Eidgendssische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Zirich Federal Institute of Technology at Zurich
Departement of Computer Science
Markus Puschel, David Steurer

Technical Guide
Algorithms und Data Structures

D-INFK

This technical guides illustrates the process of setting up the Eclipse environment for code development
required for the practical programming exercises and their submission to the Judge, the automatic
online evaluation system. It provides step by step instructions using a sample Hello Judge exercise.

1 The Hello Judge Exercise

Exercise Hello Judge

Write a program such that reads from the standard input, and writes to the standard output, such that:
« If the input is “1”, then it outputs “Hello World!”
« If the input is “2”, then it outputs “Hello ETH!”

« If the input is “3”, then it outputs “Hello Judge!”

Input The input consists of a single number of the set {1, 2, 3}
Output The output consists of a single line, followed by an end-line character.

Grading 'This is not a graded exercise, and delivers no points. Submit your solution as Main. java
at https://judge.inf.ethz.ch/team/websubmit.php?cid=28784&problem=AD18TUT. The enrolment
password is “asymptotic” (excluding the quotation marks).

Example

Input:

1

Output:

Hello World!

Notes For this exercise we provide a zip bundle available at https://www.cadmo.ethz.ch/
education/lectures/HS19/DA/uebungen/AD18TUT.Hello. Judge.zip that defines the program
template that will load the input and write the output for you. The archive also contains additional
test cases (which might differ from the ones used for grading). Importing other classes is not allowed
(with the exception of the already imported java.util.Scanner class).

https://judge.inf.ethz.ch/team/websubmit.php?cid=28784&problem=AD18TUT
https://www.cadmo.ethz.ch/education/lectures/HS19/DA/uebungen/AD18TUT.Hello.Judge.zip
https://www.cadmo.ethz.ch/education/lectures/HS19/DA/uebungen/AD18TUT.Hello.Judge.zip

2 Setting up Eclipse

Step 1. Download the programming template, and unzip the code. Then launch Eclipse.

Figure 1: Eclipse logo, shown at startup of the IDE. We assume the latest Eclipse version i.e. 2019-09
at the time of writing this guide, however other Eclipse version might be compatible too.

Step 2. Once Eclipse is started, import the programming template into the IDE, using File — Import,
as illustrated on Figure

® Eclipse | File Edit Source Refactor Navigate Search Project Run Window Help

[] [] New NN | 2 eclipse-workspace - Eclipse IDE
Open File...

(mf < - 5. = =l
. Open Projects from File System... &
Recent Files = B8 [TaskList 3¢ = [m]
Close O~ &% @ ik
Close All {3 = 48

<

171 Save
™ Save As... PoAL P Activ.

% Save All

Revert
@ Connect Mylyn

Move...

g Rename...
3 Refresh S: outline 2 - =1
Convert Line Delimiters To

Connect to your task and ALM
or create a local task.

An outline is not available.

& Print...

+y Import...
1 Export...

Properties

Switch Workspace
Restart

[} Problems 3 @ Javadec Declaration) =
Oitems
Description ~ Resource Path Location Type

Figure 2: Importing the template into Eclipse (Part 1)

Step 3. Click on the General section, and choose Existing Project into Workspace. Then click Next
(Figure [3a). In the next window, click on Browse, in order to Select the root directory (Figure 3D).

Import

= Jeoe =
L= LASEAL) pemr—" =, @8
12 paceage porer 53 S s o search o axating Ecfpseprct. Buwmx =0

(a) Importing an Existing Project into Eclipse (b) Select root directory

Figure 3: Importing the template into Eclipse (Part 2)

Then navigate to the folder of the unzipped Hello Judge template, and then click Open (Figure [3a).
Once the file system address is defined in the “Select toot directory” field, click on Finish.

(a) Importing an Existing Project into Eclipse (b) Select root directory

Figure 4: Importing the template into Eclipse (Part 3)

At this point in time, we have successfully imported the template into Eclipse. Looking at the Project
Explorer tab, we can observe that the code is organized such that we have a Main. java file located
into the src folder. To illustrate the usage of the template, we also provide the solution (Figure [5).

Note that each exercise solution must be completed by writing code into the Main. java file only, such
that no other file is created. The other files in the template skeleton should not be modified, and are
provided for your convenience.

In test/files we have 3 input files, that end with the . in.txt extension, and 3 output files that end
with the .out.txt extension. The input files, define sample test cases for your program, while the
output files define the expected output. The JUnitTest.java uses the JUnit framework to simplify
and automate testing on the given sample input / output test cases.

I' Edi Source Refactor Navigate Search Project Run Window Help
ece eclip kspace - Hello. java - Eclipse IDE
= @ % A 0-Q-Q HG ®O A v e, = @
|| k& Package Explorer 52 =m Main.java 52 = B [Tasklist 52 = [m]
B < - 1= dimport java.io.; = e e
J = 2 dimpert java.util.Scanner; O % e)it
¥ HelloJudge 3 5 4
¥ B, JRE System Library [JavaSE-1.8] 4 class Main {
¥ B 5 /t) =
¥ § (default package) § 7/ The solution P oAl b Activ..
8e public static void read_and_solve(InputStream in, PrintStream out)
¥ (Btest a9
v i (default package) 10 Scanner scanner = new Scanner{in};
» [3) JunitTestjava 1 int v = scanner.nextInt();
v i files 12 switch{v) {
o1 13 case 1: out.printin("Hello World!"); break;
testDl.in.tt 14 case 2: out.printin("Hello ETH!"); break;
test0T.outtxt 15 default:
testO2.in.txt 16 out.println{"Hello Judge!"); break;
test02.out txt 17 o =
. 18 scanner.close(); 5= Outline 83 g
19 a s .
=) testoz.out.txt 20 ¥ 13w e W
» B\, Referenced Libraries 21 rt e
P (= lios 22 // Do not medify the main file, and keep the method read_and_solve v @, Main
S 23 £/ -
= HelloJudgeRun.launch s
3 HcllﬂJudgcTnsl Jaunch 248 public static void main{String[] args) { °S““‘_‘u"d—s"'w['”?“‘sm
= o 25 read_and_solve(System.in, System.out); @ " main(String[]) : void
2 r
27}
28

[2] Prodlems 52 Jar

0items
Description

Main.java - HelloJudgejsre

Figure 5: The solution to the Hello Judge exercise and file structure organization

Declaration

~ Resource

Path Location Type

Step 4. To run the code of the Hello Judge program, we right click on the HelloJudge.launch file —
Run as — HelloJudgeRun (Figure [6a). We observe that once we input “1” (followed by a new line),

the program will output “Hello World!”

in the Console tab and the execution of the program will

be completed (Figure [6b). In case the Console tab is not shown in Eclipse, click on Window — Show
View — Console to enable it.

= test03 out.tut
b B\ Referenced Libraries

> libs
loJudgeR
= HelloJudgeTest

20
21 /"
2 o - . _ . . o
23 L . 1" i file, and keep the met] @ Eclipse File Edit Source Refactor Navigate Search Project Run Window Help
New P oid main{String[] args) { * - - i -
TvetSystemin, Syscem out); e0 e | eclipse-workspace - HelloJudge/src/Main.java - Eclipse IDE
Open 3 miAd @ X B0 Q- O ®E SRR =5 &
Open With >
Show In YW > | |2 Package Explorer 53 = 0 [Manjava 8 = [l Task List 82 =g
BS - 6 /7 The solution
B Copy #C v HelloJudge - : (o
. . 8= public static void read_and_solve(InputStream in, PrintStr
&3 Copy Qualified Name » =) JRE System Library [JavaSE-1.81 9 {
[Ty Paste £ ¥ @ ere 10 Scanner scanner = new Scanner(in); -
 Delete ® vaaanfauummm u Int v jcanmer.nextint(); VALY Ao
> [5) Main java o "
13 case 1: out.println("Hello World break;
Remove from Context VB test 1 case 2: out.printin("Hello ETH!"); break;
Mark as Landmark ¥ i (default package) 15 default:
Build Path > » [3] JunitTest java 16 out.println("Hello Judge!"); break;
- 17 }
¥ B fil = Outli =
Refactor T c Bles 18 scanner.close(); GF Outline 52 8
testot.in.axt 1 ’ . N
Import... testo.outtet 20 %R W e W
Export... test02.in.txt 21 /" -
testo2.outxt 2 // Do not modify the main file, and keep the method read_:
& Refresh [test08.ntxt z_ v @ o
&R) est03.n 245 public static void main(string[] args) { © * read_and_salve(inpu
Assign Working Sets... testo3.out.txt 25 read_and_solve(System.in, System.out); ® © main(String()) : void
» = Referenced Libraries 2
Validate ¥ libs 27
@ Coverage As > HelloJudgeRun.launch 2
¥ Run As > HelloJudgeRun |5 HelloJudgeTest.launch
45 Debug As > 3] Probiems @ Javadoe [} Declaration | & Console 5 X% ZBREE 2E-8-= 0
Team > <terminated> HelloJudgeRun [Java Application] [LibrarylJ ik 1.8.0_144 Jok/C (5 0¢
Compare With > 1
Replace With > Hello World!
£, Deciaration
Properties ®’
Description ~ Resource path
B ¢

(a) Run Hello Judge

(b) Execution Completed

Figure 6: Running Hello Judge program

Note that you can manually test correctness and execution time of your program by copy pasting the
contents of the input files, and manually comparing the output with the output files.

Step 5. In order to automatically test the correctness and execution time of your program, we right
click on HelloJudgeTest.launch file - Run as — HelloJudgeTest. Once the program finishes,
and all test are completed, and correct, we should observe the following:

® Eclipse File Edit Source Refactor Navigate Search Project Run Window Help

[JoX J eclip: - Hell in.java - Eclipse IDE
- @ % H-0-%Q #HEG SO - Kl
[% Package Ex fuJunit X | = B [J] Mainjava 2 .

LB R w8

HelloJudgeTest

Runs: 3/¢E Errors: CE Failures:

¥ B UnitTest [(Runner: JUnit 4
] testHelloETH (0.012 s
filtesthielioludge (0.001 <)
£ testHelloworld (0.002 s)

// The solution
public static void read_and_solve(InputStream in, PrintStr
{

Scanner scanner = new Scanner(in);
int v = scanner.nextInt();
switch(v)
case 1: out.println("Hello World!"); break;
case 2: out.printin("Hello ETH!"}; break;
default:
out.printin{*Hello Judge!"); break;

scanner.close();

r

7

77 Do not modify the main file, and keep the method read_:
"

public static veid main(Stringl] args) {
read_and_solve(System.in, System.out);

= &
[E] Task List 52 = (m)
g %% @ %
e 9

POAL b Ac

2= outline 53 =
2R W e W
¥ @, Main
@ © read_and_solve(Inpu
© % main(String[]) : void

= Failure Trace =

Protlems Javadoc Declaration] Console 58

Test [JUnit] [Library

X% BIE
figk1.8.0_144,

gE

‘H-=8

<terminated> HelloJ

(5 Oct 2018, 1€

Figure 7: Testing Hello Judge using JUnit

3 Submitting to the Judge

Navigate to the exercise URL athttps://judge.inf.ethz.ch/team/websubmit.php?cid=28784&problem=
AD18TUT and login using your netz credentials. If necessary, enter the enrolment key “asymptotic”
(excluding the quotation marks). Select the language to be Java, and then either copy paste the code
into the text-area, or choose the Main. java file located in the src folder (Figure [8a).

[issions | [scoreboard | [problem overview |
Submissions of Student

[submissions] [scoreboard | [problem overview |

PROBLEM SCORE
New Submission PROBLEM scone AD18TUT Hello.Judge |3/3

AD18TUT Hello.Judge [0 /3 time problem lang status Summanry 3/3
Problem: AD18TUT: AD18TUT.Hello.Judge Sunmary 0/3 05.10. 16:20 AD18TUT uava comrrect

Language: Jaa B
Timelimit: 0.1 sec

Solution:

You may either cut&paste your source code or upload a file containing it.

Code: class Main {
i
i1 The solution

public static void read_and_solve(inputStream in, PrintStream out)

Seat
int

ner = new Scanner(in);
ner.nextint();

auarintint"Hello World!"); breal;
case 2: aut printin ("Hello ETHI") break;
sofault.

autarintiolHello Judge!'); break;

)
scanner.close();

n
J1Do not modify the main file, and keep the method read_and_solve

public static void main(String[] args) {
read_and_solve(System.in, System.out);

File: Choose file | No file chosen

Suomit solution

(a) Submitting code Hello Judge (b) Results

Figure 8: Using the Judge

Finally, click Submit. Once the program is evaluated on our servers, the results will be displayed
(Figure [8D). Note that it might take few seconds up to few minutes until results are displayed.

https://judge.inf.ethz.ch/team/websubmit.php?cid=28784&problem=AD18TUT
https://judge.inf.ethz.ch/team/websubmit.php?cid=28784&problem=AD18TUT

	The Hello Judge Exercise
	Setting up Eclipse
	Submitting to the Judge

