
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 04. November 2019
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler

Algorithms & Data Structures Exercise sheet 7 HS 19

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 11 November 2019, hand in your solution to your TA before the exercise
class starts. Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus
points.

Exercise 7.1 Longest Ascending Subsequence.

�e longest ascending subsequence problem is concerned with �nding a longest subsequence of a given
array A of length n such that the subsequence is sorted in ascending order. �e subsequence does not
have to be contiguous and it may not be unique. For example if A = [1, 5, 4, 2, 8], a longest ascending
subsequence is 1, 5, 8. Other solutions are 1, 4, 8, and 1, 2, 8.

Given is the array:

[19, 3, 7, 1, 4, 15, 18, 16, 14, 6, 5, 10, 12, 19, 13, 17, 20, 8, 14, 11]

Use the dynamic programming algorithm as described in class or the script to �nd the length of a
longest ascending subsequence and the subsequence itself. Show all necessary tables and information
you used to obtain the solution.

Solution: �e solution is given by a one-dimensional DP table that we update in each round. A�er
round i, the entry DP [j] contains the smallest possible endvalue for an ascending sequence of length
j that only uses the �rst i entries of the array. In each round, we need to update exactly one entry. If
there is no ascending sequence of length j, we mark it by “-” . In order to visualise the algorithm, we
display the table a�er each round. Note that the algorithm does not create a new array in each round,
it just updates the single value that changes



length 1 2 3 4 5 6 7 8 9

round 1 19 - - - - - - - -
round 2 3 - - - - - - - -
round 3 3 7 - - - - - - -
round 4 1 7 - - - - - - -
round 5 1 4 - - - - - - -
round 6 1 4 15 - - - - - -
round 7 1 4 15 18 - - - - -
round 8 1 4 15 16 - - - - -
round 9 1 4 14 16 - - - - -
round 10 1 4 6 16 - - - - -
round 11 1 4 5 16 - - - - -
round 12 1 4 5 10 - - - - -
round 13 1 4 5 10 12 - - - -
round 14 1 4 5 10 12 19 - - -
round 15 1 4 5 10 12 13 - - -
round 16 1 4 5 10 12 13 17 - -
round 17 1 4 5 10 12 13 17 20 -
round 18 1 4 5 8 12 13 17 20 -
round 19 1 4 5 8 12 13 14 20 -
round 20 1 4 5 8 11 13 14 20 -

�e longest subsequence has length 8, since this is the largest length for which there is an entry in the
table a�er the �nal round. To obtain the subsequence itself, we work backwards:�e last entry is 20. To
get the second-to-last value, we check out the le� neighbour of 20 in the round in which 20 was entered
(round 17), which is 17. �en we go the le� neighbour of 17 in the round in which it entered the table
(round 16), and obtain 13. Continuing in this fashion, we obtain the sequence 1, 4, 5, 10, 12, 13, 17, 20.

Exercise 7.2 Longest Common Subsequence.

Given are two arrays, A of length n, and B of length m, we want to �nd the their longest common
subsequence and its length. �e subsequence does not have to be contiguous. For example, if A =
[1, 8, 5, 2, 3, 4] and B = [8, 2, 5, 1, 9, 3], a longest common subsequence is 8, 5, 3 and its length is 3.
Notice that 8, 2, 3 is another longest common subsequence.

Given are the two arrays:
A = [7, 6, 3, 2, 8, 4, 5, 1]

and
B = [3, 9, 10, 8, 7, 1, 2, 6, 4, 5],

Use the dynamic programming algorithm as described in class or the script to �nd the length of a
longest common subsequence and the subsequence itself. Show all necessary tables and information
you used to obtain the solution.

2



Solution: As described in the lecture, DP [i, j] denotes the size of the longest common subsequence
between the strings A[1 . . . i] and B[1 . . . j]. Note that we assume that A has indices between 1 and 8,
so A[1 . . . 0] is empty, and similarly for B. �en we get the following DP-table:

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1 1 1 1

2 0 0 0 0 0 1 1 1 2 2 2

3 0 1 1 1 1 1 1 1 2 2 2

4 0 1 1 1 1 1 1 2 2 2 2

5 0 1 1 1 2 2 2 2 2 2 2

6 0 1 1 1 2 2 2 2 2 3 3

7 0 1 1 1 2 2 2 2 2 3 4

8 0 1 1 1 2 2 3 3 3 3 4

To �nd some longest common subsequence, we create an array S of lengthDP [n,m] and then we start
moving from cell (n,m) of the DP table in the following way:

If we are in cell (i, j) and DP [i− 1, j] = DP [i, j], we move to DP [i− 1, j].

Otherwise, if DP [i, j − 1] = DP [i, j], we move to DP [i, j − 1].

Otherwise, by de�nition ofDP table,DP [i− 1, j − 1] = DP [i, j]− 1 and A[i− 1] = B[j − 1], so we
assign S[DP [i− 1, j − 1]]← A[i− 1] and then we move to DP [i− 1, j − 1].

We stop when i = 0 or j = 0.

Using this procedure we �nd the following longest common subsequence: S = [7, 6, 4, 5].

Exercise 7.3 Tinder Don*na Juan*a (1 Point).

You registered on Tinder and you got a lot of matches (you may assume that you have an endless
amount of matches). Now, you would like to create a schedule for your dates. You don’t date more than
one person per day. Further, the day a�er having a date you always tell your best friend how it went
and, thus, do not have time for a date on that day.

You tell your best friend about your success on Tinder and that you are trying to �nd a nice schedule
for your dates. Your best friend challenges you to enumerate all possible date-schedules for the next T
days. A schedule consists of T entries, where the i-th entry contains whether you have a date on this
day or not.

Use dynamic programming to determine the number of di�erent date-schedules under your constraints.

Hint: In order to achieve full points your algorithm should solve this problem usingΘ(T ) time andmemory.

Address the following aspects in your solution:

1. De�nition of the DP table: What are the dimensions of the table DP [. . .]? What is the meaning of
each entry?

2. De�nition of the DP table: What is the meaning of each entry?

3



3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Dimensions of the DP table: �e DP table is linear, its size is T .

De�nition of the DP table: DP [i] contains the number of possible shedules if there are i days.

Calculation of an entry: Initialize DP [1] to 2: you can either have a date on day 1 or not. Initialize
DP [2] to 3: you can have date on the �rst day or on the second day or don’t have dates.

An entry i > 2 can be calculated as follows: DP [i] can be calculated by adding up the number of
possible shedules if you have a date on day i plus the number of possible shedules if you do not have a
date on day i.

If you don’t have a date on day i, this places no restriction on the shedules, so the number of possible
shedules in this event is DP [i − 1]. If you have a date on day i, you can’t have a date on day i − 1.
We’ve placed a restriction on day i−1 and i but not on any days before that, so the number of possible
schedules in this case is equal to DP [i− 2].

Hence DP [i] = DP [i− 1] + DP [i− 2].

Calculation order: We can calculate the entries of DP from smallest to largest.

Reading the solution: All we have to do is read the value at DP [T ].

Running time: Each entry can be computed in time Θ(1), so the running time is Θ(T ).

Remark 1. �e running time is Θ(T ) only if we work with unit cost model, where arithmetic ope-
rations cost Θ(1). Notice that in order to compute the k-th entry of the DP table we should add two
Θ(k)-digit numbers, and in practice we need Θ(k) time to do it. Hence in more realistic computational
model the running time of the algorithm described above is Θ(n2).

Remark 2. It is easy to prove inductively that DP [i] = Fibi+2 is the i + 2-nd Fibonacci number.
�erefore, it is also possible to solve the problemwithout dynamic programming, by computing directly

DP [T ] = FibT+2 =
1√
5

(1 +
√

5

2

)T+2

−

(
1−
√

5

2

)T+2
 .

In fact, by iterated squaring, this is possible withO(log T ) �oating point operations. However, Remark
1 still applies: DP [T ] is a Θ(T )-digit number, so even to output the result one actually needs Ω(T )
time. Moreover, one would need to think about the �oating point decision that is needed so that the
result is correctly rounded.

Exercise 7.4 Longest Snake (2 points).

4



You are given a game-board consisting of hexagonal �elds F1, . . . , Fn. �e �elds contain natural num-
bers v1, . . . , vn ∈ N. Two �elds are neighbours if they share a border. We call a sequence of �elds
(Fi1 , . . . , Fik) a snake of length k if, for j ∈ {1, . . . , k − 1}, Fij and Fij+1 are neighbours and their
values satisfy vij+1 = vij + 1. Figure 1 illustrates an example game board in which we highlighted the
longest snake.

For simplicity you can assume that Fi are represented by their indices. Also you may assume that you
know the neighbours of each �eld. �at is, to obtain the neighbours of a �eld Fi you may call N (Fi),
which will return the neighbours N (Fi) = {Fj1 , . . . , Fj6}. Each call of N takes unit time.

a) Provide a dynamic programming algorithm that, given a game-board F1, . . . , Fn, computes the
length of the longest snake.

1

2

3

3

4

5

6 7 8

1211

10

10 9

11 2

20

21

9

6

1312

1

5

Figure 1: Example of a longest snake.

Hint: In order to achieve full points your algorithm should solve this problem using O(n log n) time,
where n is the number of hexagonal �elds.

Address the following aspects in your solution:

(a) De�nition of the DP table: What are the dimensions of the table DP [. . .]? What is the meaning
of each entry?

(b) De�nition of the DP table: What is the meaning of each entry?

(c) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

(d) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

(e) Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

(f) Running time: What is the running time of your solution?

Dimensions of the table: �e DP table is linear, its size is n.

Meaning of a table entry (in words): DP [i] is the length of the longest snake with head Fi (that
is, the length of the longest snake of the form (Fj1 , . . . , Fjm−1 , Fi)).

5



Computation of an entry (initialization and recursion):

DP [i] = 1 + max
Fj∈N (Fi)
vj=vi−1

DP [j].

�at is, we look at those neighbors of Fi that have values vj smaller than vi exactly by 1, and choose
the maximal value in the DP table among them. If there are no such neighbors, we assume that max
in this formula is 0.

Order of computation: We �rst sort the hexagons by their values. �en we �ll the table in ascen-
ding order, that is, i1, . . . , in such that vij ≤ vij+1 for all j = 1, . . . n− 1.

Computing the output: �e output is max
1≤i≤n

DP [i].

Running time: We compute the order in time O(n log n) by sorting v1, . . . , vn. �en each entry
can be computed in timeO(1) and �nally we compute the output in timeO(n). So the running time
of the algorithm is O(n log n).

b) Provide an algorithm that takes as input F1, . . . Fn and a DP table from part a) and outputs the
longest snake. If there are more than one longest snake, your algorithm can output any of them.
State the running time of your algorithm in Θ-notation in terms of n.

Solution:At the beginningwe �nd a head of a snake that is someFj1 such thatDP [j1] = max
1≤i≤n

DP [i].

If DP [j1] 6= 1, we look at its neigbours and �nd some Fj2 such that DP [j2] = DP [j1] − 1. If
DP [j2] 6= 1, then among neighbors of Fj2 we �nd some Fj3 such that DP [j3] = DP [j2] − 1 and
so on. We stop when DP [jm] = 1 (where m is exactly the length of the longest snake). �en we
output the snake (Fj1 , . . . , Fjm).

�e running time of this algorithm is Θ(n), since we use Θ(n) operations to �nd Fj1 and we need
Θ(1) time to �nd each Fjk for 1 < k ≤ m ≤ n and Θ(m) time to output the snake.

c)∗ Find a linear time algorithm that �nds the longest snake. �at is, provide an O(n) time algorithm
that, given a game-board F1, . . . , Fn, outputs the longest snake (if there are more than one longest
snake, your algorithm can output any of them).

Solution:Wecan use recursionwithmemorization. Similar to part a), wewill �ll an arrayS[1, . . . , n]
of lengths of longest snakes, that is, S[i] is the length of the longest snake with head Fi. Consider
the following pseudocode:

Algorithm 1 Fill-lengths(v1, . . . , vn)

S[1], . . . , S[n]← 0, . . . , 0
for i = 1, . . . , n do

if S[i] = 0 then
Move-to-tails(i, S, v1, . . . , vn)

return S

where the procedure Move-to-tails(i, v1, . . . , vn) is:

6



Algorithm 2Move-to-tails(i, S, v1, . . . , vn)

for Fj ∈ N (Fi) do
if vj = vi − 1 and S[j] = 0 then

Move-to-tails(j, S, v1, . . . , vn)

S[i] = 1 + max
Fj∈N (Fi)
vj=vi−1

S[j]

As in part a), we assume that max over the empty set is 0. A�er we �ll S, we can use the same
algorithm as in part b) to �nd a longest snake (we should replace DP by S in the description of
that algorithm).

Note that it is important that we do not make a copy of S each time when we call Move-to-tails (so
if we implement this algorithm in a real programming language, we should pass S by reference or
by pointer).

�e running time is linear in n since for each i ∈ {1, . . . , n} we call Move-to-tails(i, S, v1, . . . , vn)
exactly once. Let’s denote the running time of Move-to-tails(i, S, v1, . . . , vn) by T [i]. We have

T [i] =
∑
j∈Ri

(
T [j] + Θ(1)

)
+ Θ(1) =

∑
j∈Ri

T [j] + Θ(1),

whereRi is the set of j such that Move-to-tails(j, S, v1, . . . , vn) is called in the for-loop during the
execution of Move-to-tails(i, S, v1, . . . , vn) (the empty sum is 0). �e total running time is

n∑
i=1

(
T [i] +

∑
j∈Ri

T [j]
)

=

n∑
i=1

Θ(1) = Θ(n).

In fact the technique that we used here is closely related to the depth-�rst search and topological
ordering of a graph. �ese topics will be studied later in this course.

7


