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Exercise 3.1 Counting Operations in Loops (1 Point).

For the following code fragments count how many times the function f is called. Report the number of
calls as nested sum, and then simplify your expression inO-notation (as tight and simpli�ed as possible)
and prove your result. For example, in the code fragment

Algorithm 1
for k = 1, . . . , 100 do

f()

the function f is called
∑100

k=1 1 = 100 times, so the amount of calls is in O(1).

Hint: Note that you are required to prove two parts: that theO-expression is correct, and that it is tight.
�is corresponds to an upper and a lower bound, respectively.

a) Consider the snippet:

Algorithm 2
for j = 1, . . . , n do

for k = 1, . . . , j do
f()

b) Consider the snippet:



Algorithm 3
for j = 1, . . . , n do

for l = 1, . . . , 100 do
for k = j, . . . , n do

f()
f()
f()

c) Consider the snippet:

Algorithm 4
for k = 1, . . . , n do

f()

for j = 1, . . . , n do
for k = j, . . . , n do

f()
for l = 1, . . . , j do

for m = 1, . . . , j do
f()

d) Consider the snippet:

Algorithm 5
for j = 1, . . . , n do

k ← 1
while k ≤ j do

f()
k ← 42 · k

∗e) Consider the snippet:

Algorithm 6
for j = 1, . . . , n do

for k = 1, . . . , j do
for ` = 1, . . . , k do

for m = `, . . . , n do
f()

Exercise 3.2 Solving Recurrences (1 Point).

In this exercise, we describe a technique that can be used to solve recurrences, i.e. this allows to derive
a closed form formula from a recurrence relation. Consider for example the recurrence relation

T (n) ≤ 2T (n− 1) + 1, ∀n ≥ 1. (1)
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Given T (0) = 3, we want to �nd an upper bound for T (n) that depends only on n (and not on T (n−1)).
�e idea is to repeatedly apply inequality (1) to get upper bounds in terms of T (n− 1), then T (n− 2),
and so on, at each step ge�ing closer to T (0) (which is known). In this case, expanding the recurrence
relation a few times yields

T (n) ≤ 2T (n− 1) + 1

≤ 2(2T (n− 2) + 1) + 1 = 4T (n− 2) + 3

≤ 4(2T (n− 3) + 1) + 3 = 8T (n− 3) + 7

≤ 8(2T (n− 4) + 1) + 7 = 16T (n− 4) + 15

...

We see an emerging pa�ern of the form

T (n) ≤ 2kT (n− k) + 2k − 1. (2)

Plugging k = n in (2), we get the conjecture

T (n) ≤ 2nT (0) + 2n − 1 = 4 · 2n − 1. (3)

Now that we have a guess, we can then use the base case T (0) = 3 together with the recurrence relation
(1) to actually prove (3) by induction.

a) Apply the same technique to �nd closed form formula for the following recurrence relation, and
prove by induction that your claimed formula is correct:

T (0) = 3, T (n) = 3T (n− 1)− 2 ∀n ≥ 1 .

b) Let
T (1) = 1, T (n) ≤ 4T (n/2) + 3 log2 n ∀n = 2m,m ≥ 1 .

Apply the technique described above to prove that T (n) ≤ O(n2 log n) (assuming n = 2m,m ≥ 1).

Hint: Use the fact that log2(n/2k) ≤ log2 n for all k ∈ N to simplify the formulas when you expand
the recurrence relation. Your proof should use induction onm.

Exercise 3.3 Maximum-Subarray-Di�erence (1 Point).

Consider the following problem: Given an array A ∈ Zn compute its maximum subarray di�erence,
i.e., compute

4∗ = max
1≤a≤b<c≤n

b∑
i=a

Ai −
c∑

j=b+1

Aj . (4)

a) Provide an O(n) algorithm.

b) Justify your answer:

i) Prove the correctness of your algorithm.

ii) Prove that the asymptotic runtime of your algorithm is O(n).

Exercise 3.4∗ Maximum-Submatrix-Sum.
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Provide anO(n3) time algorithm which given a matrixM ∈ Zn×n outputs its maximal submatrix sum
S. �at is, if M has some non-negative entries,

S = max
1≤a≤b≤n
1≤c≤d≤n

b∑
i=a

d∑
j=c

Mij ,

and if all entries ofM are negative, S = 0.

Justify your answer, i.e. prove that the asymptotic runtime of your algorithm is O(n3).

Hint: You may want to start by considering the cumulative column sums

Cij =

i∑
k=1

Mkj .

How can you compute all Cij e�ciently? A�er you have computed Cij , how you can use this to �nd S?
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