
Highway Dimension, Shortest Paths,
and Provably Efficient Algorithms

Mathis Först

November 2, 2018

1 Introduction

Finding a shortest path between two nodes in a graph G(V,E) is a common problem.
The common way to solve this is Dijkstras Algorithm which has a running time of
O(|V | log |V | + |E|). If we think of navigation in road networks this is too slow since
the road networks of Europe or North America each consist of tens of millions of inter-
sections (which are nodes in the corresponding graph).
To make navigation fast even on slow mobile devices we can exploit the fact that road
networks do not change very often. Therefore we can spend some time (in the magnitude
of hours) to perform preprocessing operations on the graph. The additional information
will help to perform path queries much faster.
We will see the method of contraction hierarchies to speed up path queries. Then we
will introduce the property ’highway dimension’ of a graph. Finally we will use these
highway dimensions to prove the performance of a slightly adapted variant of contraction
hierarchies.

2 Basic Definitions

We use the following notations:
For a graph G = (V,E)

• n = |V |

• m = |E|

• w(e) the weight of an edge e ∈ E

• P (u, v) is a shortest path between the nodes u and v

• D = maxu,v∈V (P (u, v)) is the diameter of the graph, the longest shortest path

• Bu,r is a ball with radius r around the node u, the set of nodes S = {v ∈ V |
|P (u, v)| ≤ r}

• ∆ is the maximum degree of a node of a graph

1

(a) Original Graph G (b) G after shortcutting node E

Figure 1: Shortcuts

2.1 Shortcuts

The idea behind a shortcut is to remove a node v from the graph without destroying
shortest paths going through v.

Definition 1 (Shortcut). The shortcut operation deletes a vertex v from G. For every
pair of neighbors of v {u,w} where (u, v) · (v, w) is the shortest path between u and w, the
edge (u,w) with the weight l(u,w) = l(u, v) + l(v, w) is added to the graph.

We have a short look at the example in Figure 1. We want to shortcut node E. Since
the shortest paths P (A,C) and P (A,B) go through E we add the corresponding shortcut
edges. The shortest path P (B,C) does not go through E. Therefore no shortcut edge is
necessary.

3 Contraction Hirarchies (CH)

The basic idea behind contraction hierarchies is pretty simple. We will use a shortest
path algorithm ehich is very similar to Dijkstras algorithm. To speed up the query we do
not visit all neighbours of a node when we scan the node but only specific ones. Of course
we can not just ignore random nodes since this could end in a wrong result. Therefore
use the following preprocessing and pathfinding strategies.

3.1 CH Preprocessing

The basic idea of the preprocessing is building a hierarchy over all nodes and then shortcut
them from lower to higher hierarchy levels until only one node is left. All the shortcut
edges E+ which were generated by this process are then added to the original graph so
that we perform the path query finally on G = (V,E ∪ E+).
For the first attempt we use the following simple hierarchy on the nodes: Every node v
gets a random unique rank rank(v). In the hierarchy a node v has a higher level than a
node u iff rank(v) > rank(u).

2

3.2 CH Pathfinding

To find a shortest path in the augmented graph we use a bidirectional variant of Dijkstras
Algorithm. The basic idea is to look for shortest paths from the start node s and the end
node t in parallel until the two searches meet somewhere in the middle.
To do this we have to maintain a separate priority queue for both searches to know which
node should be scanned next. To decide which node is scanned next, we take the element
from queue where the top element has the shorter path length. In that way our search
stays balanced. This means the circles of scanned nodes around s and t keep having
approximately the same radius while they grow during the search.
The trick in CH is the following: When scanning a vertex v we only consider neighbors
w with rank(w) > rank(v). In that way we do not have to scan all vertices and can save
computing time. Since we have chosen an arbitrary hierarchy the performance may vary
a lot.
The modified Dijkstra-search terminates when both queues are empty. But at this point
we do not have our final result.
We define ds(u) as the shortest path from the startpoint s to u found by the previous
search. Similar dt(u) is the distance from the endpoint t to u.
After the search completed we can or can not have ds(u) or dt(u) for each node u.
The shortest path P (s, t) goes through the node u that minimizes the path length ds(u)+
dt(u) and is given by the concatenation P (s, u) · P (u, t).

Let’s do this in the example of Figure 2:
We use the following preprocessed graph. The node hierarchy is given by the alphabetical
ordering (e.g rank(A) < rank(B)). All edges added during preprocessing are drawn in
green. The start and end nodes are marked in yellow. Note that the two green edges on
the right were added during the shortcutting of node A and the edge (D,E) was added
during the shortcutting of node C.
We want to find a shortest path from B to D. So we start the search at both nodes. We

Figure 2: Preprocessed Graph

3

get the following distances:

dD(D) = 0

dB(B) = 0

dD(E) = 2

dB(C) = 2

dD(F) = 3

dB(D) = 3

dB(E) = 3

dB(F) = 3

(1)

The vertices which were reached from both searches are D,E, F . The minimum distance
is reached using node D and is 3. Note that node A is not scanned during the search.

3.3 Why do CH work?

Now we have to find out why this algorithm calculates correct results:
We have a closer look at the point in our example where the algorithm scans node B. In
the original graph the shortest path from B to C, P (B,C), goes through node A. We are
not allowed to use node A since rank(A) < rank(B). But in the preprocessing we added
the edge (B,C) when we shortcutted node A with the right weight such P (B,C) still has
the same length.
That is why the algorithm produces the correct results. If a shortest path goes through
a node of a lower hierarchy level, a shortcut edge was added during preprocessing.
The performance is dependent on the hierarchy of the nodes. Choosing it arbitrarely is
obviously not the best thing we can do since we can always construct an example where
still all nodes of the graph are scanned during the path query.
In practice different metrics are used to get well performing node hierarchies. E.g. we
could prefer nodes for shortcutting where we can add the most shortcut edges. Edged
difference means that we prefer to contract the nodes where we can add the most shortcut
edges (called edge difference). Another good idea is to make sure that a node v which
is shortcutted directly after node u is geographically far away from u. This keeps the
hierarchy levels balanced over the whole map [1].

3.4 Measured Performance of CH

If you choose the right metrics you end up with a preprocessed graph of the European
road network with 18 million nodes where an average path search visits less than 400
nodes!
That is pretty impressing, but these results were generated by running many random
queries on one special graph (the European roads).
Since this is not a proof of the performance of the algorithm, we will now see some
properties of a graph which enable us to prove the performance of a slightly modified
CH-algorithm.

4

4 Highway Dimensions

We know that nearly all sufficiently long routes in road networks include highways. Since
highways have few intersections (compared to other road types) they can be represented
by few nodes in a graph representing the road network. Therefore we can say that most
shortest paths in a road network pass through a small set of nodes.
The aim of highway dimensions is to quantify this property: We define the highway di-
mension of a graph to be the smallest number h such that for every distance r and every
ball Bu,4r with radius 4r around any node u the following property holds: All shortest
paths connecting two nodes in this ball which have a length of at least r can be covered
by a set of nodes S which contains at most h elements.

Definition 2 (Highway Dimension). Given a graph G = (V,E), its highway dimension
is the smallest number h such that

∀r ∈ R+,∀u ∈ V, ∃S ⊆ Bu,4r, |S| ≤ h, s.t.

∀v, w ∈ Bu,4r

if |P (v, w)| > r and P (v, w) ⊆ Bu,4r then P (v, w) ∩ S 6= ∅

4.1 Shortest Path Covers (SPC)

The highway dimension of a graph is basically just a single number. We are now interested
in sets of nodes with special properties.
We define a shortest path cover (SPC) as a set of nodes C which covers all shortest paths
with length between r and 2r. In addition we want an SPC to be sparse in the sense that
the size of any intersection between C and any ball of radius 2r is at most k. SPCs have
the two parameters r and k and we denote them therefore (r, k)-SPC.

Definition 3 (Shortest Path Cover). A set C is an (r, k)-SPC of G iff ∀u ∈ V, |C ∩
Bu,2r| ≤ k and ∀ shortest path P : r < |P | ≤ 2r, P ∩ C 6= ∅

4.2 Highway Dimension implies SPC

Theorem 1. If a graph G has highway dimension h then there exists for any distance r
an (r, h)-SPC of G.

Proof. Let S∗ be the smallest set that covers all shortest paths P with r < |P | ≤ 2r.
We now prove by contradiction that S∗ is an (r, h)-SPC: Assume there is a node u with
U = S∗ ∩ Bu,2r and |U | > h. By the definition of h there exists a set H with |H| ≤ h
covering all shortest paths P ′ in Bu,4r with |P ′| > r and therefore obviously all paths P
with r < |P | ≤ 2r covered by U . We see that (S∗ − U) ∪H is smaller than S∗ and still
covers all shortest paths P with r < |P | ≤ 2r. This contradicts the optimality of S∗ and
completes the proof.

5

5 Modified CH

We now use the fact that given a graph with a fixed highway dimension h we can construct
an (r, h)-SPC for any r to modify the CH-algorithm and prove the performance.

5.1 Preprocessing

We do not use an arbitrary hierarchy for the nodes anymore but build a special one by
using a sequence of shortest path covers:
Let S0 = V and for 1 ≤ i ≤ logD let Si be an (2i, h)-SPC. Let Li = Si −

⋃logD
j=i+1 Sj

In our hierarchy every node from Li comes before Li+1. The order within each Li is
arbitrary. We break the uniqueness of rank(v) and set the rank of every node in the set
Li to i.
Now we shortcut the nodes in that order like before starting with the nodes from L1.
For every node v we create the shortcut edges. Now we have to take care to destroy
no shortest paths: Since we allowed nodes on the same hierarchy level, we have to add
additional edges to ensure that a shortest path which goes through multiple points of the
same hierarchy level can still be found.
Therefore when we shortcut a node v ∈ Li for every pair u,w ∈ Bv,2i+1 where v ∈ P (u,w)
we add another edge (u,w) with length |P (u,w)|.
This gives us again the preprocessed graph G+ = (V,E ∪ E+).

5.1.1 Bounds of the number of added edges

The first important thing to prove the performance of queries on G is the upper bound
for the number of edges from a node to higher and lower hierarchy levels.

Figure 3: Bound on the number of edges

6

Theorem 2. If v ∈ Li, the number of edges (v, w) to a node in a fixed higher hierarchy
level Lj 3 w with j ≥ i is at most h.

Proof. (v, w) is the shortcut of a shortest path P in the original graph. Since (v, w) ∈ Li

all the internal vertices of the path have to been shortcut before v and w. Therefore these
internal vertices have to be on lower (or the same) hierarchy levels Lx with x ≤ i ≤ j.
Also w has to be in the ball Bv,2·2j . Otherwise |P | would be greater than 2 · 2i which can
not be true since P does not contain a vertex from a higher hierarchy level than j, but
all shortest paths longer than 2 · 2j have to be covered by at least one vertex of Ly with
y > j. Since Bv,2·2j can contain at most h vertices from Lj (by the definition of an SPC)
the proof is completed.

We can prove the same for connections to lower hierarchy levels in a similar way.
Therefore we can bound the degree of the vertices in the preprocessed graph G+ to
∆ +h logD since we have logD hierarchy levels and a node can be incident to at most ∆
edges from the original graph.
Also the number of edges added during the preprocessing can be bounded: |E+| ∈
O(nh logD).

5.2 Reach

The last definition we need is reach.

Figure 4: Reach of node v is 2

Definition 4 (Reach). The reach of a node v with respect to a shortest path P which is
divided by v into P1 and P2 is rP (v) = min(|P1|, |P2|). The reach of a node is r(v) =
maxP∈p(v) rP (v).

In Figure 4 we see 3 shortest paths (P (s1, t1), P (s2, t2), P (s3, p3)) through the node v.
The shorter half of each path is marked in green. The reach of the node v is the length
of the longest green segement which is 2.

7

Theorem 3. In the preprocessed Graph G+ for any v ∈ Li holds r(v) ≤ 2 · 2i.

Proof. For this proof we refine our definition of a shortest path: If there are shortest paths
with minimal length between two nodes u and v only the ones with the minimum number
of contained nodes are considered as shortest paths.
We prove the theorem by contradiction: Assume that r(v) > 2 · 2i. By definition of r(v)
there has to be a shortest path P (x, y) in G+ with

1. P contains v

2. the subpath P1 from x to v and the subpath P2 from v to y are both longer than
2 · 2i.

P1 and P2 must both contain vertices u ∈ Lj with j > i since they are shortest paths with
length > 2 ·2i. Among these let u1 and u2 be the nodes closest to v on these paths P1 and
P2 respectively. This implies that all vertices on P between u1 and u2 (including v) are
shortcut before u1 and u2 since they are on a lower hierarchy level. Therefore we know
that (u1, u2) is a shortcut edge in G+. With this edge we can construct a new shortest
between x and y which contains fewer nodes than P (x, y) (at least v will not be in the
new path). This contradicts that P (x, y) is shortest path.

5.3 Query Processing Time

What is the processing time of a shortest path query from s to t?
For the forward search we look at the ball Bs,2·2i : The search will not scan any vertex
v ∈ Li which is not inside this ball. This holds because r(v) ≤ 2 · 2i but |P (s, v)| > 2 · 2i.
Therefore v will be scanned either by the backward search or not at all.
Since 1 ≤ i ≤ logD and there are at most k vertices in Bs,2·2i , the forward search will scan
at most O(k logD) vertices. A similar argument holds for the backward search therefore
we scan in total O(k logD) vertices.
If we scan a vertex we have to look at all of its neighbours. Since the maximum degree
(which is the number of neighbours) of every vertex is ∆ + h logD (see Theorem 2), the
whole processing time is in O((∆ + h logD)(h logD)).

6 Remarks

6.1 Polynomial preprocessing time

In the calculations we ignored the processing time for the SPCs which is exponential for
(h, r)-SPCs. If we want polynomial processing time, we get only (h log n, r) SPCs, which
increases the whole processing time a bit.

6.2 Data structure overhead

We also ignored the overhead for the data structure in the Dijkstra search. We could use
a Fibonacci Heap. Since we scan O(k logD) vertices we get an additive extra term of
O(k logD log n).

8

7 Outlook

We used the notion of highway dimensions to prove the performance of a CH algorithm.
The paper also shows proofs for the performance of other pathfinding algorithms.
The problem with highway dimensions is that it is nearly impossible to compute them
for a big graph like a real world road networks since the computation is probably NP-
hard. The paper tackles this problem by introducing a model of the formation of road
networks and calculating its highway dimension. The model is build on top of the following
assumptions:

1. Roads are built incremental and in a local manner. This means that road building
is a decentralized and on-line process.

2. The geometric space in which roads exist has a low dimension.

3. Longer roads are typically faster than shorter ones. This means that highways have
shorter traversal times per kilometer than local roads.

A road network which is built onto these has a provable constant highway dimension.
Of course this model is not perfect but it gives a first intuition why the real world road
networks have a low highway dimension.

8 Conclusion

We saw how to compute a shortest path without scanning the whole graph using CH. E.g
this makes it possible to perform path queries on big road networks on mobile devices.
We also saw highway dimensions to actually prove the performance of CH. In general
highway dimensions enable us to prove the performance of a whole group of path finding
algorithms.

References

[1] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster
and simpler hierarchical routing in road networks, pages 319–333. WEA, 2008.

9

