Seminar Advanced Algorithms and Data Structures -
Student Manuscript

SENSITIVITY ANALYSIS OF MINIMUM
SPANNING TREES AND SHORTEST PATH
TREES [1]

Sara Steiner

October 26, 2018

1 Definitions

In general I refer to the graph we are analyzing as G, with G consisting of
a set of n vertices V and m edges E. The edges of G will be referred to as
e;, 4 € {1,...,m} and the vertices of G as v;,7 € {1,...,n}. In addition each edge
e; has an assigned weight c(e;).

A minimum Spanning Tree (MST) (or a shortest Path Tree (SPT)) of G = [V, E]
will be referred to as Tg = [V, E'], with E' C E. When talking about a graph
G and its MST T we will refer to non-tree edges by f.

For some algorithms we need to build a Transmuter Graph to do the computa-
tion on. I will refer to this graph as H with vertices labeled s, ¢ or w.

Figure 1: Graph G

2 Sensitivity Analysis of a Minimum Spanning
Tree (MST)

A sensitivity analysis is helpful to find the amount an edge weight can vary be-
fore another path becomes faster (eg. IP routing) or to find the weakest point
of a shortest path. This could be applied in automobile traffic or in the SBB
route-planer.

2.1 Definition of MST?

A MST T = [V, E'] of a Graph G = [V, E] is a connected sub-graph of G that
minimizes the sum of it’s edge weights. Let w(Tg) =) v c(e) be the weight
of Tg.

T¢ is a MST of G if T¢ is a spanning tree and minimizes w(T¢).

Vi € - -\
s =
L S~ <
K L
N N i A ~
\ \ » g,
\ 1
\ \ V
;]
\ A
A \
S\
\ e %/
A i \
v ki
\
Binsis o o il
¢ 4 Vs

Figure 2: MST of Graph G. See figure 1

2.2 Sensitivity on a MST

The sensitivity of a MST can be understood as the amount by which each edge
weight of G can vary, before the MST changes.
The algorithm we are going to look at, will show us by how much the weight of
each tree edge can be increased and by how much the weight of each non-tree
edge can be decreased before the MST changes.

2.3 Measure Sensitivity on a MST

In order to measure this, we will first have a look at a lemma (from [1]) and
define what a simple path is.

Definition: Simple path in T

A simple path in T¢ for a non-tree edge f = {z,y}, is referred to as T(f). T(f)
denotes the path in T from vertex z to y. A simple path T(f) is unique in a
MST Tg.

Figure 3: Simple path for f in Tz

Lemma 1 (from [1], reformulated):

Te =[V,E'lisaMST of G = [V, E] with E/ C E, if and only if, Ty is a spanning
tree of G and for each non-tree edge f, the weight of f is at least as big as the
largest weight c(e;) on T'(f).

Proof of Lemma 1
Assume Ty is a spanning tree and prove its minimality.
To show:

Te =[V,E']isa MST of G = [V, E] &
VfeE\E .YeeT(f). c(f)>cle)

First prove = by contradiction:
Assume there exists f and e with ¢(f) < ¢(ex) and eg € T(f) for a Spanning

Tree Tq.

Since T(f) U f is a cycle we can remove one arbitrary edge from it, without
disconnecting the vertices.

We build a new Spanning Tree G/ by copying T, then adding f and removing
€.

So we get:

w(Te)= Y cle)> Y ele)+elf) =wTg)

ecE’ ecE\{er}

This leads to the conclusion that w(T¢) > w(T(;) and so T is not a MST of G.
So
Te =[V,E'] isa MST of G = [V, E] =

Vfe E\E . VYeeT(f). cf) > cle)

Then prove < by contradiction:
Assume T is not a MST of G.
Then there has to be a Tf, = [V, F)] with

> ele) =w(Te) > w(Ty) = > cle)

ecE’ ecE)

Since T and Tf, are Spanning Trees they both have the same number of edges.
So for every edge that is in T¢, and not in T there has to be an edge in Tg
that is not in T,.

And since E¢g and T, are both acyclic and connected it has to hold that: For
every e, € Ef \ E’ there has to be an e, € E’\ E} that is on T(ex) in Tg.
Otherwise ey U T (ex) would be a cycle in T,. From w(T¢g) > w(T¢,) we know

that
Z c(e) > Z c(e)

e€E'\E}, ecEL\E’

There has to be at least one e;, € E} \ E' and e, € E'\ Ej with e, € T(ey) and
clep) > cley).

So the existence of an e, € E\ E' and an e, € T(ex) with c(e,) > c(ex) is
proven.
Te =[V,E'] isa MST of G = [V, E] «

Ve E\E . VYeeT(f). cf) > cle)

Apply Lemma 1
To measure how much the weight of a non-tree edge f can be decreased, we

consider ¢(f), then look at T(f) and select edge e; in T(f) with the largest
weight ¢(e;). If we now decrease ¢(f) by more than ¢(f) — c(e), f will no longer
be the most expensive edge in the cycle consisting of T'(f) and f. Therefore T¢
will no longer be a MST.

|
[

Figure 4: MST of G changes if edge f changes.

For a tree edge e, we first get ¢(e) and then we look at all the simple paths e lies
on. From those paths we only consider the one with the lowest corresponding
non-tree edge weight. We refer to that path as T'(f) and to the corresponding
non-tree edge as f. If we now increase c(e) by more than c¢(f) — c(e), e will
become the most expensive edge on the cycle consisting of T'(f) and f.

Figure 5: MST of G changes if edge e changes

2.4 Calculate Sensitivity of a MST

We build a Transmuter-Graph H that allows us to calculate the sensitivity of
G for all edges at the same time. Once we got H, we will be able to get the
sensitivity analysis in O(size(H)) time.

2.4.1 Transmuter Graph for MST

First of all, what is a Transmuter Graph?

A Transmuter Graph H for a graph G is a directed graph that contains one
vertex of indegree zero s(e) for each tree edge e in T and one vertex of outde-
gree zero t(f) for each non-tree edge f in G. It additionally contains arbitrarily
many other vertices of indegree 2 and outdegree of at least 1.

There is a path from a source s(e) to a sink ¢(f) if and only if the corresponding
tree edge e is on T'(f).

Note: The vertices of H can be brought in to topological order. This is possible
since H is acyclic.

Simple approach to building a Transmuter Graph H

Note: This is just a simple approach, used only to show that building Trans-
muter Graphs is possible. This algorithm does not provide the desired size of H.
In order to get to a smaller H a much more complicated algorithm is needed.
If you are interested in it, see [2].

Choose a root r in Tg. For every tree-edge e; in T add one vertex s(e;)

to H.

For each non-tree edge f = (v;,v;) in G, find the nearest common ancestor
(nca) v, of v; and v;.

The nearest common ancestor of f = (v;,v;) is the vertex at which the paths
from r to v; and from r to v; start to differ.

From v, follow T to v;. For the first two edges traversed in T, ex and e;, add
one vertex w, to H. Add the edges (s(ex), w,) and (s(e;),w,) to H.

For every other edge e, you traverse in T, let wy be the last added vertex in
H. Add a vertex wp41 to H and the edges (s(e,), wp+1) and (wp, wpy1).

Once you reach v; (assume the last added vertex of this procedure was wy),
repeat the same process for v; (assume the last added vertex of this procedure
was wg).

Finally add a vertex ¢(f) to H and add the edges (wy, t(f)) and (wy,t(f)).

\ W &
By \ &3 v
4 3
\ '
N '
AN "
€. ‘, \ U
F \ R .
\ \ \ﬁl Va
% t¢
Vb o
. e~
) N

Figure 6: Graph G

gle,) sley) sley) s.(eq) s’(e.g) s(eg)

Figure 7: H after construction of s(e;) for all tree edges in Tg.

Figure 8: Graph G, finding nca(f).

sles) sle,) slga)sle,) sles) .s(eg)

Figure 9: H after processing f in G.

Figure 10: Graph G, with all nca marked.

sle) sle.) sley) sled) sleg) sleg)

AN

\\
\
\ \'.\ \\‘\
N \

D) ML we))

Figure 11: H fully built.

2.4.2 Algorithm for Sensitivity on MST

Overview:

We go through the Transmuter Graph twice. Once to determine the maximum
decrease for each non-tree edge and once to find the maximum increase for each
tree edge before T is no longer a MST of G.

Decrease of weight for non-tree edges in words:

We first label each source in H with the weight of the corresponding edge in
TG.-

Then we label all the other vertices with the maximum value of their immediate
predecessors.

The resulting label for each sink #(f) is the maximum edge weight on T'(f). So
for each sink we get the sensitivity by calculating ¢(f) —¢(f). This is how much
we can decrease the non-tree edge f before T is no longer a MST of G.

10

Decrease the weight for non-tree edges in pseudo-code:

input: topologically ordered graph H with sources s(e;), sinks ¢(f;) and other
vertices w;, with index ¢ corresponding to topological order

label all sources:
for all s(e;)
label(s(e;)) = weight(e;);

label all w;:
for all w; in order
label(w;) = max (g .,)k label(x);

label all sinks:
for all ¢(e;)
label(t(e;)) = max (g i(e,))ek label(x);

calculate the maximum decrease for non-tree edges:
for all ¢(e;)
maxdecrease(e;) = c(e;) — label(t(e;));

Increase of weight for tree edges in words:

We first label each sink ¢(f) in H (Transmuter Graph) with the weight of the
corresponding edge in G.

Then we label all the other vertices with the minimum value of their immediate
SUCCESSOTS.

The resulting label for each source s(e) is the weight of the cheapest non-tree
edge f that has e € T(f). So for each source we get the sensitivity by calcu-
lating s(e) — ¢(e). This is how much we can increase e before T is no longer a
MST of G.

11

Increase the weight for tree edges in pseudo-code:

input: topologically ordered graph H with sources s(e;), sinks ¢(f;) and other
vertices w;, with index ¢ corresponding to topological order

label all sinks:
for all ¢(e;)
label(t(e;)) = weight(e;);

label all w;:
for all w; in reverse order
label(w;) = min(y, »)e g label(x);

label all sources:
for all s(e;)
label(s(e;)) = min(y(e,), ek label(z);

calculate the maximum increase for tree edges:
for all s(e;)
maxincrease(e;) = label(s(e;)) — c(e;);

2.4.3 Run time

The run time of this algorithm is linear in the size of H. This is easy to see
since each vertex needs to be looked at twice. Also every edge is looked at at
most twice. Since the number of edges is bound to two times the number of
nodes in H, the total run-time is in O(size(H)).

So what really interests us is how fast we are able to build a Transmuter Graph
H and how many edges and vertices it will have.

It is possible to build H in O(ma(m,n)) time and space and with some tricks
we can do the sensitivity analysis in O(m) space. We will look at that on the
next page. The algorithm we looked at was a simplified version. I will not show
you the original algorithm for the Transmuter Graph, but if you are interested,
I can recommend you a paper. [2]

First we will have a look at « which represents the inverse Ackermann’s function.

12

Ackermanns function (as defined in [1])

For integers i,j > 1 A(i,7) is defined by:
A(l,5) =2 forj > 1
A(i,1) = A(i — 1,2) for i > 2
A(i,j) = AGi—1,A3,5 — 1)) fori,j>2

For integers m, n such that m > n — 1 > 0 we define a(m,n) by
a(m,n) = min{i > 1|A(®, |(m + 1)/n]) > logan}

Now a few words the reduction of the space required by the algorithm.

Let m’ be the number of non-tree edges. So m’ = m —n + 1. We split the
non-tree edges into groups of size ©(m'/a(m,n)). We apply the algorithm to
each group, meaning that we take T and the non-tree edges of one group and do
the sensitivity analysis on it. Each non-tree edge will receive its correct result
and the tree edges will get ©(a(m, n)) different results, of which the smallest is
correct.

This leads to a space used by the algorithm per group of

O<n+ a(max{n,O(a(:z:n))},nD — O(m)

_m
a(m,n)

There is a max in this formula, which can have 2 outcomes. If

max{n,O(a n)} =n

this leads to

/

)a(n,n)> =0(n+m')=0Mn+m-—n+1)=0(m)

a(m,n

O<n+

If

13

3 Sensitivity Analysis of a Shortest Path Tree
(SPT)

We will refer to the SPT with T;. In addition we will define a root r in G from
which the SPT is constructed. For all paths P; from r to v in G, the distance

d(v) = mmj{Zeier c(e;)}.

3.1 Definition of SPT?

For a directed graph G and a vertex r € G a shortest path tree is a sub-graph
Tc of G such that

e T is a connected acyclic graph containing all vertices of G

e and for all v; : d(v;) in G = d(v;) in Tg.

Figure 12: Directed graph G.

14

Figure 13: SPT of G with respect to r.

3.2 Sensitivity of a SPT

Since a SPT Tg of G is always defined with respect to a root r. The sensitivity
of a SPT can be understood as the amount by which the weight c¢(e) of each
tree edge e can be increased and the weight ¢(f) of each non-tree edge f can be
decreased before T is no longer a SPT of G.

3.3 Measure Sensitivity of a SPT
We will first look at Lemma 2 of [1]. (Reformulated)

Lemma 2:
The sub-graph T of G is a SPT if and only if the weight ¢(f) of a non-tree
edge f = (v;,v;) is larger equal to d(v;) — d(v;).

This leads to the conclusion that if the weight of a non-tree edge c(f) is de-
creased by more than ¢(f) — d(v;) + d(v;), T¢ is not a SPT of G anymore.

If the weight c(e) of a tree edge e = (z,y) is increased by more than c(f) +
d(v;) — d(vj;) for any f = (v;,v;) such that v; is not a descendant of y but v; is
a descendant of y, T will not be a SPT anymore.

When increasing the weight c(e) of a tree edge e = (z,y) in a SPT Ty by

Ac the distance of y and all the nodes in the subtree Sy of y in Tz are going to
increase by Ac.

15

Every non-tree edge f = (v;,v;) belongs to one of four cases:

Case 1:
None of f’s vertices belong to Sy. In this case it is still true that

co(f) = d(vj) — d(vi)
So edge f will still not be part of the SPT after changing c(e).

Case 2:
Both vertices of f belong to Sy, so d(v;) and d(v;) both increase by Ac. Since
c(f) > d(vj) — d(v;) also

c(f) = (d(v;) + Ac) — (d(v;) + Ac)
So edge f will still not be part of the SPT after changing c(e).

Case 3:
If v; € Sy and v; € Sy the distance d(v;) changes by Ac but the distance d(v;)
stays the same. Since ¢(f) > d(vj) — d(v;) also

c(f) = d(vy) — (d(v;) + Ac)
So edge f will still not be part of the SPT after changing c(e).

Case 4:
If v; ¢ Sy and v; € S, the distance of d(v;) stays the same, while the distance
d(vj) changes by Ac. Since ¢(f) > d(v;) — d(v;) we can find out that

c(f) = (d(vj) + Ac) — d(vy)

if and only if:
Ac < c(f) +d(v;) — d(v;)

So edge f will only not be part of the SPT after changing c(e) if Ac is small
enough.

16

Figure 15: Resulting T by changing c¢(e) in G.

3.4 How to Calculate Sensitivity on a SPT
3.4.1 Transmuter Graph for SPT

This time we have to manipulate G a little before we build a Transmuter Graph.
More specifically we build a graph G’ consisting of T and some other edges.

17

For every non-tree edge f = (z,y) we get the nearest common ancestor of z and
y (referred to as nca(f)) and then construct an edge f' = (nca(f),y) in G'.
We then build the Transmuter Graph H on G’ with T as the spanning tree.
Note: These extra edges f’ = (x,y) have a path P from x to y in G’. If the
weight of any edge e € P is changed the edge f in G that corresponds to f’ in
G’ is in Case 3 of the case distinction made beneath Lemma 2.

Figure 16: Finding nca(f) in Tg.

18

S

A

\
\
N
v

N

q

| N\
Y

Figure 17: Adding extra edge f' to G'.

3.4.2 Algorithm to calculate Sensitivity on SPT

Decrease weight for non-tree edges in words:
In this part we do not need the Transmuter Graph.
As a first step we compute d(v) for every vertex in 7. Then for every non-
tree edge f = (v;,v;) we get its maximum decrease by calculating A(f) =

c(f) + d(vi) — d(vy).

Increase weight of tree edges in words:

Here we need H.

The process is analogous to the backwards labeling of the MST. The only dif-
ference is that we label the sinks ¢(f’) with A(f) instead of ¢(f).

Also the last step of the algorithm is not required since the sources s(e;) are
directly labeled with their maximum increase value.

19

Increase weight for tree edges in pseudo-code:

input: topologically ordered graph with sources s(e;), sinks ¢(f’) and other
vertices w;

label all sinks:
for all ¢(f”)
label (¢t(f")) = delta(f);

label all w;:
for all w; in order
label(w;) = min ., .)eplabel(x);

label all sources :
for all s(e;)
label(s(e;)) = min(s(e,),»)cplabel(z);

4 References

[1] Robert Endre Tarjan, Sensitivity Analysis of Minimum Spanning Trees
and Shortest Path Trees(1981)

[2] Robert Endre Tarjan, Applications of path compression on balanced
trees, J.LACM 26(1979) 711-715

20

