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1 Introduction

Here, we will first find out what the Level Ancestor Problem respectively what a Level
Ancestor Query LAT (u, d) is and define some essential terms.

Definition 1. A rooted tree T = (V,E) is a tree which has an arbitrary vertex as the
root.

Definition 2. The depth of a vertex u in a tree T , denoted as depth(u), is the level in
which it is located, starting from depth(root) = 0.
i.e. depth(u) := #edges on the shortest path from root to u

Example 1. with node 0 as root we have
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node 0 1 2 3 4 5
depth 0 1 2 1 2 2

Definition 3. Let v be a descendant of the vertex u in a tree T and Pv the u-v-path
(which is unique because T is a tree).
Then: v is the deepest descendant of u ⇐⇒ |Pv| ≥ |Px| ∀x is a descendant of u.

Definition 4. The height of a vertex u in a tree T , denoted as height(u), is the
number of levels we have to go through, if we want to travel from u to one of its deepest
descendants (which is a leaf). Note that here, the leaves are defined to have height 1.
i.e. height(u) := #vertices on the path from u to one of its deepest descendants

e.g. for the graph in example 1 we have:
node 0 1 2 3 4 5

height 3 2 1 2 1 1
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Level Ancestor Problem. Let T = (V,E) be a rooted tree with |V | = n, |E| = n− 1.
Find the ancestor v of a given node u at depth d.
So for an ancestor v of u with depth(v) = d, a Level Ancestor Query LAT (u, d)
returns v or undefined/false. I.e.

LAT (u, d) =

{
v ,if v is the unique ancestor of u with depth(v) = d

false ,if such an ancestor doesn’t exist

Note that LAT (u, root) = root and LAT (u, depth(u)) = u ∀u ∈ V .

Example 2. with 0 as root, we should have LAT (6, 1) = 3, LAT (4, 2) = 2,
LAT (5, 1) = 3, LAT (8, 2) = 8, etc.
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To solve this Problem we will see several algorithms which have complexity f(n) for
preprocessing T and g(n) for the query LAT (u, d). We denote the complexity of such an
algorithm as 〈f(n), g(n)〉.

2 Simpler Algorithms

Here, we will see 3 different algorithms to solve the Level Ancestor Problem and how
they work on examples and in pseudo-code. They are called Table Algorithm,
Jump-Pointer Algorithm and Ladder Algorithm. A 4th will be a combination of the last
two algorithms.
For all algorithms we first do a DFS to assign numbers to the nodes. While doing that
we also fill arrays parent and depth which are both globally accessible. parent[i] tells
the direct ancestor of node i and depth[i] = depth of node i = depth[ parent[i] ] + 1.
Since DFS runs in linear time it won’t affect the complexity of the algorithms.

2.1 Table Algorithm

As the name says, it uses a table, more precisely a look-up table which is filled using
dynamic programming. Each entry table[i][j] is the ancestor of node j at depth i. This
results in a n× n table for a rooted tree T = (V,E), because depth(u) ≤ n ∀u ∈ V and
there are n vertices in total. The preprocessing complexity is O(n2), because we have to
fill the table, whereas the complexity for the query LAT (u, d) is O(1). Which means the
Table Algorithm has complexity 〈O(n2), O(1)〉.
Now let’s see how the algorithm works. Remember we have the auxiliary arrays parent
and depth from the DFS and LAT (u, depth(u)) = u.
For every node j we start at row i = depth[j], assign the entry to i and move upwards.
Then each entry has the parent of the node below as its value.
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Algorithm 1 TableAlgotithm

1: procedure createTable . preprocessing
2: initialize a n× n table with −1
3: for i = 0, ..., n do
4: table[depth[i]][i] ← i

5: for j = depth[i]− 1, ..., 0 do
6: table[j][i] ← parent[table[j+1][i]]

7: return table

8:

9:

10: procedure LAT (u, d) . returns ancestor of u at depth d
11: if table[d][u] = −1 then . assume table is globally accessible
12: return false

13: return table[d][u]

2.2 Jump-Pointer Algorithm

This algorithm uses for each node an array ptr containing at most log2(n) pointers,
also called jump pointers. Each pointer points to the 2k-th ancestor of the associated
node, more precisely the k-th entry of the array associated to node u, i.e. ptr[k],
contains the 2k-th ancestor.
Note that the last index of the pointer array associated to u is blog2(depth(u))c, which

means the highest ancestor of u in its array is the 2blog2(depth(u))c-th ancestor.
The algorithm works as follows: First we create the pointer-arrays for every node

except the root by using the precomputed parent array. u and d are given as
parameters. Then we look if the right ancestor x := LAT (u, d) is in ptru, if yes return
the node, if no we go to ptru[blog2(depth(u)− d)c] = v and look in ptrv for x by doing
the same as in ptru, but with remaining distance between u and x, i.e.
(depth(u)− d)− (depth(u)− depth(v)). We repeat this process until we find x.

Example 3. Here we have a rooted tree with root = 0 (numeration from DFS) and its
jump-pointer arrays.
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ptr1 0 ptr2 0 ptr3 2 0 ptr4 3 2 ptr5 2 0 ptr6 5 2

ptr7 6 5 0 ptr8 7 6 2 ptr9 6 5 0 ptr10 9 6 2

ptr11 9 6 2 ptr12 2 0
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Algorithm 2 JumpPointerAlgorithm

1: procedure createPointerArrays . preprocessing
2: for all node v 6= root do

3: compute smallest k, s.t. bdepth(v)

2k
c = 0

4: allocate array ptr of length k for u
5: for i = 0, ..., k − 1 do
6: ptr[i] ← 2i-th ancestor of u

7: return Collection of pointer-arrays . e.g. Array of Arraylists

8:

9:

10: procedure LAT (u, d) . returns ancestor of u at depth d
11: if depth[u] < d then . We cannot find an ancestor of u that is below u
12: return false

13: else if depth[u] = d then
14: return u

15: δ ← depth[u]−d
16: ancestor ← ptru[0]

17: while depth[ancestor] 6= d do
18: if δ = 2k, for a k ∈ N then
19: ancestor ← ptru[k]

20: else
21: idx ← blog2(δ)c
22: u ← ptru[idx]

23: ancestor ← ptru[0]

24: δ ← δ − 2idx

25: return ancestor

In the preprocessing part we compute for every node an array with length less or
equal to blog2(n)c. Which results in complexity O(n · log2(n)).
For the query time complexity, we define δ := depth(u)− d for the given parameters u
and d, i.e. δ is the distance we have to travel to reach the right ancestor. At the first
array we can travel up to the blog2(δ)c-th entry. This means we can travel up by
2blog2(δ)c which is at least δ/2. With the second array we can travel up to at least half of
the remaining distance, and so on. This results in query time complexity of O(log2(n)).
In total the Jump-Pointer Algorithm has complexity 〈O(n · log2(n)), O(log2(n))〉.

2.3 Ladder Algorithm

The idea here is to decompose the tree into paths/ladders. Suppose we have a tree
that is a path P = {root = v0, v1, ..., vn−1} stored in an array ladder, then the entry
ladder[i] is the node at depth i. This allows us to output LAT (u, d) = ladder[d] in
time O(1), as long as d < depth(u). Now we want to use this nice property.

We decompose the tree as follows: First, we find a longest root-to-leaf path P and cut
its bindings, i.e. delete all edges e = {u, v} with u ∈ P, v /∈ P or u /∈ P, v ∈ P . This
decomposes the tree into P and several subtrees. We store P into an array and recurse
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for each subtree, whereat we choose new roots for them. The base case is, when the
subtree is only a path (note: a single node is also a path).

Example 4. this is the tree from before decomposed into 6 paths
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For each path P we create a ladder array. The ladders are named A, B, C,... to not
confuse them with nodes. We also create a global array a to keep track in which ladder
at which index each node is. This step is called long path decomposition.

A 0 2 5 6 7 8 B 3 4 C 1 D 12 E 9 11 F 10

node 0 1 2 3 4 5 6 7 8 9 10 11 12
ladder A0 C0 A1 B0 B1 A2 A3 A4 A5 E0 F0 E1 D0

After the long path decomposition is done, we proceed by extending the ladders(except
the one with the root at the top) up to twice its length, i.e. a ladder array with length
h has now length 2h. The additional h spaces will be filled with the h immediate
ancestors of the top node by adding them to the top of the ladder, s.t. one ladder
contains 2h nodes with a node of height 2h (because it is the ancestor of the 2h nodes
in the ladder) as top and/or it contains the full path from the root to a leaf. (Assume
we can have negative indices s.t. we don’t have to change the pointer array, it can also
be done differently.)

A 0 2 5 6 7 8 B 0 2 3 4 C 0 1

D 2 12 E 5 6 9 11 F 9 10

For a query we follow the pointer to the ladder and either the right ancestor is in the
ladder or we have to jump to the ladder of the current ladder’s top, and do the same
there. Note that we must always calculate the remaining distance between the depth of
the node at which we are and the depth of the wanted node.
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Algorithm 3 LadderAlgorithm

1: procedure createLadder(tree T=(V,E)) . preprocessing
2: choose longest root-leaf path P={v0, ..., vh−1}
3: allocate array ladder of length h . h := #nodes in P
4: for i = 0, ..., h− 1 do
5: ladder[i] ← vi
6: a[vi]← ladderi . suppose ladder is a letter

7: allocate additional h space at top of ladder
8: for i = −1, ...,−h do
9: if ladder[i+1] = root then
10: deallocate remaining not-occupied space . s.t. access of top is easy
11: break

12: ladder[i] ← parent[ladder[i+1]]

13: M = {(u, v) ∈ E | u ∈ P, v /∈ P and vice versa}
14: for all edge e ∈M do
15: Te ← subgraph that is connected to P via e
16: createLadder(Te)
17: . e is the only edge connecting Te and P , else there would be a cycle
18: . Note for every e ∈M we get a Te, meaning there will be |M | times Ge’s

19:

20:

21: procedure LAT (u, d) . returns ancestor of u at depth d
22: if depth[u] < d then
23: return false

24: else if depth[u] = d then
25: return u

26: ladderi ← a[u] . ladderi corresponds to e.g. C3

27: while depth[ladder[top]] > d do . a top pointer can be created easily
28: u ← ladder[top]

29: ladderi ← a[u]

30: distance ← depth[u]−d
31: return ladder[i-distance]

Consider we are at a vertex of height h (remember height is the number of vertices
between the vertex and its deepest descendant). Then we can travel up to the top and
reach a vertex of height at least 2 · h (except we reach the root, but in this case, the
needed ancestor is certainly in the current ladder).
The worst case would be, that we start at a ladder consisting of 2 vertices, i.e. it had
one vertex v before being extended by its ancestor u. v is without a doubt a leaf and
has height 1. We go to the top of v’s ladder and get u, height(u) = 2. If we jump to u’s
ladder and travel to its top we certainly reach a node x with height(x) ≥ 4, since u can
only be in the lower half of its ladder.
I.e. if u is the top of the ladder before it got extended and the ladder had h elements,
then the ladder has currently 2h elements and the top node x has
height(x) = 2 · height(u). This implies that we reach a node of height at least 2i after
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we jumped i ladders which gives us a query time complexity of O(log2(n)).
In the preprocessing part, we choose a longest root-leaf path and remove it from the

tree. To find the longest root-leaf path we create a child array which contains for every
node a child of maximal height which can be done in O(n) by e.g. checking the height
of the children for each node (Note it’s a tree, so #edges = n− 1 and the total nodes to
be checked is done in O(n)). The height array can be filled e.g. by starting at a leaf,
which has height 1, and going up to the last unvisited ancestor and each time we set
height(current node) = height(previous node)+1. The extending is done by following
the parent array.

All together it makes the Ladder Algorithm an 〈O(n), O(log2(n))〉 algorithm.

2.4 Ladder-JumpPointer combination

The idea is to use only one jump-pointer that transports us halfway to the needed
ancestor and then climb up one ladder. Therefore we have to do both preprocessing
which needs time O(n · log2(n)).

For the query LAT (u, d) = x we define δ := depth(u)− d, the distance between u and
x. With the jump-pointer we can reach the 2blog2(δ)c-th ancestor v (shown in subsection
2.3) which means that height(v) = 2blog2(δ)c (a 2k-th ancestor of a node has 2k

descendants) and that we can travel up at least halfway to x. From the Ladder
Algorithm we know that v’s ladder has at least 2 · 2blog2(δ)c elements. We also know that
x can be at most 2blog2(δ)c elements away from v, so x must be in v’s ladder.

In total it’s a 〈O(n · log2(n)), O(1)〉 algorithm.

3 The Macro-Micro-Tree Algorithm

In this section, we want to improve the preprocessing of the Ladder-JumpPointer
combination to O(n). Based on the observation that we don’t need jump pointers of a
vertex u, if a descendant vertex v of u has jump pointers because
LAT (u, d) = LAT (v, d) ∀d ≤ depth(u), we would intuitively say, let’s only assign jump
pointers to the leaves. But this only speeds up the case where the tree has
O(n/ log2(n)) leaves. So the idea now is to assign jump pointers to O(n/ log2(n)) nodes
which cover as much of the tree as possible. To make it easier, we introduce the terms
jump node, macro node, micro node.

Definition 5. Since we do not assign jump pointers to all the vertices but few, we call
the ones having jump pointers jump nodes. For n = #vertices in the tree, jump nodes
satisfy following two properties:

1. Each jump node has at least log2(n)/4 descendants (note that the node itself is
also a descendant).

2. Every child of a jump node has fewer than log2(n)/4 descendants.

The log2(n) is there in order to bound the number of jump nodes to O(n/ log2(n)) and
the factor 1

4
will play a role for the performance which we will see later.
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Definition 6. Any ancestor of a jump node, including the jump node itself, is defined
as a macro node. Together they build one big macrotree.

Definition 7. Any node that isn’t a macro node is a micro node. They build several
connected components. We call such a connected component of micro nodes a
microtree (a single node can also be a microtree).

Example 5. Here we have a rooted tree T with 25 = 32 vertices. The green ones are
the jump nodes, in total 6 ≤ n/ log2(n) = 6.4. Each of them has at least
log2(n)/4 = 5/4 = 1.25 descendants (each of them has at least 2 descendants, because
we have to round up) and each child of a jump node has strictly less than 1.25
descendants (every child has 1 descendant, namely itself). The 12 yellow nodes are
micro nodes building 12 microtrees. The jump nodes, which are also macro nodes, build
with the blue ones, which are only macro nodes, the macrotree of T.
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Claim 1. We can solve the LevelAncestorProblem for macro nodes in 〈O(n), O(1)〉.

Proof. First, we have to create the (extended) ladders for the given tree T . This
happens as seen before in O(n). The jump nodes can be found using a descendant

array, which contains the number of descendants for each node and can be filled
similarly as the height array in subsection 2.3 at the end. Once we have them, we need
to create the jump pointers. For this we use the ladders which gives us O(log2(n)) time
for each jump node. Since there are only O(n/ log2(n)) jump nodes, we get a time
complexity of O(n) for preprocessing.
For queries we create a jumpDesc array, which can be filled with a DFS visit. Each entry
i contains one jump node which is descendant of node i. Since LAT (u, d) = LAT (v, d)
∀d ≤ depth(u) and ∀v is descendant of u, we can compute LAT (u, d) by computing
LAT (jumpDesc(u), d) the way shown in subsection 2.4 in time O(1).

Now we know how to compute LAT (u, d) for u is a macro node. If u is a micro node
we must do something else. In fact we are going to apply the Table Algorithm on each
micro tree and to keep the preprocessing complexity at O(n) we show that there are
only O(

√
n) possible shapes of a microtree.

Claim 2. Microtrees come at most
√
n shapes.
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Proof. Consider m = #edges in a microtree, then m < log2(n)/4− 1, because a
microtree has fewer than log2(n)/4 vertices and a tree has |E| = |V | − 1 edges. Let an
up edge be an edge traversed from child to parent in the DFS and a down edge an edge
traversed from parent to child. Then a microtree’s shape can be completely described
by up and down edges.
Let 0 represent a down edge and 1 an up edge. A microtree’s shape can now be
represented as a bit-string of length 2m and the number of possible permutations is
22m < 22(log2(n)/4−1) ≤ 2log2(n)/2 =

√
n

Example 6. Consider this microtree and DFS-order: 0, 1, 2, 3, 4, 5. Then the bit-string
representing it would be: 0, 0, 1, 0, 1, 1, 0, 0, 1, 1.
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The Algorithm. The preprocessing for the macro nodes works as described before in
proof of claim 1, additionally a set M:= set of all macro nodes can be created by adding
all nodes having at least log2(n)/4 descendants to M . The step is done while we search
the jump nodes.
For micro nodes we must first build the micro trees which is done by starting several
DFS’, where we also set pointers to the roots of the microtrees (for the creation of
tables). The DFS’ will tell us which nodes are connected, i.e. which nodes build a
microtree. We make for each microtree a set containing the tree’s nodes. During those
DFS’ we construct the bit-strings that represent the microtree shapes. After a bit-string
is built, we assign it to the shape, enumerate the shapes and create a table for each
shape.
Since a microtree has size less than log2(n)/4 and there are O(

√
n) shapes (claim 2), the

complexity is O(
√
n · log2(n)2) = O(n).

For a query LAT (u, d) we have to determine if u is a macro or a micro node by
checking if u ∈M . If it’s a macro node we can find the right ancestor in O(1) described
in proof of claim 1.
If u is a micro node, we look in which microtree-set it is, check up the microtree’s shape
(the corresponding bit-string) and search the ancestor in the corresponding table (We
can create a mapping between the node numbers of the microtree and those of the
shape table) in constant time, if the ancestor is in the microtree, that is
depth(root of microtree) ≤ d.
Else (i.e. depth(root of microtree) > d) the wanted ancestor is a macro node and
outside of the microtree. In this case we can look up the parent of the microtree’s root
which is a macro node and proceed like before when we described the query for macro
nodes.

Summing up, the total time complexity to solve the Level Ancestor Problem is
〈O(n), O(1)〉 for the Macro-Micro-Tree Algorithm.
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4 Feedback on the Paper

The paper ”The Level Ancestor Problem simplified” by Michael A. Bender and
Martin Farach-Colton is quite well structured. It starts with an introduction telling us
the structure of the paper and what the goal of each section is, then proceeds with
important definitions, necessary algorithms which combined build the last algorithm
having the best time complexity. However, the main focus was on the time complexity,
such that the space complexity was never relevant, though it’s certainly bounded by the
time complexity. Also the proofs are quite poor, especially when it comes to
implementation. Hardly an algorithm’s implementation is well described. There are
only proofs about the fact that it is possible to run the algorithms in the given time
complexity, but not e.g. how it is done in pseudo-code. In spite of everything the
descriptions are sufficient to understand how the algorithms work.
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