
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 05. October 2020
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 3 HS 20

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

�e solutions for this sheet are submi�ed at the beginning of the exercise class on October 12th.

Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

Exercise 3.1 Counting Operations in Loops (1 Point).

For the following code fragments count how many times the function f is called. Report the number of
calls as nested sum, and then simplify your expression inO-notation (as tight and simpli�ed as possible)
and prove your result. For example, in the code fragment

Algorithm 1
for k = 1, . . . , 100 do

f()

the function f is called
∑100

k=1 1 = 100 times, so the amount of calls is in O(1).

Hint: Note that you are required to prove two parts: that theO-expression is correct, and that it is tight.
�is corresponds to an upper and a lower bound, respectively.

a) Consider the snippet:

Algorithm 2
for j = 1, . . . , n do

for k = 1, . . . , j do
f()

b) Consider the snippet:



Algorithm 3
for j = 1, . . . , n do

for l = 1, . . . , 100 do
for k = j, . . . , n do

f()
f()
f()

c) Consider the snippet:

Algorithm 4
for k = 1, . . . , n do

f()

for j = 1, . . . , n do
for k = j, . . . , n do

f()
for l = 1, . . . , j do

for m = 1, . . . , j do
f()

d) Consider the snippet:

Algorithm 5
for j = 1, . . . , n do

k ← 1
while k ≤ j do

f()
k ← 42 · k

∗e) Consider the snippet:

Algorithm 6
for j = 1, . . . , n do

for k = 1, . . . , j do
for ` = 1, . . . , k do

for m = `, . . . , n do
f()

Exercise 3.2 Solving Recurrences (1 Point).

In this exercise, we describe a technique that can be used to solve recurrences, i.e. this allows to derive
a closed form formula from a recurrence relation. Consider for example the recurrence relation

T (n) ≤ 2T (n− 1) + 1, ∀n ≥ 1. (1)

2



Given T (0) = 3, we want to �nd an upper bound for T (n) that depends only on n (and not on T (n−1)).
�e idea is to repeatedly apply inequality (1) to get upper bounds in terms of T (n− 1), then T (n− 2),
and so on, at each step ge�ing closer to T (0) (which is known). In this case, expanding the recurrence
relation a few times yields

T (n) ≤ 2T (n− 1) + 1

≤ 2(2T (n− 2) + 1) + 1 = 4T (n− 2) + 3

≤ 4(2T (n− 3) + 1) + 3 = 8T (n− 3) + 7

≤ 8(2T (n− 4) + 1) + 7 = 16T (n− 4) + 15

...

We see an emerging pa�ern of the form

T (n) ≤ 2kT (n− k) + 2k − 1. (2)

Plugging k = n in (2), we get the conjecture

T (n) ≤ 2nT (0) + 2n − 1 = 4 · 2n − 1. (3)

Now that we have a guess, we can then use the base case T (0) = 3 together with the recurrence relation
(1) to actually prove (3) by induction.

a) Apply the same technique to �nd closed form formula for the following recurrence relation, and
prove by induction that your claimed formula is correct:

T (0) = 3, T (n) = 3T (n− 1)− 2 ∀n ≥ 1 .

b) Let
T (1) = 1, T (n) ≤ 4T (n/2) + 3 log2 n ∀n = 2m,m ≥ 1 .

Apply the technique described above to prove that T (n) ≤ O(n2 log n) (assuming n = 2m,m ≥ 1).

Hint: Use the fact that log2(n/2k) ≤ log2 n for all k ∈ N to simplify the formulas when you expand
the recurrence relation. Your proof should use induction onm.

Exercise 3.3 Maximum-Subarray-Di�erence (1 Point).

Consider the following problem: Given an array A ∈ Zn compute its maximum subarray di�erence,
i.e., compute

4∗ = max
1≤a≤b<c≤n

b∑
i=a

Ai −
c∑

j=b+1

Aj . (4)

a) Provide an O(n) algorithm.

b) Justify your answer:

i) Prove the correctness of your algorithm.

ii) Prove that the asymptotic runtime of your algorithm is O(n).

Exercise 3.4∗ Maximum-Submatrix-Sum.

3



Provide anO(n3) time algorithm which given a matrixM ∈ Zn×n outputs its maximal submatrix sum
S. �at is, if M has some non-negative entries,

S = max
1≤a≤b≤n
1≤c≤d≤n

b∑
i=a

d∑
j=c

Mij ,

and if all entries ofM are negative, S = 0.

Justify your answer, i.e. prove that the asymptotic runtime of your algorithm is O(n3).

Hint: You may want to start by considering the cumulative column sums

Cij =

i∑
k=1

Mkj .

How can you compute all Cij e�ciently? A�er you have computed Cij , how you can use this to �nd S?

4


