and Y . Please note
further that unless explicitly stated otherwise, all stated bounds and results hold with
high probability (i.e. there is a chance of the result being incorrect, but this tends to 0
as n tends to infinity).

We want to show that given these two reactions, a mix rapidly reaches a majority
concensus, given an initial gap of x− y = Ω(

√
n log n).

3.1 Phases and stages

Assuming x > y, we can frame our goal of reaching a consensus as bringing y to 0. In
fact, as soon as y = 0, all elements must be of state X and we have reached a consensus.
Thus, looking at what we call the history of y from the first interaction in the CNR to
the last, we must prove that y eventually reaches 0.

The idea behind the proof presented is to separate the history of y in phases. For each
phase, we will show that (a) once the history of y enters that phase, it will never (with
high probability) go back to the previous phase, and (b) it will (with high probability)
move towards the next phase or stage within a certain number of interactions. The last
phase ends with y = 0, which means we have reached a consensus.

Once that is established, it is easy to assemble the different bounds to obtain a general
result on the correctness and efficiency of the proposed approach.There are three phases
characterised by different regimes in the ratio of x to y. For the proof, phases 1 and 2
are further sliced into Θ(log n) stages. Similar to the phases, we will aim to show that
within a stage, the history of y moves from one stage to the next without ever going
back (with high probability). The boundaries between phases and stages are chosen in
such a way that the upper bound on the number of interactions is optimal.

Note that successive phases (and stages) overlap. That is necessary because we want
to make sure that the history of y does not go back to a previous phase (or stage): we
need to leave some free space in case y starts to increase as soon as it entered the new
phase or stage. If the phases did not overlap, then we could not exclude that as soon as
y entered the new phase, it wouldn’t increase immediately and need to be shifted back
to the previous phase. By adding overlap, we can make sure we stay in the new phase
(with high probability), even if y increases.

The regimes and boundaries of the phases and stages are summarised in the first three
columns of Table 1.
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Table 1: An overview of the different phases, their stages and the bounds that apply to
them with high probability.

Regime Boundaries Stages
Efficiency

(using Chernoff)
No-return

(using Lemma 1)

P
h
as

e
1 cγ/2

√
n log n

< x− y ≤
n(dγ − 2)/dγ

ends when y ≤ n/dγ
t = Θ(log n), reaches next stage

within λn reactions
with high proba

x− y >
2t−1
√
n log n

with high proba
starts: x ≥ y + 2t

√
n log n,

ends: x ≥ y + 2t+1
√
n log n

P
h
as

e
2 eγ log n

< y <
2n/dγ

ends when y ≤ eγ log n
s = Θ(log n), reaches next stage

within λn/2s

with high proba

y < n/2s−1

with high proba
starts: y ≤ n/2s,
ends: y ≤ n/ss+1

P
h
as

e
3

0 ≤ y < 2eγ log n ends when y = 0
reaches y = 0 within
λ log n reactions
with high proba

y < 2eγ log n
with high probaNone

3.2 Mathematics and statistics tools

In this section we will review some basic results in statistics that will be relevant for our
proof.

We give a result on biased random walks. A random walk (in our case: one-dimensional)
is a random sequence of steps going up or down with a fixed step size, starting at a given
point. Taking the integers as example, one could start at 5, and then take a random
sequence of either +2 steps or -2 steps, which could give the following sequence: 5, 7, 9,
7, 5, 3. . . A biased random walk is a random walk where the different options (the steps)
have different probabilities.

Lemma 1 (One-dimensional biased random walk [3]) If we run an arbitrarily long
sequence of independent trials, each with success probability at least p, then the proba-
bility that the number of failures ever exceeds the number of successes by b is at most
(1−p
p )b

For completeness, we mention a famous result from statistics that will be very useful
in our proof.

Lemma 2 (Chernoff tail bounds [4]) If we run N independent trials, with success
probability p, then SN , the number of successes, has expected value µ = Np and, for
0 < δ < 1,

a) P [SN ≤ (1− δ)µ] ≤ exp(− δ2µ
2 ),

b) P [SN ≥ (1 + δ)µ] ≤ exp(− δ2µ
3 ).

3.3 Results

As mentioned above, all we need to show is that the history of y moves from one stage
to the next, and from one phase to the next, without ever going back (with high proba-
bility). This breaks down into showing that in each phase or stage, (a) no-return holds,
that is, the history of y will never move back to the previous phase or stage again, and
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(b) efficiency is guaranteed, that is, the history of y will move to the next phase or stage
within a bounded number of reactions.

All the relevant bounds are summarised in Table 1. Note that the derivation of the
results also provide an expression for the “high probability” that increases with the
number of molecules n. These are however not reported in the table for the sake of
conciseness. We refer the interested reader to the original paper [1].

We will not prove the results for every phase and stage, as the results and proofs are
very similar. We will focus on deriving the results for phase 1.

Lemma 3 At any point in the computation, if x − y = ∆ then the probability that
x− y ≤ ∆/2 at some subsequent point in the computation is less than (1/e)∆2/(2n+2∆).

Proof. The change in x − y is the result of a biased random walk, starting at ∆ and
with success rate p = x/n ≥ 1/2 + ∆/(4n) (which corresponds to a reaction (1)). To
reach x− y = ∆/2, we need ∆/2 more failures than successes. Using theorem 1, we find
that this is reached with probability ( 1

1+∆/n)∆/2 ≤ (1/e)∆2/(2n+2∆).

Corollary 4 (No-return in phase 1) In stage t of phase 1, x−y reduces to 2t−1
√
n log n

with probability less than 1/n22t−2
.

This is the first result we were looking for! We see that the lemma gives an explicit
probability that tends to 0 as n increases. We thus have no-return for each stage of
phase 1.

We now show efficiency for phase 1.

Lemma 5 If x − y = ∆ < n/2 at some point and if x − y never reduces to ∆/2
(no-return), the probability that x − y increases to 2∆ within λn reactions is at least

1− exp− (λ−2)∆2

λ(2n+∆) .

Proof. Similar to theorem 1, this time using Chernoff. The probability of completing
λn reactions with fewer than λn/2 + ∆/2 successes (follows from x− y < 2∆) is at most

exp− (λ−2)∆2

λ(2n+∆)

Corollary 6 (efficiency in phase 1) In stage t of phase 1, assuming that x−y never
reduces to 2t−1

√
n log n, the probability that x − y increases to 2t+1

√
n log n within at

most λn reactions is at least 1− exp(− (λ−2)22t logn
3λ ).

This is the efficiency result! Combining the two results, we can say that with high
probability, the history of y will go from stage to stage until entering phase 2.

The same results with similar bounds can be obtained for phases 2 and 3.

4 Bi-molecular emulation of approximate majority

We now have bounds for a tri-molecular CRN. Our goal is to use this result for the
three-state population protocol as proposed by Angluin et al [2]. We will see that the
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same analysis of section 3 for the tri-molecular CRN can be applied to the population
protocol described in section 2 with small adaptations.

Recall the rules of the three-state population protocol:

X + Y → B +B (0’)

X +B → X +X (1’)

Y +B → Y + Y (2’)

We will start with the same configuration as in the tri-molecular CRN, meaning that
b = 0 in the initial configuration.

The trick to analyse this population protocol is to introduce the new variables x̂ =
x+b/2 and ŷ = y+b/2. We see immediately that reaction (0’) leaves these new variables
unchanged. Reactions (1’) and (2’) on the other hand change the new variables at
exaclty half the rate that their respective counterparts changed x and y in the previous
tri-molecular CRN. We are thus in a very similar setting as in the tri-molecular case,
where we simply need twice the number of interactions. To conclude the proof, one
needs to show that the probabilities of reactions (1’) and (2’) happening can be bound
by a constant times the equivalent reactions in the three-state population protocol. This
allows to prove both correctness and efficiency of the emulation.

5 Conclusion

Condon et al. propose a new approach to derive bounds on the Population Protocol
introduced by Angluin [2]. They start with a tri-molecular CRN that is easier to solve
and then show that the same analysis can easily adapted to three-state population
protocol version of the problem.

This approach of translating the population protocol into a CRN and then modifying
the CRN into another more easily solvable CRN could have a lot of potential for other
still open population protocols. Further, this reduction method could also be used to
reduce open CRN problems to already known results, instead of proving new bounds
every time.
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